

ulm university universität

Dr. Markus Biegert Dipl.Ing. S.O. Akindeinde WS 2009/2010

Applied Analysis Tutorials Submission: Tuesday, 01.12.2009 during the next tutorial class.

Sheet:7

1. Let $\Omega \subset \mathbb{R}^n$ be a set, $\mathcal{B}(\Omega)$ be the Borel σ -algebra on Ω and let $x_0 \in \Omega$. For $A \in \mathcal{B}(\Omega)$ we define

$$\delta_{x_0} := \begin{cases} 1 & \text{if } x_0 \in A \\ 0 & \text{else} \end{cases}$$

Verify that δ_{x_0} is a measure on $(\Omega, \mathcal{B}(\Omega))$.

2. (a) Let $(\Omega, \mathcal{A}, \nu)$ be a measure space and let $B \in \mathcal{A}$. Show that $(\Omega, \mathcal{A}, \nu_B)$ is a measure space. (b) Let $\nu_1, \nu_2, ..., \nu_n$ be measures on a fixed measurable space (Ω, \mathcal{A}) and let $\lambda_1, ..., \lambda_n \in \mathbb{R}^+$. Show that $\nu := \sum_{k=1}^n \lambda_k \nu_k$ is a measure on (Ω, \mathcal{A}) where

$$\nu(A) := \nu := \sum_{k=1}^{n} \lambda_k \nu_k(A), A \in \mathcal{A}.$$

- 3. Let (Ω, \mathcal{A}) be a measurable space. Show that
 - (a) Every constant function is measurable.
 - (b) Let $A \subset \Omega$. Then A is \mathcal{A} -measurable iff χ_A is \mathcal{A} -measurable.
- 4. (a) Let $A \subset \mathbb{R}^n, x \in \mathbb{R}^n$ and $\alpha > 0$. Show that A is Lebesque-measurable iff $x + \alpha A$ is Lebesque-measurable.
 - (b) Show that in order to prove that every left-open cell Q is Lebesque-measurable it suffices to consider Q = H, where H is a (left-open) half space.