

Universität Ulm

Dienstag, 22.12.2009

Prof. Dr. W. Arendt Robin Nittka Wintersemester 2009/10

Punktzahl: 106

Elemente der Topologie: Probeklausur

1.	Sei $\mathscr{T}:=\{A\subset\mathbb{R}:A^c\text{ ist eine höchstens abzählbare Menge}\}\cup\{\emptyset\}.$ Zeige, dass \mathscr{T} eine Topologie auf \mathbb{R} ist!	(
2.	Sei X ein Hausdorff-Raum. Zeige, dass alle endlichen Teilmengen von X abgeschlossen sind!	(
3.	Sei X ein Hausdorff-Raum und $(x_n)_{n\in\mathbb{N}}$ eine gegen x konvergente Folge. Zeige, dass $K:=\{x_n:n\in\mathbb{N}\}\cup\{x\}$ kompakt ist!	(
4.	Sei X ein kompakter Hausdorff-Raum und $(x_i)_{i\in I}$ ein Netz in X . Zeige, dass $(x_i)_{i\in I}$ einen Häufungspunkt besitzt!	(
5.	Sei $\mathcal{F}(\mathbb{R})$ mit der Topologie der punktweisen Konvergenz versehen. Sei $\mathcal{M}\subset\mathcal{F}(\mathbb{R})$ die Menge der monoton wachsenden Funktionen von \mathbb{R} nach \mathbb{R} . Bestimme Abschluss und Inneres von \mathcal{M} !	(
6.	Sei X ein Hausdorff-Raum. Seien f und g stetige Funktionen von X nach \mathbb{R} . Zeige, dass dann auch $h\coloneqq f\cdot g$, also die Funktion $x\mapsto h(x)\coloneqq f(x)\cdot g(x)$, stetig auf X ist!	(
7.	Sei $\{0,1\}$ mit der diskreten Topologie und $X := \prod_{i \in \mathbb{N}} \{0,1\}$ mit der daraus resultierenden Produkttopologie versehen. Zeige: (a) Der Raum X ist ein Hausdorff-Raum. (b) Der Raum X erfüllt das zweite Abzählbarkeitsaxiom. (c) Es gibt kein $x \in X$, für das die Menge $\{x\}$ offen ist. (d) Der Linksshift $L : X \to X$, $(x_n)_{n \in \mathbb{N}} \mapsto (x_{n+1})_{n \in \mathbb{N}}$ ist stetig.	()
8.	Entscheide (ohne Begründung), ob folgende Aussagen richtig oder falsch sind; korrekte Antworten geben einen Punkt, inkorrekte einen Abzug von einem Punkt, wobei die gesamte Aufgabe aber nicht mit weniger als null Punkten gewertet wird: (1) Erfüllt ein topologischer Raum das zweite Abzählbarkeitsaxiom, so auch das erste.	
	 (2) Ist X ein topologischer Raum und A ⊂ X sowohl offen als auch abgeschlossen, so ist A = Ø oder A = X. (3) Ist X eine nicht-leere Menge und B eine beliebige Teilmenge der Potenzmenge von X, so gibt es eine Topologie F auf X, zu der B eine Basis ist. 	

(4) Ist X eine nicht-leere Menge und \mathcal{T}_i die indiskrete Topologie auf X, so ist (X, \mathcal{T}_i)

(5) In einem topologischen Raum X ist eine Menge A genau dann abgeschlossen, wenn

separabel.

 $\partial A \subset A$ ist.

- (6) Sind X und Y Hausdorff-Räume, ist A eine Teilmenge von X und ist $f: X \to Y$ stetig, so ist die Einschränkung $f|_A: A \to Y$ von f auf A stetig bezüglich der relativen Topologie auf A.
- (7) Es gibt eine unendliche Menge Y und eine Hausdorff-Topologie auf Y mit der Eigenschaft, dass für jeden Hausdorff-Raum X jede Funktion $f \colon X \to Y$ stetig ist.
- (8) Erfüllt X das zweite Abzählbarkeitsaxiom, so ist jede folgenkompakte Teilmenge von X kompakt.
- (9) Ist M ein vollständiger metrischer Raum, so ist jede abgeschlossene Teilmenge von M kompakt.
- (10) Für Hausdorff-Räume X, Y und Z ist eine Funktion $f: X \to Y \times Z$, wobei wir $f(x) = (f_1(x), f_2(x))$ mit $f_1: X \to Y$, $f_2: X \to Z$ schreiben, genau dann stetig, wenn f_1 und f_2 stetige Funktionen sind.