Evolutionsgleichungen: Exercise Sheet 10

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de
Exercises marked with * are bonus exercises.

1. For $A \in \mathscr{L}\left(\mathbb{C}^{2}\right)$ let T be the associated semigroup, i.e., $T(t):=e^{t A}$ for all $t \geq 0$. Write down examples for matrices $A \neq I$ with the following properties.
(i) $\lim _{t \rightarrow \infty} T(t) x=0$ for each $x \in \mathbb{C}^{2}$.
(ii) T is periodic, i.e., there is $t>0$ with $T(t)=I$.
(iii) For each $x \in \mathbb{C}^{2} \backslash\{0\}$ the orbit $\{T(t) x: t \geq 0\}$ is unbounded.
(iv) There are $x, y \in \mathbb{C}^{2} \backslash\{0\}$ such that $\{T(t) x: t \geq 0\}$ is bounded and $\{T(t) y: t \geq 0\}$ is unbounded.
(v) $\omega(A)=0$, but T is unbounded.
2. A C_{0}-semigroup T is uniformly stable if $\lim _{t \rightarrow \infty}\|T(t)\|=0$. Now let T be a C_{0}-semigroup with generator A on a Banach space X. Show that the following assertions are equivalent.
(a) $\omega(A)<0$.
(b) T is uniformly stable.
(c) There is $t>0$ with $\|T(t)\|<1$.
(d) There is $t>0$ with $r(T(t))<1$.
3. A C_{0}-semigroup T with generator A satisfies the weak spectral mapping theorem if

$$
\sigma(T(t))=\overline{e^{t \sigma(A)}} \text { for all } t \geq 0
$$

(i) Now let $q: \mathbb{R} \longrightarrow \mathbb{C}$ be continuous with bounded real part T the associated multiplication semigroup on $\mathrm{C}_{0}(\mathbb{R})$, i.e., $T(t) f(x):=e^{t q(x)} f(x)$ for all $f \in \mathrm{C}_{0}(\mathbb{R}), x \in \mathbb{R}$ and $t \geq 0$ (see exercise 4 of exercise sheet 1). Show that T satisfies the weak spectral mapping theorem.
(Hint: Use exercise 1 of exercise sheet 4.)
(ii) Now let T be a C_{0}-semigroup with generator A which satisfies the spectral mapping theorem. Show that $s(A)=\omega(A)$.
4. Let X and Y be Banach spaces and assume that Y is a subspace of X (with a possibly different norm). The inclusion $X \subseteq Y$ is called continuous if there is $M \geq 0$ with $\|y\|_{X} \leq M\|y\|_{Y}$ for every $y \in Y$.
Now let A be an operator on a Banach space X. Let Y be another Banach space with continuous inclusion $Y \subseteq X$ and let $\left.A\right|_{Y}$ be the part of A in Y, i.e.,

$$
\begin{align*}
& D\left(\left.A\right|_{Y}\right):=\{y \in D(A) \cap Y: A y \in Y\} \\
& \left.A\right|_{Y} y:=A y \text { for all } y \in D\left(\left.A\right|_{Y}\right) \tag{*}
\end{align*}
$$

(i) Let $\lambda \in \varrho(A)$ with $R(\lambda, A) Y \subseteq Y$. Show that $\lambda \in \sigma\left(\left.A\right|_{Y}\right)$ and $R\left(\lambda,\left.A\right|_{Y}\right)=\left.R(\lambda, A)\right|_{Y}$.

We now also assume that $\varrho(A) \neq \emptyset$, that $D(A)$ carries the graph norm and that $D(A) \subseteq Y$ continuously.
(ii) Show that A_{1} (see exercise 1 of exercise sheet 6) is the part of $\left.A\right|_{Y}$ in $D(A)$.
(iii) Show that $\sigma\left(\left.A\right|_{Y}\right)=\sigma(A)$.
(Hint: Use (i) and (ii) in order to show $\sigma\left(A_{1}\right) \subseteq \sigma\left(\left.A\right|_{Y}\right)$. We know from the proof of exercise 1 of exercise sheet 6 that A_{1} and A are similar, i.e., there is an isomorphism $V \in \mathscr{L}(X, D(A))$ (namely the resolvent) with $A_{1}=V^{-1} A V$. Since similar operators have the same spectrum (this is not to be shown here), we obtain $\sigma\left(A_{1}\right)=\sigma(A)$.)
5. Let $1<p<\infty$. For each $q \in[p, \infty)$ we consider the space $X_{q}:=\mathrm{L}^{p}((1, \infty)) \cap \mathrm{L}^{q}((1, \infty))$. By setting

$$
\|f\|:=\max \left(\|f\|_{p},\|f\|_{q}\right)
$$

for $f \in X_{q}$ we define a norm on X_{q} in relation to which X_{q} is complete. We now define $T_{q}(t) f(x):=$ $f\left(x \cdot e^{t}\right)$ for $f \in X_{q}, x \in(1, \infty)$ and $t \geq 0$. Then T_{q} is a C_{0}-semigroup and let A_{q} be its generator.
(i) Show that $\omega\left(A_{q}\right)=-\frac{1}{q}$.
(Hint: Show first that $\left\|T_{q}(t) f\right\| \leq e^{-\frac{t}{q}}\|f\|$ for all $f \in X_{q}$ and $t \geq 0$. Now fix $t \geq 0$ and consider $f \in X_{q}$ given by

$$
f(x):= \begin{cases}1 & e^{t} \leq x \leq e^{t}+1 \\ 0 & \text { else }\end{cases}
$$

and conclude that $\left\|T_{q}(t)\right\|=e^{-\frac{t}{q}}$ for all $t \geq 0$.)
(ii) Show that $s\left(A_{q}\right) \geq-\frac{1}{p}$.
(Hint: For $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda<-\frac{1}{p}$ consider the function f_{λ} defined by $f_{\lambda}(x):=x^{\lambda}$ for $x \in(1, \infty)$. Then show $f_{\lambda} \in X_{q}$ and $T(t) f_{\lambda}=e^{\lambda t} f_{\lambda}$ for all $t \geq 0$.)
(iii) Show that $s\left(A_{q}\right)=-\frac{1}{p}$. You may use that A_{q} is the part of A_{p} in $X_{q}{ }^{1}$
(Hint: In case $p=q$ we now know by (i) and (ii) that $s\left(A_{p}\right)=\omega\left(A_{p}\right)=-\frac{1}{p}$. In particular, we obtain - since $\omega<0$ - the representation of the resolvent

$$
\left(R\left(0, A_{p}\right) f\right)(x)=\int_{0}^{\infty}\left(T_{p}(s) f\right)(x) \mathrm{d} s
$$

for almost all $x \in(1, \infty)$ for every $f \in X_{p}=\mathrm{L}^{p}((1, \infty))$. Now show with suitable estimates that

$$
D\left(A_{p}\right)=\operatorname{Bild}\left(R\left(0, A_{p}\right)\right) \subseteq X_{q} \subseteq X_{p}=\mathrm{L}^{p}((1, \infty))
$$

and that these inclusions are continuous. Then apply exercise 4.)
Remark: For $p<q$ we therefore obtain $\omega\left(A_{q}\right)<s\left(A_{q}\right)$.

[^0]
[^0]: ${ }^{1}$ This is a consequence of the fact that T_{q} is the restriction of T_{p} to X_{q}, see for example section II.2.3 in Engel, Nagel: One-Parameter Semigroups for Linear Evolution Equations.

