Evolutionsgleichungen: Exercise Sheet 9

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de, Exercises marked with * are bonus exercises.

1. For this exercise we use the fact that each $f \in \mathrm{H}^{1}((a, b))$ can be identified with a function in $\mathrm{C}([a, b])$ and that

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(y) \mathrm{d} y
$$

for all $x \in[a, b]$. (Each $f \in \mathrm{H}^{1}((a, b))$ is an equivalence class of functions. One can show that this equivalence class contains exactly one function in $\mathrm{C}([a, b])$ and then identify f with it.)
Now let $b>0$ and $V:=\left\{u \in \mathrm{H}^{1}((0, b)): u(0)=0\right\}$.
(i) Show the Poincaré inequality

$$
\begin{equation*}
\int_{0}^{b}|u(x)|^{2} \mathrm{~d} x \leq \frac{b^{2}}{2} \int_{0}^{b}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x \text { for all } u \in V \tag{2}
\end{equation*}
$$

(ii) Show that the sesquilinear form

$$
\begin{equation*}
a: V \times V \longrightarrow \mathbb{C}, \quad(u, v) \mapsto \int_{0}^{b} u^{\prime}(x) \overline{v^{\prime}(x)} \mathrm{d} x \tag{2}
\end{equation*}
$$

is continuous and coercive.
(iii) We now conisder V as a subspace of $H:=\mathrm{L}^{2}((0, b))$. Show that the for a on H is sectorial, closed and densely defined.
(Hint: Use exercise 4 of exercise sheet 8.)
(iv) Show that for $f, g \in \mathrm{H}^{1}((0, b))$ we have

$$
\begin{equation*}
\int_{0}^{b} f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \mathrm{d} x=f(b) g(b)-f(0) g(0) \tag{2}
\end{equation*}
$$

(v) Show that the associtaed operator A with a is given by

$$
\begin{align*}
& D(A)=\left\{u \in \mathrm{H}^{2}((0, b)): u(0)=0, u^{\prime}(b)=0\right\} \tag{2}\\
& A u=-u^{\prime \prime} \text { for all } u \in D(A)
\end{align*}
$$

Here

$$
\mathrm{H}^{2}((0, b))=\left\{f \in \mathrm{H}^{1}((0, b)): f^{\prime} \in \mathrm{H}^{1}((0, b))\right\}
$$

and $f^{\prime \prime}:=\left(f^{\prime}\right)^{\prime}$ for $f \in \mathrm{H}^{2}((0, b))$.
Anmerkung: By the results of the lecture, $-A$ generates a holomorphic contraction semigroup on $\mathrm{L}^{2}((0, b))$.
2. (i) Let A generate a strongly continuous group on a Banach space X. Show that A^{2} generates a bounded holomorphic C_{0}-semigroup on X.
(Hint: Let $\theta \in\left(0, \frac{\pi}{2}\right)$ be arbitrary and $\lambda \in \Sigma_{\frac{\pi}{2}+\theta}$. We find a root $\mu=r e^{i \alpha}$ of λ with $|\alpha|<\frac{1}{2}\left(\frac{\pi}{2}+\theta\right)$. Write the operator $\left(\lambda-A^{2}\right)$ as a product and show that $\lambda \in \varrho\left(A^{2}\right)$ and

$$
R\left(\lambda, A^{2}\right)=R(\mu, A) R(\mu,-A)
$$

Then use this identity as well as estimates for the resolvents of A and $-A$ to verify condition (i) in theorem (20.3).)

Remark: The result proved here extends to the unbounded case: If A is the generator of any C_{0}-group, then A^{2} generates a holomorphic C_{0}-semigroup.
(ii) We consider the operator A om $\mathrm{C}_{0}(\mathbb{R})$ given by

$$
\begin{aligned}
& D(A):=\left\{f \in \mathrm{C}^{2}(\mathbb{R}): f, f^{\prime}, f^{\prime \prime} \in \mathrm{C}_{0}(\mathbb{R})\right\} \\
& A f:=f^{\prime \prime} \text { for all } f \in D(A)
\end{aligned}
$$

Show that A generates a holomorphic C_{0}-semigroup.
3. We consider the following version of the so called Black-Scholes equation which describes the value of call-options at the European stock market.

$$
\begin{cases}\frac{\mathrm{d} u}{\mathrm{~d} t}(x, t)=-\frac{\sigma^{2}}{2} x^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)-r x \frac{\partial u}{\partial x}(x, t)+r u(x, t) & \text { for all } x \in(0, \infty), t \in[0, T], \\ u(x, T)=h(x) & \text { for all } x \in(0, \infty),\end{cases}
$$

where $\sigma>0$ (volatility), $r>0$ (interest rate) and $T>0$ (tenor) are fixed parameters and $h \in \mathrm{C}_{0}((0, \infty))$ a fixed function. By substitution and rescaling this problem can be described by the abstract Cauchy problem

$$
\begin{aligned}
& f^{\prime}(t)=A f(t) \text { for all } t \geq 0 \\
& f(0)=h
\end{aligned}
$$

on the space $\mathrm{C}_{0}((0, \infty))$ where

$$
\begin{aligned}
& D(A):=\left\{f \in \mathrm{C}^{2}((0, \infty)): q^{2} \cdot f^{\prime \prime}, q \cdot f^{\prime}, f \in \mathrm{C}_{0}((0, \infty))\right\}, \\
& A f:=q^{2} \cdot f^{\prime \prime}+c \cdot q \cdot f^{\prime}-c f \text { for } f \in D(A)
\end{aligned}
$$

and $q(x):=x$ for all $x \in(0, \infty)$ as well as $c:=\frac{2 r}{\sigma^{2}}>0$. We want to show that $(A, D(A))$ generates a holomorphic C_{0}-semigroup.
(i) Let $\eta:=\frac{1}{2}(c-1)$ and define $(B, D(B))$ by

$$
\begin{aligned}
& D(B):=\left\{f \in \mathrm{C}^{1}((0, \infty)): q \cdot f^{\prime}, f \in \mathrm{C}_{0}((0, \infty))\right\}, \\
& B f:=q \cdot f^{\prime} \text { for all } f \in D(B)
\end{aligned}
$$

Show that $D(A)=D\left(B^{2}\right)$ and

$$
A f=(B+\eta)^{2} f-(1+\eta)^{2} f
$$

for all $f \in D(A)$.
(ii) Show that $V f(x):=f\left(e^{x}\right)$ for $f \in \mathrm{C}_{0}((0, \infty))$ and $x \in \mathbb{R}$ defines an isometric isomorphism

$$
V: \mathrm{C}_{0}((0, \infty)) \longrightarrow \mathrm{C}_{0}(\mathbb{R})
$$

(iii) Show that the operator $V B V^{-1}$ (with domain $\left\{f \in \mathrm{C}_{0}(\mathbb{R}): V^{-1} f \in D(B)\right\}$) is the first derivative on $\mathrm{C}_{0}(\mathbb{R})$ with domain

$$
\left\{f \in \mathrm{C}^{1}(\mathbb{R}): f, f^{\prime} \in \mathrm{C}_{0}(\mathbb{R})\right\}
$$

(iv) Show that $(A, D(A))$ generates a holomorphic C_{0}-semigroup. You may use the generalized result of exercise 2(i).

