

Universität Ulm

Besprechung: Donnerstag, 10.07.14

Gesamtpunktzahl: 22

Prof. Dr. Wolfgang Arendt Dr. Manfred Sauter Sommersemester 2014

Übungen Partielle Differentialgleichungen: Blatt 11

If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven?

— David Hilbert (1862–1943)

- 1. (a) Sei $\Omega = (-1,1)^{d-1} \times \mathbb{R}$ mit $d \geq 1$. Sei $1 . Zeige, dass <math>W_0^{1,p}(\Omega)$ nicht (2) kompakt in $L^p(\Omega)$ eingebettet ist.

 Hinweis: Konstruiere eine geeignete Folge (u_n) in $\mathcal{D}(\Omega)$, welche schwach in $W^{1,p}(\Omega)$ konvergiert, aber nicht stark in $L^p(\Omega)$.
 - (b) Zeige, dass $C^1[0,1] \stackrel{c}{\hookrightarrow} C[0,1]$. (1) Hinweis: Arzela–Ascoli
 - (c) Seien X, Y, Z Banachräume mit $X \stackrel{c}{\hookrightarrow} Y \hookrightarrow Z$. Zeige, dass für alle $\varepsilon > 0$ ein $C_{\varepsilon} > 0$ (3) existiert mit $||x||_{Y} \le \varepsilon ||x||_{X} + C_{\varepsilon} ||x||_{Z}$ für alle $x \in X$.

 Hinweis: Widerspruchsbeweis mit Renormierung, ähnlich wie bei Poincaré-Ungleichung.
 - (d) Zeige, dass für alle $\varepsilon > 0$ ein $C_{\varepsilon} > 0$ existiert mit $||u||_{\infty} \le \varepsilon ||u'||_{\infty} + C_{\varepsilon} ||u||_{L^{1}(0,1)}$ (1) für alle $u \in C^{1}[0,1]$.
 - (e) Zeige, dass $W^{m,p}(0,1) \stackrel{c}{\hookrightarrow} C^{m-1}[0,1]$ für $1 und <math>m \in \mathbb{N}$. Bekommt man auch für p=1 eine kompakte Einbettung?
 - (f) Sei $1 . Zeige, dass für alle <math>\varepsilon > 0$ ein $C_{\varepsilon} > 0$ existiert mit (1)

$$||u'||_{L^{\infty}(0,1)} + ||u||_{L^{\infty}(0,1)} \le \varepsilon ||u''||_{L^{p}(0,1)} + C_{\varepsilon} ||u||_{L^{1}(0,1)}$$

für alle $u \in W^{2,p}(0,1)$.

- 2. Sobolevräume auf dem Halbraum.
 - (a) Sei $1 \le p < \infty$ und $f \in L^p(\mathbb{R}^d)$. Zeige, dass $\|\tau_h f f\|_{L^p(\mathbb{R}^d)} \to 0$ für $|h| \to 0$. (2) Hinweis: Betrachte beispielsweise zuerst $f \in \mathcal{D}(\mathbb{R}^d)$.

Ab nun sei p = 2 und $\Omega = \mathbb{R}^{d-1} \times (0, \infty)$.

- (b) Zeige, dass $\mathcal{D}(\mathbb{R}^d) \cap H^1(\Omega)$ dicht in $H^1(\Omega)$ ist. (3) Hinweis: Approximiere $u \in H^1(\Omega)$ durch $\tau_h u$ mit $h = \varepsilon e_d$ für $\varepsilon \to 0+$. Nun verwende Faltung um $\tau_h u$ auf Ω mit Funktionen in $\mathcal{D}(\mathbb{R}^d)$ zu approximieren.
- (c) Definiere $E \colon \mathcal{D}(\mathbb{R}^d) \cap H^1(\Omega) \to H^1(\mathbb{R}^d)$ durch (3)

$$(Eu)(x) = \begin{cases} u(x) & \text{für } x_d \ge 0, \\ -3u(x_1, \dots, x_{d-1}, -x_d) + 4u(x_1, \dots, x_{d-1}, -x_d/2) & \text{für } x_d < 0. \end{cases}$$

Sei $u \in \mathcal{D}(\mathbb{R}^d) \cap H^1(\Omega)$. Zeige, dass $Eu \in C^1_c(\mathbb{R}^d)$. Zeige dann, dass $||Eu||_{H^1(\mathbb{R}^d)} \le C||u||_{H^1(\Omega)}$ mit einem C > 0, welches unabhängig von u ist. Folgere, dass E stetig zu einem Fortsetzungsoperator für $H^1(\Omega)$ fortgesetzt werden kann.

(d) Zeige, dass es ein C>0 gibt mit $\|u|_{\partial\Omega}\|_{L^2(\partial\Omega)}\leq C\|u\|_{H^1(\Omega)}$ für alle $u\in\mathcal{D}(\mathbb{R}^d)\cap$ (3) $H^1(\Omega)$. Folgere, dass $T\colon\mathcal{D}(\mathbb{R}^d)\cap H^1(\Omega)\to L^2(\partial\Omega)$ gegeben durch $Tu=u|_{\partial\Omega}$ wohldefiniert und stetig fortsetzbar zu einem Operator auf $H^1(\Omega)$ ist. Diese Fortsetzung wird *Spuroperator* für $H_1(\Omega)$ genannt. Hinweis: Das Oberflächenmaß auf $\partial\Omega$ ist das (d-1)-dimensionale Lebesguemaß. Verwende den Hauptsatz, um $|u(x',0)|^2$ darzustellen. Die Abschätzung folgt dann mit Fubini und Cauchy-Schwarz.

