

ulm university universität **UUIM**

Dr. Markus Biegert Dipl.Ing. S.O. Akindeinde WS 2009/2010

Applied Analysis Tutorials Sheet: 1 (Getting started) Submission: Tuesday, 20.10.2009 during the next tutorial class.

- 1. Let (X, d) be a metric space, $(x_n)_{n \in \mathbb{N}}$ be a sequence in X and $x_0 \in X$. Define a new metric $d_1(x, y) := \min\{1, d(x, y)\}$ for $x, y \in X$. Show that (X, d_1) is a metric space and that $x_n \to x_0$ in (X, d) if and only if $x_n \to x_0$ in (X, d_1) .
- 2. Consider a set $S := \{1/n, n \in \mathbb{N}\}$ in a metric space \mathbb{R} .
 - (a) Is S closed? Is it open? Justify your answers.
 - (b) Determine the interior, the closure and the boundary of the set S.
 - (c) Is the set $\{n : n \in \mathbb{N}\}$ closed in \mathbb{R} ?
 - (d) Find a metric space (X, d) and a sequence of closed sets in X such that their union is **not** closed.
- 3. Let (X, d) be a metric space, $x_0 \in X$ and r > 0.
 - (a) Show that the so called open ball

$$B(x_0, r) := \{ y \in X : d(x_0, y) < r \}$$

is indeed open.

- (b) Let $(x_n)_n$ and $(y_n)_n$ be two convergent sequences in the metric space X, with $x = \lim_{n \to \infty} x_n$ and $y = \lim_{n \to \infty} y_n$. Show that $d(x_n, y_n) \to d(x, y)$.
- (c) Let $A_{\alpha} \subset M$ be closed for any $\alpha \in I$, where I is an arbitrary index set. Show that $\bigcap_{\alpha \in I} A_{\alpha}$ is closed.
- 4. (a) Find a metric d for the set S in Exercise 2 so that S equipped with this metric becomes a **complete** metric space!
 - (b) Is the new space (S, d) compact?
 - (c) Show that the space \mathbb{Q} of rational numbers with the standard metric is not complete.
 - (d) If $(x_n)_n$ is a Cauchy sequence in a metric space (X, d) and if for the sequence $(y_n)_n$ in X we have $\lim d(x_n, y_n) = 0$, show that $(y_n)_n$ is also a Cauchy sequence in X.