

Universität Ulm

Abgabe: Donnerstag, 02.07.09

Jun.-Prof. Dr. D. Mugnolo Manfred Sauter

Sommersemester 2009

Gesamtpunktzahl: 16+4 \star

(5)

(7)

Übungen Elemente der Funktionalanalysis: Blatt 8

The study of mathematics is apt to commence in disappointment.

— Alfred North Whitehead (1861–1947)

- **24.** Zum Satz von Stone-Weierstraß.
 - (a) Sei a < b. Zeige, dass die geraden Polynome genau dann dicht in C[a,b] liegen, (2) wenn $0 \notin (a,b)$.
 - (b) Sei $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$. Eine Funktion $p\in C(\mathbb{T})$ heißt trigonometrisches (1) Polynom, falls

$$p(z) = \sum_{k=-n}^{n} a_k z^k$$

mit $n \in \mathbb{N}$ und $a_k \in \mathbb{C}$ für $k = -n, \dots, n$. Zeige, dass die trigonometrischen Polynome dicht in $C(\mathbb{T})$ sind.

(c) Sei $f \in C_{per}[0,1]$. Zeige, dass f gleichmäßig durch Funktionen der Form (2)

$$\sum_{k=-n}^{n} a_k e^{2\pi i kt}$$

approximiert werden kann, wobei $n \in \mathbb{N}$ und $a_k \in \mathbb{C}$ für $k = -n, \dots, n$. Warum widerspricht dies nicht Proposition 4.31?

- 25. Cesàro-Mittel und Fourierreihen.
 - (a) Eine Folge (a_n) in \mathbb{C} heißt Cesàro-summierbar, wenn die Cesàro-Mittel (2)

$$\frac{1}{n} \sum_{k=1}^{n} a_k$$

für $n \to \infty$ konvergieren. Zeige, dass die Cesàro-Mittel einer konvergenten Folge gegen den Grenzwert der Folge konvergieren. Damit sind also konvergente Folgen Cesàro-summierbar. Zeige, dass die umgekehrte Richung nicht gilt.

(b) Sei $f \in C_{per}[0, 1]$ Lipschitz-stetig mit Lipschitz-Konstante L > 0. Definiere (4)

$$\sigma_n(f)(t) = \frac{1}{n} \sum_{k=0}^{n-1} (S_k f)(t).$$

Zeige, dass $\sigma_n(f)$ gleichmäßig gegen f konvergiert für $n \to \infty$. Gib zudem eine Abschätzung für die Konvergenzgeschwindigkeit an, also eine Abschätzung von $\|\sigma_n(f) - f\|_{\infty}$ nach oben durch eine Nullfolge in n.

(c) Sei f wie im vorigen Aufgabenteil. Zeige, wenn die Fourierreihe von f an einer Stelle t konvergiert, dann konvergiert sie dort gegen den Wert f(t).

- **26.** Sei (x_k) eine Folge in einem Hilbertraum H. Zeige, dass (x_k) genau dann schwach konvergiert, wenn $\lim_{k\to\infty} (x_k \mid y)$ für jedes $y \in H$ existiert.
- **27.*** Zeige, dass ℓ^1 sowohl als Dualraum von \mathbf{c} als auch von \mathbf{c}_0 aufgefasst werden kann. Hierbei bezeichnet \mathbf{c} den Raum der konvergenten Folgen und \mathbf{c}_0 den Raum der Nullfolgen, die wie üblich beide mit der Norm $\|\cdot\|_{\infty}$ versehen sind.

Anmerkung: Es ist eine Konsequenz aus dem Satz von Hahn-Banach, dass separable Dualräume einen separablen Prädual haben. Damit ist ℓ^1 nicht der Dualraum von ℓ^{∞} .