

Applied Analysis Tutorials

Dr. Markus Biegert Dipl.Ing. S.O. Akindeinde WS 2009/2010

Sheet: 5

Submission: Tuesday, 17.11.2009 during the next tutorial class.

universität

- 1. Let μ be an outer measure on Ω . Show that the following hold true:
 - (a) Every set $A \subset \Omega$ with $\mu(A) = 0$ is μ -measurable.

ulm university

- (b) If $A \subset \Omega$ is μ -measurable then A^c is also μ -measurable.
- (c) If $A \subset \Omega$ is μ -measurable and $B \subset \Omega$ then A is μ_B -measurable.
- 2. Let Ω be a set and μ be an outer measure on Ω . If $A_1, A_2 \subset \Omega$ are μ -measurable then the intersection $A_1 \cap A_2$ is also μ -measurable.
- 3. Let μ be an outer measure on a set X.
 - (a) If A is a null set, then show that

$$\mu(B) = \mu(A \cup B) = \mu(B \setminus A)$$

holds for every subset B of X.

(b) If E is a measurable subset of X, then show that for every subset B of X the following equality holds

$$\mu(E \cup B) + \mu(E \cap B) = \mu(E) + \mu(B).$$

4. Let μ be an outer measure on Ω . If a sequence $\{A_n\}$ of subsets of X satisfies $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then show that the set

 $D = \{x \in X : x \text{ belongs to } A_n \text{ for infinitely many } n\}$

is a null set.