

Universität Ulm

Abgabe: Freitag, 09.06.2017

Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017 Punktzahl: 14 + 6*

(2)

Übungen Evolutionsgleichungen: Blatt 7

Die Abgabe zu zweit ist möglich. Falls Ihr Fragen habt oder einen Hinweis braucht, schreibt eine Mail an henrik.kreidler@uni-ulm.de.

Mit * gekennzeichnete Aufgaben sind Bonusaufgaben.

1. (i) Zeige, dass der numerische Wertebereich von

whereich von
$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \in \mathcal{L}(\mathbb{C}^2)$$
 (2)

mit $\lambda_1, \lambda_2 \in \mathbb{C}$ die Verbindungsstrecke zwischen λ_1 und λ_2 ist.

Anmerkung: Wegen des Spektralsatzes kennt man damit auch den numerischen Wertebereich beliebiger normaler 2×2 – Matrizen.

(ii) Zeige, dass der numerische Wertebereich von

$$A = \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right) \in \mathscr{L}(\mathbb{C}^2)$$

die abgeschlossene Einheitskreisscheibe in $\mathbb C$ ist.

(Hinweis: Jedes $z \in \mathbb{C}$ lässt sich als $re^{i\theta}$ mit $r \geq 0$ und $\theta \in \mathbb{R}$ darstellen. Wende dies auf die Koordinaten der Vektoren $v \in \mathbb{C}^2$ mit ||v|| = 1 an.)

- (iii) Betrachte den komplexen Hilbertraum $H = \ell^2$ und $A(x_n)_{n \in \mathbb{N}} := (x_{n+1})_{n \in \mathbb{N}}$ für $(x_n)_{n \in \mathbb{N}} \in \ell^2$. (2) Zeige, dass W(A) die offene Einheitskreisscheibe in \mathbb{C} ist.
- **2.** Es sei H ein komplexer Hilbertraum und $A \in \mathcal{L}(H)$ ein beschränkter Operator. Zeige, dass $\sigma(A) \subseteq \overline{\mathrm{W}(A)}$.
- **3.** Betrachte den komplexen Hilbertraum $H = L^2((0, \infty))$ und seien die Operatoren (A, D(A)) und (B, D(B)) definiert durch

$$\begin{split} D(A) &\coloneqq \mathrm{H}^1_0((0,\infty)), \quad Af \coloneqq -f' \text{ für alle } f \in D(A), \\ D(B) &\coloneqq \mathrm{H}^1((0,\infty)), \quad Bf \coloneqq f' \text{ für alle } f \in D(B). \end{split}$$

Dann ist (D, D(B)) Generator einer kontraktiven C_0 -Halbgruppe auf H (nämlich des Linksshifts; dies muss nicht gezeigt werden).

- (i) Zeige, dass $B = A^*$. Insbesondere ist iA symmetrisch. (2)
- (ii) Zeige, dass (A, D(A)) Generator einer kontraktiven C_0 -Halbgruppe ist. Insbesondere ist (4^*)

$$\sigma(A) \subseteq \mathbb{C}_{-} := \{ z \in \mathbb{C} : \operatorname{Re} z \le 0 \}.$$

(iii) Zeige, dass $\sigma(A) = \mathbb{C}_-$. (2*) (Hinweis: Es genügt zu zeigen, dass für jedes $\lambda \in \mathbb{C}$ mit Re $\lambda < 0$ der Operator $\lambda - A^*$ nicht injektiv ist, denn dann ist $\lambda - A$ nicht surjektiv.)

(iv) Folgere, dass $\overline{W(iA)} = \mathbb{R}$. Insbesondere ist

$$\sigma(iA) = i\mathbb{C}_{-} \not\subseteq \mathbb{R} = \overline{W(iA)}.$$