

Universität Ulm

Submission: Friday, 16.06.2017

Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017 Points total: 16 +4*

Evolutionsgleichungen: Exercise Sheet 8

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de. Exercises marked with * are bonus exercises.

- 1. Let $\theta \in (0, \frac{\pi}{2})$ and $T: \Sigma_{\theta} \longrightarrow \mathscr{L}(X)$ a holomorphic C_0 -semigroup with generator A on a Banach (4*) space X. Show that T has a unique strongly continuous extension \tilde{T} to $\overline{\Sigma_{\theta}}$. Show also that $S_{\pm}(t) := \tilde{T}(e^{\pm i\theta}t)$ for $t \ge 0$ defines C_0 -semigroups with generators A_{\pm} where $A_{\pm} = e^{\pm i\theta}A$.
- **2.** (i) We consider the Banach space $X = C_0(\mathbb{R})$ and define the operator (A, D(A)) on X by (4)

$$D(A) \coloneqq \{ f \in C^1(\mathbb{R}) \colon f, f' \in C_0(\mathbb{R}) \}, \quad Af \coloneqq f' \text{ for each } f \in D(A).$$

Show that (A, D(A)) does **not** generate a holomorphic C_0 -semigroup on X. (Hint: Show that $i\lambda \in \sigma(A)$ for all $\lambda \in \mathbb{R}$. To do this, find $f_n \in D(A)$ with $||f_n|| = 1$ for $n \in \mathbb{N}$ and $\lim_{n\to\infty} (i\lambda - A)f_n = 0$.) *Remark:* The shift semigroup on $C_0(\mathbb{R})$ therefore not a holomorphic contraction semigroup.

(ii) We consider the complex Hilbert space $H = L^2(\mathbb{R})$ and the operator (A, D(A)) on H with (4)

 $D(A) = \mathrm{H}^2(\mathbb{R}) = \mathrm{W}^{2,2}(\mathbb{R}), \quad Af \coloneqq f'' \text{ für alle } f \in D(A).$

Show that (A, D(A)) generates a holomorphic contraction semigroup on H. *Remark:* Consequently, the Gauß semigroup on $L^2(\mathbb{R})$ is a holomorphic contraction semigroup.

3. Let V be a complex Hilbert space. A sesquilinear form $a: V \times V \longrightarrow \mathbb{C}$ is called *continuous* if there is $M \ge 0$ with

$$|a(x,y)| \le M \cdot ||x|| \cdot ||y||$$

for all $x, y \in V$.

For a continuous sesquilinear form $a \colon V \times V \longrightarrow \mathbb{C}$ we consider

 $A_a \colon V \longrightarrow V, \quad x \mapsto A_a x$

where $A_a x \in V$ is the (unique) element in V for $x \in V$ which satisfies $(A_a x | z) = a(x, z)$ for all $z \in V$.

For a bounded operator $A \in \mathscr{L}(V)$ we define $a_A(x, y) \coloneqq (Ax|y)$ for all $x, y \in V$.

- (i) Show that we always have $A_a \in \mathscr{L}(V)$ and that a_A is always sesquilinear and continuous. (2) Show also that $A_{a_A} = A$ and $a_{A_a} = a$ and that a is sectorial if and only if A_a is sectorial. (Recall that a is called *sectorial* if there is $\theta \in [0, \frac{\pi}{2})$ such that $a(x) \coloneqq a(x, x) \in \overline{\Sigma_{\theta}}$ for all $x \in V$.)
- (ii) Show that there exists $\omega \in \mathbb{R}$ such that $A_a \omega$ is sectorial.
- 4. Let again V be a complex Hilbert space. A sesquilinear form $a: V \times V \longrightarrow \mathbb{C}$ is *coercive* if there is $\alpha > 0$ with $\operatorname{Re} a(x) \ge \alpha \|x\|^2$ for all $x \in V$. Now let a be a coercive and continuous sesquilinear form on V.
 - (i) Show that a is sectorial.

(2)

(2)

(ii) Define $||x||_1 \coloneqq \sqrt{\operatorname{Re} a(x)}$ for $x \in V$. Show that $|| \cdot ||_1$ is a norm on V and that it is equivalent (1) to the given norm $|| \cdot ||_V$ on V.

(iii) We now also assume that V is a subspace of a Hilbert space H (with a different norm) and (1) that there is $M \ge 0$ with $||x||_H \le M \cdot ||x||_V$ for all $x \in V$. Show that the norm $|| \cdot ||_a$ induced by a on V defined by

$$||x||_a \coloneqq (\operatorname{Re} a(x) + ||x||_H^2)^{\frac{1}{2}}$$

for $x \in V$ is equivalent to $\| \cdot \|_1$.

Remark: This shows in particular that the form *a* is closed, i.e., *V* is complete with respect to $\|\cdot\|_a$.