

Applied Analysis Tutorials

ulm university universität

Dr. Markus Biegert Dipl.Ing. S.O. Akindeinde WS 2009/2010

Sheet:6

Submission: Tuesday, 24.11.2009 during the next tutorial class.

1. Denote by  $\overline{\mathbb{R}}$  the set  $\mathbb{R} \cup \{-\infty, \infty\}$ . Consider the mapping  $g: [-1, 1] \to \overline{\mathbb{R}} = [-\infty, \infty]$  defined by

$$g(x) := \frac{x}{(1-x)(1+x)}$$

Check that  $d(y, z) := |g^{-1}(y) - g^{-1}(z)|$  for all  $y, z \in [-\infty, \infty]$  is a well-defined metric on  $[-\infty, \infty]$ . Characterize open sets in this metric (these are unions of open intervals plus half-closed intervals with + or  $-\infty$  at the closed end - prove it!). What are the convergent sequences in the metric? Show that the Borel  $\sigma$ -algebra on  $\overline{\mathbb{R}}$  is generated by the sets of the form  $[a, \infty]$ , where  $a \in \overline{\mathbb{R}}$ . (10 points)

- 2. Let  $\Omega$  be a set and let  $(A_{\alpha})_{\alpha \in I}$  be a family of  $\sigma$ -algebras on  $\Omega, I \neq \emptyset$ . Show that  $\mathcal{A} := \bigcap_{\alpha \in I} A_{\alpha}$  is a  $\sigma$ -algebra on  $\Omega$ . (5 points)
- 3. Show that the Borel sets of  $\mathbb{R}^n$  are precisely the members of the  $\sigma$ -algebra generated by the compact sets. (5 points)
- 4. (a) Let  $T : \mathbb{R}^n \to \mathbb{R}^n$  be linear. Show that  $T : \mathbb{R}^n \to \mathbb{R}^n$  is continuous. (3 points)
  - (b) Let  $T : \mathbb{R}^n \to \mathbb{R}^n$  be linear and invertible. Show that  $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$  is linear. Deduce that  $T^{-1}$  is continuous. (2 points)