

Universität Ulm

Submission: Friday, 30.06.2017

Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017 Points total: 16 +16*

Evolutionsgleichungen: Exercise Sheet 10

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de. Exercises marked with * are bonus exercises.

- **1.** For $A \in \mathscr{L}(\mathbb{C}^2)$ let T be the associated semigroup, i.e., $T(t) \coloneqq e^{tA}$ for all $t \ge 0$. Write down (5) examples for matrices $A \neq I$ with the following properties.
 - (i) $\lim_{t\to\infty} T(t)x = 0$ for each $x \in \mathbb{C}^2$.
 - (ii) T is *periodic*, i.e., there is t > 0 with T(t) = I.
 - (iii) For each $x \in \mathbb{C}^2 \setminus \{0\}$ the orbit $\{T(t)x \colon t \ge 0\}$ is unbounded.
 - (iv) There are $x, y \in \mathbb{C}^2 \setminus \{0\}$ such that $\{T(t)x \colon t \ge 0\}$ is bounded and $\{T(t)y \colon t \ge 0\}$ is unbounded.
 - (v) $\omega(A) = 0$, but T is unbounded.
- **2.** A C_0 -semigroup T is uniformly stable if $\lim_{t\to\infty} ||T(t)|| = 0$. Now let T be a C_0 -semigroup with (3) generator A on a Banach space X. Show that the following assertions are equivalent.
 - (a) $\omega(A) < 0.$
 - (b) T is uniformly stable.
 - (c) There is t > 0 with ||T(t)|| < 1.
 - (d) There is t > 0 with r(T(t)) < 1.
- **3.** A C_0 -semigroup T with generator A satisfies the weak spectral mapping theorem if

$$\sigma(T(t)) = \overline{e^{t\sigma(A)}} \text{ for all } t \ge 0.$$

- (i) Now let $q: \mathbb{R} \longrightarrow \mathbb{C}$ be continuous with bounded real part T the associated multiplication (4) semigroup on $C_0(\mathbb{R})$, i.e., $T(t)f(x) \coloneqq e^{tq(x)}f(x)$ for all $f \in C_0(\mathbb{R})$, $x \in \mathbb{R}$ and $t \ge 0$ (see exercise 4 of exercise sheet 1). Show that T satisfies the weak spectral mapping theorem. (Hint: Use exercise 1 of exercise sheet 4.)
- (ii) Now let T be a C_0 -semigroup with generator A which satisfies the spectral mapping theorem. (4) Show that $s(A) = \omega(A)$.
- 4. Let X and Y be Banach spaces and assume that Y is a subspace of X (with a possibly different norm). The inclusion $X \subseteq Y$ is called *continuous* if there is $M \ge 0$ with $\|y\|_X \le M \|y\|_Y$ for every $y \in Y$.

Now let A be an operator on a Banach space X. Let Y be another Banach space with continuous inclusion $Y \subseteq X$ and let $A|_Y$ be the part of A in Y, i.e.,

$$D(A|_Y) \coloneqq \{ y \in D(A) \cap Y \colon Ay \in Y \},\$$

$$A|_Yy \coloneqq Ay \text{ for all } y \in D(A|_Y).$$

(i) Let $\lambda \in \varrho(A)$ with $R(\lambda, A)Y \subseteq Y$. Show that $\lambda \in \sigma(A|_Y)$ and $R(\lambda, A|_Y) = R(\lambda, A)|_Y$. (2*)

We now also assume that $\varrho(A) \neq \emptyset$, that D(A) carries the graph norm and that $D(A) \subseteq Y$ continuously.

(ii) Show that A_1 (see exercise 1 of exercise sheet 6) is the part of $A|_Y$ in D(A). (2*)

(iii) Show that $\sigma(A|_Y) = \sigma(A)$.

(Hint: Use (i) and (ii) in order to show $\sigma(A_1) \subseteq \sigma(A|_Y)$. We know from the proof of exercise 1 of exercise sheet 6 that A_1 and A are *similar*, i.e., there is an isomorphism $V \in \mathscr{L}(X, D(A))$ (namely the resolvent) with $A_1 = V^{-1}AV$. Since similar operators have the same spectrum (this is not to be shown here), we obtain $\sigma(A_1) = \sigma(A)$.)

5. Let $1 . For each <math>q \in [p, \infty)$ we consider the space $X_q := L^p((1, \infty)) \cap L^q((1, \infty))$. By setting

$$||f|| \coloneqq \max(||f||_p, ||f||_q)$$

for $f \in X_q$ we define a norm on X_q in relation to which X_q is complete. We now define $T_q(t)f(x) \coloneqq f(x \cdot e^t)$ for $f \in X_q$, $x \in (1, \infty)$ and $t \ge 0$. Then T_q is a C_0 -semigroup and let A_q be its generator.

(i) Show that $\omega(A_q) = -\frac{1}{q}$. (Hint: Show first that $||T_q(t)f|| \le e^{-\frac{t}{q}} ||f||$ for all $f \in X_q$ and $t \ge 0$. Now fix $t \ge 0$ and consider $f \in X_q$ given by (2^*)

$$f(x) \coloneqq \begin{cases} 1 & e^t \le x \le e^t + 1, \\ 0 & \text{else.} \end{cases}$$

and conclude that $||T_q(t)|| = e^{-\frac{t}{q}}$ for all $t \ge 0$.)

- (ii) Show that $s(A_q) \ge -\frac{1}{p}$. (Hint: For $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda < -\frac{1}{p}$ consider the function f_{λ} defined by $f_{\lambda}(x) \coloneqq x^{\lambda}$ for $x \in (1, \infty)$. Then show $f_{\lambda} \in X_q$ and $T(t)f_{\lambda} = e^{\lambda t}f_{\lambda}$ for all $t \ge 0$.) (2^*)
- (iii) Show that $s(A_q) = -\frac{1}{p}$. You may use that A_q is the part of A_p in X_q^{-1} . (7*) (Hint: In case p = q we now know by (i) and (ii) that $s(A_p) = \omega(A_p) = -\frac{1}{p}$. In particular, we obtain – since $\omega < 0$ – the representation of the resolvent

$$(R(0, A_p)f)(x) = \int_0^\infty (T_p(s)f)(x) \,\mathrm{d}s.$$

for almost all $x \in (1, \infty)$ for every $f \in X_p = L^p((1, \infty))$. Now show with suitable estimates that

$$D(A_p) = \text{Bild}(R(0, A_p)) \subseteq X_q \subseteq X_p = L^p((1, \infty))$$

and that these inclusions are continuous. Then apply exercise 4.)

Remark: For p < q we therefore obtain $\omega(A_q) < s(A_q)$.

exercise sheets and current information at www.uni-ulm.de/mawi/iaa/courses/ss17/evo/

 (1^*)

¹This is a consequence of the fact that T_q is the restriction of T_p to X_q , see for example section II.2.3 in Engel, Nagel: One-Parameter Semigroups for Linear Evolution Equations.