

Universität Ulm

Abgabe: Freitag, 30.06.2017

Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017

Punktzahl: 16 + 16*

Übungen Evolutionsgleichungen: Blatt 10

Die Abgabe zu zweit ist möglich. Falls Ihr Fragen habt oder einen Hinweis braucht, schreibt eine Mail an henrik.kreidler@uni-ulm.de.

Mit * gekennzeichnete Aufgaben sind Bonusaufgaben.

- 1. Für $A \in \mathcal{L}(\mathbb{C}^2)$ sei T die zugehörige Halbgruppe, also $T(t) \coloneqq e^{tA}$ für alle $t \ge 0$. Gib Beispiele für (5) Matrizen $A \ne I$ mit den folgenden Eigenschaften.
 - (i) $\lim_{t\to\infty} T(t)x = 0$ für alle $x \in \mathbb{C}^2$.
 - (ii) T ist periodisch, d.h. es gibt ein t > 0 mit T(t) = I.
 - (iii) Für alle $x \in \mathbb{C}^2 \setminus \{0\}$ ist die Bahn $\{T(t)x \colon t \geq 0\}$ unbeschränkt.
 - (iv) Es gibt $x, y \in \mathbb{C}^2 \setminus \{0\}$, so, dass $\{T(t)x \colon t \geq 0\}$ beschränkt und $\{T(t)y \colon t \geq 0\}$ unbeschränkt.
 - (v) $\omega(A) = 0$, aber T nicht beschränkt.
- 2. Eine C_0 -Halbgruppe T heißt $gleichmä\beta ig\ stabil$, falls $\lim_{t\to\infty} \|T(t)\| = 0$. Es sei nun T eine C_0 -Halbgruppe mit Generator A auf einem Banachraum X. Zeige, dass folgende Aussagen äquivalent sind.
 - (a) $\omega(A) < 0$.
 - (b) T ist gleichmäßig stabil.
 - (c) Es gibt ein t > 0 mit ||T(t)|| < 1.
 - (d) Es gibt ein t > 0 mit r(T(t)) < 1.
- 3. Eine C_0 -Halbgruppe T mit Generator A erfüllt den schwachen spektralen Abbildungssatz, falls

$$\sigma(T(t)) = \overline{e^{t\sigma(A)}}$$
 für alle $t > 0$

gilt.

- (i) Es sei nun $q: \mathbb{R} \longrightarrow \mathbb{C}$ stetig mit beschränktem Realteil und T die zugehörige Multiplikationshalbgruppe auf $C_0(\mathbb{R})$, d.h. $T(t)f(x) := e^{tq(x)}f(x)$ für alle $f \in C_0(\mathbb{R})$, $x \in \mathbb{R}$ und $t \geq 0$ (siehe Aufgabe 4 von Blatt 1). Zeige: T erfüllt den schwachen spektralen Abbildungssatz. (Hinweis: Benutze Aufgabe 1 von Blatt 4.)
- (ii) Es sei nun T eine C_0 -Halbgruppe mit Generator A, die den schwachen spektralen Abbildungssatz (4) erfüllt. Zeige, dass $s(A) = \omega(A)$.
- **4.** Es seien X und Y Banachräume und Y sei ein Unterraum von X (mit nicht unbedingt derselben Norm). Wir nennen die Inklusion $X \subseteq Y$ stetig, falls es ein $M \ge 0$ gibt mit $\|y\|_X \le M\|y\|_Y$ für alle $y \in Y$ gibt.

Es sei nun A ein Operator auf einem Banachraum X. Es sei Y ein weiterer Banachraum mit stetiger Inklusion $Y \subseteq X$ und $A|_Y$ sei der $Teil\ von\ A\ in\ Y$, d.h.

$$D(A|_Y) := \{ y \in D(A) \cap Y : Ay \in Y \},$$

$$A|_Y y := Ay \text{ für alle } y \in D(A|_Y).$$

(i) Es sei $\lambda \in \varrho(A)$ mit $R(\lambda, A)Y \subseteq Y$. Zeige, dass dann $\lambda \in \sigma(A|_Y)$ und $R(\lambda, A|_Y) = R(\lambda, A)|_Y$. (2*)

Es sei nun zusätzlich $\varrho(A) \neq \emptyset$, D(A) sei mit der Graphennorm versehen und $D(A) \subseteq Y$ stetig.

(ii) Zeige nun, dass A_1 (siehe Aufgabe 1 von Blatt 6) gleich dem Teil von $A|_Y$ in D(A) ist. (2*)

- (iii) Zeige, dass $\sigma(A|_Y) = \sigma(A)$. (1*) (Hinweis: Benutze (i) und (ii) um $\sigma(A_1) \subseteq \sigma(A|_Y)$ zu zeigen. Wir wissen aus dem Beweis von Aufgabe 1 von Blatt 6, dass A_1 und A ähnlich sind, d.h. es gibt einen Isomorphismus $V \in \mathcal{L}(X, D(A))$ (nämlich die Resolvente) mit $A_1 = V^{-1}AV$. Da ähnliche Operatoren dasselbe Spektrum haben (dies muss hier nicht gezeigt werden!), folgt $\sigma(A_1) = \sigma(A)$.)
- **5.** Es sei $1 . Für jedes <math>q \in [p, \infty)$ betrachten wir den Raum $X_q := L^p((1, \infty)) \cap L^q((1, \infty))$.

$$||f|| := \max(||f||_p, ||f||_q)$$

für $f \in X_q$ wird eine Norm auf X_q definiert bezüglich welcher X_q vollständig ist. Wir definieren nun $T_q(t)f(x) := f(x \cdot e^t)$ für $f \in X_q$, $x \in (1, \infty)$ und $t \geq 0$. Dann ist T_q eine C_0 -Halbgruppe und es sei A_q ihr Generator.

(i) Zeige, dass $\omega(A_q) = -\frac{1}{q}$. (2*) (Hinweis: Zeige zunächst, dass $||T_q(t)f|| \le e^{-\frac{t}{q}}||f||$ für alle $f \in X_q$ und $t \ge 0$. Betrachte dann für festes $t \ge 0$ die Funktion $f \in X_q$ mit

$$f(x) \coloneqq \begin{cases} 1 & e^t \le x \le e^t + 1, \\ 0 & \text{sonst.} \end{cases}$$

und folgere $||T_q(t)|| = e^{-\frac{t}{q}}$ für alle $t \ge 0$.)

- (ii) Zeige, dass $s(A_q) \ge -\frac{1}{p}$. (2*) (Hinweis: Betrachte für $\lambda \in \mathbb{C}$ mit Re $\lambda < -\frac{1}{p}$ die Funktion f_λ definiert durch $f_\lambda(x) := x^\lambda$ für $x \in (1, \infty)$. Zeige dann, dass $f_\lambda \in X_q$ und $T(t)f_\lambda = e^{\lambda t}f_\lambda$ für alle $t \ge 0$.)
- (iii) Zeige, dass $s(A_q) = -\frac{1}{p}$. Es darf dabei verwendet werden, dass A_q der Teil von A_p in X_q ist¹. (7*) (Hinweis: Im Fall p = q wissen wir nach (i) und (ii) nun $s(A_p) = \omega(A_p) = -\frac{1}{p}$. Insbesondere erhalten wir wegen $\omega < 0$ die Resolventendarstellung

$$(R(0, A_p)f)(x) = \int_0^\infty (T_p(s)f)(x) \,\mathrm{d}s.$$

für fast alle $x \in (1, \infty)$ für alle $f \in X_p = \mathrm{L}^p((1, \infty))$. Zeige nun mithilfe geeigneter Abschätzungen, dass

$$D(A_p) = \operatorname{Bild}(R(0, A_p)) \subseteq X_q \subseteq X_p = \operatorname{L}^p((1, \infty))$$

und dass diese Inklusionen stetig sind. Wende dann Aufgabe 4 an.)

Anmerkung: Für p < q gilt also $\omega(A_q) < s(A_q)$.

Übungsblätter sowie aktuelle Informationen unter www.uni-ulm.de/mawi/iaa/courses/ss17/evo/

 $^{^1}$ Dies folgt daraus, dass T_q die Einschränkung von T_p auf X_q ist, siehe etwa Abschnitt II.2.3 in Engel, Nagel: One-Parameter Semigroups for Linear Evolution Equations.