

Applied Analysis Tutorials

WS 2009/2010 Sheet: 2

Dr. Markus Biegert Dipl.Ing. S.O. Akindeinde

Submission: Tuesday, 27.10.2009 during the next tutorial class.

1. Let l^{∞} be the space of all real bounded sequences, i.e. $l^{\infty} := \{(x_n)_{n \in \mathbb{N}}, x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}} |x_n| < \infty\}$. Check that it is a vector space with the usual definition of addition and scalar multiplication. Define a metric (distance) by

$$d(x,y) := \sup_{n \in \mathbb{N}} |x_n - y_n|.$$

Check that this indeed defines a metric. Decide whether (l^{∞}, d) is separable, complete, compact.

2. Take an arbitrary non-empty set M and define the discrete metric on M by

ulm university universität

$$d(x,y) := \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

Determine the convergent sequences in (M, d). Is (M, d) complete? Is it separable? Is it compact? (what do these properties depend on?)

- 3. Let (M, d) be a metric space.
 - (a) Choose $x \in M$. Show that a set $U \subset M$ is a neighborhood of x if and only if $x \in Int(U)$. (In particular, every open set containing x is a neighborhood of x).
 - (b) Prove that the intersection $U \cap V$ of any two neighborhoods U and V of a point $x \in M$ is also a neighborhood of x.
 - (c) Show that every convergent sequence is Cauchy. Is the converse always true? If not, give a counter example.
- 4. Let X, Y, Z be metric spaces.
 - (a) Show that $f: X \to Y$ is continuous at $x \in X$ if and only if $\forall \epsilon > 0 \exists \delta > 0$ such that $d_X(x, y) \leq \delta$ implies $d_Y(f(x), f(y)) \leq \epsilon$.
 - (b) Assume that $f: X \to Y$ and $g: Y \to Z$ are continuous. Prove that the composition mapping $g \circ f: X \to Z$ is continuous.