

Universität Ulm

Submission: Friday, 26.05.2017

Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017 Points total: 16 +7*

Evolutionsgleichungen: Exercise Sheet 5

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de. Exercises marked with * are bonus exercises.

- **1.** Let (A, D(A)) be an operator on a Banach space $X, \lambda \in \rho(A)$ and $D_0 \subseteq D(A)$ a subspace. Show (4) that the following assertions are equivalent.
 - (a) D_0 is dense in D(A) with respect to the graph norm.
 - (b) $(\lambda A)D_0$ is dense in X.
 - (c) $A = \overline{A|_{D_0}}$.
- **2.** Let T be a C_0 -semigroup with generator (A, D(A)) on a Banach space X and equip D(A) with the (4) graph norm. Show that the restriction

$$T_1(t) \coloneqq T(t)|_{D(A)}$$
 for $t \ge 0$

defines a C_0 -semigroup with generator $(A_1, D(A_1))$ where

$$D(A_1) = D(A^2),$$

$$A_1x = Ax \text{ for all } x \in D(A_1).$$

3. For $1 \le p \le \infty$ we define

 $\mathcal{L}^{p}_{c}(\mathbb{R}^{d}) \coloneqq \{ f \in \mathcal{L}^{p}(\mathbb{R}^{d}) \colon \exists K \subseteq \mathbb{R}^{d} \text{ compact with } f(x) = 0 \text{ for almost every } x \in \mathbb{R}^{d} \setminus K \}.$

For conjugate indices $1 < p, q < \infty$ (i.e. $\frac{1}{p} + \frac{1}{q} = 1$) we define the *convolution*

- (a) of $f \in L^p(\mathbb{R}^d)$ and $g \in L^q(\mathbb{R}^d)$
- (b) of $f \in \mathcal{L}^p_{\text{loc}}(\mathbb{R}^d)$ and $q \in \mathcal{L}^q_{\text{c}}(\mathbb{R}^d)$

by

$$f * g(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \,\mathrm{d}y$$

for $x \in \mathbb{R}^d$.

(i) Show that for conjugate indices $1 < p, q < \infty$ one has

$$L^{p}_{loc}(\mathbb{R}^{d}) * L^{q}_{c}(\mathbb{R}^{d}) \subseteq C(\mathbb{R}^{d}),$$
$$L^{p}(\mathbb{R}^{d}) * L^{q}(\mathbb{R}^{d}) \subseteq C_{0}(\mathbb{R}^{d}).$$

(Hint: For the second inclusion use that the space $C_c(\mathbb{R}^d)$ is dense in $L^r(\mathbb{R}^d)$ for $1 \leq r < \infty$.)

(ii) Let $d \ge 3$ and let E be the Newton potential. Show that E is contained in $L^q_{loc}(\mathbb{R}^d)$ if and only (2*) if $q < \frac{d}{d-2}$. To prove this, use the following result.

To prove this, use the following result

Let $0 \leq R_1 < R_2$ and consider

$$\Omega \coloneqq \{ x \in \mathbb{R}^d \colon R_1 < \|x\| < R_2 \}.$$

For each measurable function $g: (R_1, R_2) \longrightarrow \mathbb{R}$ and the corresponding radial function

$$f: \Omega \longrightarrow \mathbb{R}, \quad x \mapsto g(\|x\|)$$

 (2^*)

we obtain

$$\int_{\Omega} f(x) \,\mathrm{d}x = \sigma_d \int_{R_1}^{R_2} g(r) r^{d-1} \,\mathrm{d}r,$$

where σ_d is the surface volume of $S^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}.$

(iii) Now let $d \ge 3$, $p > \frac{d}{2}$ and $f \in L^p_c(\mathbb{R}^d)$. Show that $E * f \in C(\mathbb{R}^d)$.

Let $\mathbb{K} = \mathbb{R}$ and $\Omega \subseteq \mathbb{R}^d$ be open, bounded and Dirichtlet regular with $d \ge 3$. Let further $p > \frac{d}{2}$ and let $m: \Omega \longrightarrow (0, \infty)$ be measurable with $\frac{1}{m} \in L^p(\Omega)$. We consider (A, D(A)) on $C_0(\Omega)$ with

$$D(A) \coloneqq \left\{ u \in \mathcal{C}_0(\Omega) \colon \exists f \in \mathcal{C}_0(\Omega) \text{ with } \Delta u = \frac{f}{m} \right\},$$

$$Au \coloneqq f \text{ für } u \in D(A) \text{ with } \Delta u = \frac{f}{m}.$$

(iv) Show that (A, D(A)) is closed.

Now assume that m is continuous.

- (v) Show that (A, D(A)) is dissipative. You may use that Lemma (11.4) holds for $u \in D(A)$, i.e., if (2^*) $C \coloneqq \max_{x \in \Omega} u(x) > 0$, then there is $x_0 \in \Omega$ with $u(x_0) = C$ and $\Delta u(x_0) \le 0$. (We will discuss in the exercise group why this is correct.)
- (vi) Show that (A, D(A)) is m-dissipative. (4)(Hint: Show first that (A, D(A)) is surjective. Then prove that each dissipative, surjective and closed operator is already m-dissipative (cf. the proof of the surjective Lumer-Phillips theorem (10.3)).
- (vii) Show that (A, D(A)) generates a contractive C_0 -semigroup.

(2)

(2)

 (1^*)