
HOW TWISTED CAN A JORDAN CURVE BE?

Manfred Sauter

Everyone knows what a curve is, until he has studied enough
mathematics to become confused through the countless num-
ber of possible exceptions.

— Felix Klein (1849–1925)

We start by fixing notation. A closed curve is a continuous map γ : [0, 1]→
R2 with γ(0) = γ(1), and it is a closed Jordan curve if in addition γ|[0,1) is
injective. Similarly one defines a (Jordan) arc, a polygonal (Jordan) arc and
a closed polygonal (Jordan) curve. It is well-known, of course, that a closed
Jordan curve γ partitions the plane into three connected components: the
bounded open interior int γ, the unbounded open exterior ext γ and the
compact (image of the) curve itself, which is the common boundary of the
first two components. For a captivating historical overview of the struggle to
understand curves and toplological dimension we refer to [Cri99], where most
of the classical topological results that appear in this note are featured.

For a closed polygonal Jordan curve γ there is a simple criterion to check
whether a point x ∈ R2 \ γ is in its interior. This criterion is algorithmic
in nature and useful in computational geometry, see for example [O’R98,
Section 7.4]. Consider a ray emerging from x towards infinity and count the
number of intersections with γ. If the ray is chosen such that it intersects the
segments of γ only ouside of their end points (which can be easily arranged for
a polygonal Jordan curve) or if intersections with the end points are counted
appropriately, the point x is in the interior of γ if and only if the number of
intersections is odd. More generally, instead of a ray one may use any suitable
polygonal Jordan arc that connects x with a point known to be in the exterior
of γ. In fact, in the polygonal setting for all x ∈ int γ, y ∈ ext γ and z ∈ γ
there exists a polygonal Jordan arc connecting x and y that intersects γ exactly
in z.

General closed Jordan curves, however, can certainly be mind-boggingly
pathological. For example, there are closed Jordan curves in R2 that are
nowhere differentiable and that have positive two-dimensional measure; for
several different examples see [Sag94, Chapter 8]. But just how badly can the
above criterion for closed polygonal Jordan curves fail in the case of general
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closed Jordan curves? We say that an arc ρ : [0, 1]→ R2 crosses the closed
Jordan curve γ if ρ(0) ∈ int γ and ρ(1) ∈ ext γ. The following was proved
in [PW12, Theorem 15].

Theorem 1. There is a closed Jordan curve γ in R2 such that for every
rectifiable arc ρ that crosses γ the intersection ρ ∩ γ is infinite.

In fact, in [PW12] it is established that the property in Theorem 1 is generic
in the sense of the Baire category theorem, after endowing the set of closed
Jordan curves with a suitable complete metric. The construction of a specific
closed Jordan curve as described in the theorem is also outlined in [Maj10]
and [Pet12].

Academic curiosity and unswerving belief in the pathological prowess of
Jordan curves motivates me to ask the following question. Here Hs denotes
the s-dimensional Hausdorff measure in R2 for s ∈ [0, 2].

Problem A. Is there a closed Jordan curve γ in R2 such that for every
rectifiable arc ρ that crosses γ one has H1(ρ ∩ γ) > 0.

Clearly Problem A can readily be modified in a number of ways, some of
which lead to an easier or harder problem. As a first step one might look
for a closed Jordan curve that exhibits the above property as long as ρ is, in
addition, a (compact) line segment. It is readily observed that such a curve
needs to have positive two-dimensional measure. The standard curves with
positive two-dimensional measure by Osgood or Sierpiński–Knopp, however,
do not satisfy the property for line segments.

I stumbled across the following result in the recent preprint [Bis16], which
almost answers the problem for crossing line segments.

Theorem 2. There is a closed Jordan curve γ in R2 such that every line
segement that crosses γ has an uncountable intersection with γ. Moreover, it
can be arranged that all of these intersections have Hausdorff dimension 1.

The argument in [Bis16] is constructive and ensures that the intersection
with every crossing line segment contains a Cantor type set, i.e. a compact,
perfect, totally disconnected set. Starting with a circle, in each step the
curve is replaced by one in close proximity that wiggles around the previous
curve along tiny pieced-together circular arcs. At the end of [Bis16] it is
suggested that it might be possible to modify the construction to yield a
closed Jordan curve that intersects every crossing line segment in a set of
positive 1-dimensional Hausdorff measure, but it is made clear that this is not
immediate. Furthermore, Problem A is stated as an open problem in [Bis16].
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In the remainder I shall mention several beautiful related results and con-
cepts that I encountered in my attempts to better understand Problem A,
even before I had encountered the results in Theorems 1 and 2.

Suppose throughout that γ is a closed Jordan curve in R2. We shall make use
of the following notation. A point z ∈ γ is called accessible from x ∈ R2 \ γ
if there exists a Jordan arc from x to z that intersects γ only in z. Similarly,
z ∈ γ is called finitely accessible (or rectifiably accessible) from x ∈ R2 \γ if
the connecting Jordan arc can be chosen to be rectifiable. Obviously, if z ∈ γ
is (finitely) accessible from x ∈ int γ, then z is (finitely) accessible from every
point in int γ, and an analogous statement holds for x ∈ ext γ.

Interestingly, every point z ∈ γ is accessible from both the interior and
the exterior. This is an immediate consequence of the purely topological
Schoenflies theorem (see [Pom92, Corollary 2.9]): there is a homeomorphism
f : R2 → R2 such that f(γ) is the unit circle, f(int γ) is the interior of the unit
cirle and f(ext γ) its exterior. In fact, a compact set F ⊂ R2 is a closed Jordan
curve if and only if R2 \F has exactly two connected components from both of
which every point of F is accessible; see [Kur68, Section §61.II, Theorem 12].
The closed topologist’s sine curve [Mun00, p. 381] (i.e. the union of the graph
of sin(1/x) on the interval (0, 1), the set {0} × (−1, 1] and a disjoint Jordan
arc joining the points (0,−1) and (1, sin 1)) illustates that the accessibility is
essential. In this context it is worthwhile to point out that there is a compact
connected set F ⊂ R2 such that R2 \ F has 3 (or more generally N ∈ N with
N ≥ 3) connected components each of which has boundary F ; see [Bro10] or
the Lakes of Wada construction in [Yon17, pp. 60–62].

One readily observes that there are always some points on γ that are
finitely accessible from the exterior (e.g. all the points on γ with minimal first
coordinate), and similarly there are points on γ that are finitely accessible
from the interior. Theorem 1 shows that it is possible (in fact, generic) that no
point on γ will be finitely accessible from both the interior and the exterior.

In Veblen’s proof of the Jordan curve theorem, it is established along the
way that the set of points that are finitely accessible from any given x ∈ R2 \ γ
is dense in γ, see [Veb05, Theorem 10]. In fact, the result is shown to hold
with polygonal Jordan arcs. Unsurprisingly, much more can be said. Let us
denote the harmonic measure with respect to int γ by ω and with respect to
ext γ by ω∗. We shall briefly discuss the definition of the harmonic measure,
but for any details we refer to [Pom92, in particular Sections 4.4 and 6.6]. Fix
a point z ∈ int γ and let f be the conformal map from the open unit disk
D onto int γ such that f(0) = z. By the Caratheodory–Osgood theorem f
extends to a homeomorphism between D and int γ. Then for a subset A ⊂ γ
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one sets ω(A) := 1
2πH

1(f−1(A)). The choice of z is not essential as it does not
affect the ω nullsets. The measure ω∗ is defined similarly with respect to ext γ.

By Lavrentieff’s theorem, see [SW42, Theorem 6 and Corollary 8], ω almost
every point on γ is finitely accessible from int γ, and ω∗ almost every point
on γ is finitely accessible from ext γ. However, the measures ω and ω∗ can
be mutually singular, which happens if (and only if) the set of points of γ
where γ has a tangent is an H1-nullset [Pom92, Theorem 6.30]. Consequently
there exists a nowhere differentiable γ that is star-like with respect to 0 such
that ω and ω∗ are mutually singular, see [Pom92, Proposition 6.29]. So the
mutual singularity of ω and ω∗ is clearly much weaker than the property in
Theorem 1.

By Marstrand’s result in [Mar54, Theorem III] (see [FFJ15] for a survey of
related results and [MO16] for a recent strengthening) any Jordan curve γ such
that 0 < Hs(γ) <∞ for an s ∈ (1, 2] has the property that at Hs-a.e. point
a ∈ γ almost every straight line through a intersects γ in an (uncountable) set
of Hausdorff dimension s− 1. So fractal Jordan curves are natural candidates
when looking for the property in Theorem 2. It is easy to see that the Koch
snowflake curve, see for example [Edg08, p. 20], is a closed Jordan curve with
Hausdorff dimension log 4

log 3 ≈ 1.26 which thus satisfies Marstrand’s property, but
which certainly does not exhibit the property in Theorem 2 since one can escape
from the interor by crossing straight through the tips. Also the boundary of
the Knuth–Davis twindragon fractal [Edg08, p. 34], depicted in Figure 1 (a), is
a closed Jordan curve by [BW01, Example after Theorem 2.1] with Hausdorff
dimension of about 1.52 that does not exhibit the property in Theorem 2, even
though by the looks this seems plausible. In fact, by [AS06, Theorems 2.9
and 2.12] the twindragon admits line segments that cross the boundary only
once. It would be interesting to identify standard fractal Jordan curves that
provably do have the property in Theorem 2. For example, are there such
closed Jordan curves that are the Julia set of a rational or polynomial complex
function, see [Fal03, Chapter 14] or [Mat95, Section 4.17]? In Figure 1 (b)
an example of a quadratic Julia set is depicted that is known to be a closed
Jordan curve.

We finally discuss a few select results that establish existence of certain
Jordan arcs and closed Jordan curves. There is a characterisation of those
subsets of R2 that can be covered by a Jordan arc by Moore and Kline [MK19].
As every Jordan arc is contained in a closed Jordan curve, see [RSFM15,
Corollary 17.23] or [Thu11], it is exactly the same subsets that can be covered
by a closed Jordan curve. A special case of the characterisation by Moore
and Kline is the Denjoy–Riesz theorem which states that this is possible for
any totally disconnected compact set in R2. For example, by considering a
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1 (a) Boundary of the Knuth–Davis
twindragon space-filling fractal
curve.

1 (b) Julia set for the complex quadratic
polynomial f(z) = z2 − 0.742 +
0.1i.

Cantor type set in R2 with positive 2-dimensional Lebesgue measure, we obtain
Osgood’s result [Osg03] as an immediate consequence. Extensive information
on topological imbeddings of Jordan arcs, closed Jordan curves and totally
disconnected compact sets in the plane is provided in [Kel68, Chapters I
and II].

In [Kuz96, Theorem 3] extraordinarily pathological Cantor type sets are
constructed. For example, in [Kuz96, Theorem 3] it is shown, among other
things, that for all r1 < r2, C > 0 and ε > 0 with ε < r2 − r1 there exists a
Cantor type set D ⊂ A := {x ∈ R2 : r1 < |x| < r2} such that every sufficiently
smooth arc ρ with curvature bounded by C that connects the inner and outer
boundary of the annulus A satisfies H1(ρ ∩D) > r2 − r1 − ε. In particular,
every line segment ρ connecting the inner and outer boundary of A satisfies
H1(ρ ∩D) > 0. By the Denjoy–Riesz theorem there exists a closed Jordan
curve γ such that D ⊂ γ. Moreover, by [Kuz96, Corollary 2 to Theorem 3]
and [RSFM15, Corollary 17.23] one can arrange that γ ⊂ A. SoB(0, r1) ⊂ int γ,
R2 \B(0, r2) ⊂ ext γ and γ has very large intersection with all smooth arcs that
connect the inner and outer boundary of A and have curvature bounded by C.
On its own, however, this abstract construction cannot ensure that the property
in Problem A holds since int γ necessarily overlaps with A. Examples of various
other Cantor type sets in R2 that have a large projection in all directions
(e.g. the orthogonal projection onto any 1-dimensional subspace is a nontrivial
interval) can be found in [Bag59, MT08, Par09, MLVM12, Vas14, RS14]; the
set in [Par09] is of Cantor type as a finite union of Cantor type sets due
to [Eng78, Theorem 1.3.1].

While the above rambling might not help to tackle Problem A, it at least
substanciates how ridiculously twisted a closed Jordan curve can be. I hope
also the reader has enjoyed this slightly chaotic journey down the rabbit hole.
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