
3 Measure and Integration

For example, this is
natural for stopping
times of random
processes.

There exist metrics
on R resp. [0, ∞]
such that B(R) resp.
B([0, ∞]) is the Borel
σ-algebra for this
metric.

Then fn is a simple function and positive whenever f is positive (the
latter follows from the fact that in this case f−1[Bn,k] = ∅ for all k, n).

Moreover, fn(x)→ f (x). Indeed, if x ∈ Ω, then there exists an n0 ∈ N

such that | f (x)| ≤ 2n0 . Then | fn(x)− f (x)| ≤ 2−n for all n ≥ n0.
If f ≥ 0 then fn ≤ fn+1. Indeed, if fn(x) = k2−n then f (x) ∈ [k2−n, (k+

1)2−n). But then either

f (x) ∈ [(2k)2−(n+1), (2k + 1)2−(n+1)),

in which case fn+1(x) = (2k)2−(n+1) = fn(x), or

f (x) ∈ [(2k + 1)2−(n+1), (2k + 2)2−(n+1)),

in which case fn+1(x) = (2k + 1)2−(n+1) > fn(x).
In the case where K = C, we find sequences of simple functions (gn)

and (hn) that converge to Re f and Im f , respectively. Then we set fn :=
gn + ihn for all n ∈N.

We sometimes prefer to work with a slightly more general notion of
measurable functions. It has technical advantages to allow functions to
take the values ∞ or −∞.

Remark 3.54 (Extended real line). We put R := {−∞} ∪R ∪ {∞} which
we endow with the σ-algebra B(R), defined as σ(B(R)∪{{−∞}, {∞}}).
It follows that a function f : (Ω, Σ) → R is measurable if and only if
f−1[{∞}], f−1[{−∞}] ∈ Σ and f−1[A] ∈ Σ for all A ∈ B(R).

Similarly, B([0, ∞]) is defined as σ(B([0, ∞)) ∪ {{∞}}). We also re-
mark that Proposition 3.53 generalizes to this situation.

Exercise 3.55. Let (Ω, Σ) be a measurable space and fn : Ω → R be mea-
surable for all n ∈ N. Then the functions lim infn→∞ fn, lim supn→∞ fn,
infn∈N fn and supn∈N fn are measurable.

Hint: Observe that {x ∈ Ω : sup{ fn(x) : n ∈N} > a} = ⋃
n∈N{x ∈ Ω : fn(x) > a}.

3.7 The Lebesgue integral
Given a measure space (Ω, Σ, µ), we now introduce the Lebesgue integral∫

f dµ for suitable complex-valued, measurable functions that we call
‘integrable’. We proceed in several steps and first define the integral for
(real-valued) measurable functions f taking values in [0, ∞].

Definition 3.56. Let (Ω, Σ, µ) be a measure space. If f : Ω → [0, ∞] is a
simple function, with standard representation f = ∑n

k=1 ak1Ak , one de-
fines the Lebesgue integral of f by∫

f dµ :=
n

∑
k=1

akµ(Ak)
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3.7 The Lebesgue integral

The convention
0 ·∞ = 0 ensures
that the Lebesgue

integral of the
zero function on

R is zero. Note
that λ(R) = ∞.

where, by convention, 0 ·∞ := 0 and ∞ + ∞ = ∞.

The following lemma shows that the Lebesgue integral for nonnegative
simple functions is positively linear and monotone.

Lemma 3.57. If (Ω, Σ, µ) is a measure space, f , g : Ω → [0, ∞] are simple
functions and λ > 0, then

∫
λ f + g dµ = λ

∫
f dµ +

∫
g dµ. Moreover, if

f ≤ g, then
∫

f dµ ≤
∫

g dµ.

Proof. If ∑n
k=1 ak1Ak is the standard representation of f , then ∑n

k=1 λak1Ak

is the standard representation of λ f . Now λ
∫

f dµ =
∫

λ f dµ follows
from the definition of the integral. Now let λ = 1 and ∑m

l=1 bl1Bl be the
standard representation of g. If ∑w

j=1 cj1Cj is the standard representation
of f + g, then Cj =

⋃
ak+bl=cj

Ak ∩ Bl. Thus

∫
f dµ +

∫
g dµ =

n

∑
k=1

akµ(Ak) +
m

∑
l=1

blµ(Bl) =
n

∑
k=1

m

∑
l=1

(ak + bl)µ(Ak ∩ Bl)

=
w

∑
j=1

cjµ(Cj) =
∫

f + g dµ,

where we have used the finite additivity of µ and the fact that the sets
Ak ∩ Bl are pairwise disjoint.

Now assume that f ≤ g. Consider the function g− f , with the conven-
tion that ∞−∞ = 0 and ∞ − c = ∞ for all c ∈ [0, ∞). Then g − f is a
nonnegative, simple function. Hence,∫

g dµ =
∫
(g− f ) + f dµ =

∫
g− f dµ +

∫
f dµ ≥

∫
f dµ,

since the integral of a nonnegative, simple function is clearly nonnega-
tive.

Lemma 3.58. Let (Ω, Σ, µ) be a measure space and f : Ω → [0, ∞] be simple.
Then ν : Σ→ [0, ∞] defined by ν(A) =

∫
1A f dµ is a measure on (Ω, Σ).

Proof. As 1∅ f is the zero function, the map ν clearly satisfies property
(M1). It remains to very (M2). So let (Ak) be a sequence of disjoint sets in
Σ. Define Bn :=

⋃n
k=1 Ak. Then

ν(Bn) =
∫
1Bn f dµ =

∫ n

∑
k=1

1Ak f dµ =
n

∑
k=1

∫
1Ak f dµ =

n

∑
k=1

ν(Ak).

Clearly, Bn ⊂ Bn+1 for all n ∈ N and A :=
⋃

n∈N Bn =
⋃

k∈N Ak. Since f
is a simple function, take f = ∑m

j=1 aj1Cj to be its standard representation.
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3 Measure and Integration

Observe that

ν(A) =
∫
1A f dµ =

∫ m

∑
j=1

aj1Cj∩A dµ

=
m

∑
j=1

ajµ(Cj ∩ A)

= lim
n→∞

m

∑
j=1

ajµ(Cj ∩ Bn)

= lim
n→∞

∫ m

∑
j=1

aj1Cj∩Bn dµ

= lim
n→∞

∫
1Bn f dµ = lim

n→∞
ν(Bn) =

∞

∑
k=1

ν(Ak)

In the previous calculation we used the definition of the integral for sim-
ple functions, that it is positively linear, the continuity of the measure µ,
and in the last step the identity ν(Bn) = ∑n

k=1 ν(Ak) that was established
above. This proves (M2). Hence ν is a measure.

We can now define the Lebesgue integral by approximation for an ar-
bitrary measurable function f : Ω→ [0, ∞].

Definition 3.59. Let (Ω, Σ, µ) be a measure space and f : Ω→ [0, ∞] mea-
surable. One defines∫

f dµ = sup
{ ∫

g dµ : 0 ≤ g ≤ f , g simple
}

.

We say that f is (Lebesgue) integrable, if
∫

f dµ < ∞.

Example 3.60. If δa is the Dirac measure on (Ω, Σ) for an a ∈ Ω, then for
all measurable f : Ω→ [0, ∞] we have∫

f dδa = f (a)

and f is integrable if and only if f (a) < ∞.

Proof. First, let f be a simple function. Then δa( f−1[{t}]) = 1 if a ∈
f−1[{t}], i.e. f (a) = t and δa[ f−1[{t}]] = 0 else. Thus in this case

∫
f dδa =

f (a). Now let f : Ω → [0, ∞] be a measurable function. If g is a simple
function with g ≤ f , then∫

Ω
g dδa = g(a) ≤ f (a).

Taking the supremum over such g, it follows that
∫

f dµ ≤ f (a).
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3.7 The Lebesgue integral

Instead of sup we
could write lim in

the statement of
Theorem 3.62. Of

course this requires
to consider improper

limits, thereby for
example setting f (x)

to ∞ where ( fn(x))
is unbounded.

For the reverse inequality, let g(x) := f (a)1 f−1[{ f (a)}](x). Since f is
measurable and { f (a)} ∈ B(R), it follows that f−1[{ f (a)}] ∈ Σ. So g is
a simple function. Moreover, g ≤ f . Hence,

∫
f dδa ≥

∫
g dδa = f (a).

Exercise 3.61. Consider the measure space (N, P(N), ζ). A measurable
function f : N → [0, ∞] is a sequence (an)n∈N = ( f (n))n∈N in [0, ∞].
Show that f is integrable if and only if (an) ∈ `1 and in this case,∫

N
f dζ =

∞

∑
n=1

an.

Theorem 3.62 (Monotone convergence theorem). Let (Ω, Σ, µ) be a mea-
sure space and fn : Ω → [0, ∞] be measurable functions for all n ∈ N that are
monotonically increasing in n. Then f (x) := supn∈N fn(x) is measurable and∫

f dµ = supn∈N

∫
fn dµ.

Proof. As a consequence of Exercise 3.55, f is measurable.
One deduces from fn ≤ f that

sup
n∈N

∫
fn dµ ≤

∫
f dµ.

It remains to show the converse inequality. To this end, let 0 ≤ ϕ ≤ f be
simple and β > 1. It suffices to show that∫

ϕ dµ ≤ β sup
n∈N

∫
fn dµ.

The sufficiency follows from first taking the supremum over all simple
0 ≤ ϕ ≤ f and then taking the infimum over all β > 1. Define Bn :=
{x ∈ Ω : β fn(x) ≥ ϕ(x)}. Then Bn ∈ Σ, Bn ⊂ Bn+1 and

⋃
n∈N Bn = Ω.

Moreover, we have β fn ≥ ϕ on Bn. Define ν(A) :=
∫
1A ϕ dµ for all

A ∈ Σ. Then ν is a measure by Lemma 3.58. Hence∫
ϕ dµ = ν(Ω) = lim

n→∞
ν(Bn)

= lim
n→∞

∫
ϕ1Bn dµ

≤ sup
n∈N

∫
β fn dµ

= β sup
n∈N

∫
fn dµ.

This establishes the converse inequality. Hence supn∈N

∫
fn dµ =

∫
f dµ.

Remark 3.63. Let f : Ω → [0, ∞] be measurable. Let ( fn) be a sequence
of nonnegative measurable functions such that fn ↑ f pointwise. Note

75



3 Measure and Integration

Note that the notion
of a null set crucially
depends on the
measure, of course.
So sometimes it is
necessary to point
out this dependence
by speaking about a
µ-null set.

that such a sequence exists by Proposition 3.53. It now follows from The-
orem 3.62 that∫

f dµ = sup
{∫

ϕ dµ : 0 ≤ ϕ ≤ f simple
}
= sup

n∈N

∫
fn dµ.

So while the integral for nonnegative measurable functions is defined as
the supremum over a very large class of simple functions, it is actually
already obtained by the supremum over an approximating sequence as
in Proposition 3.53.

Corollary 3.64. Let (Ω, Σ, µ) be a measure space, f , g : Ω→ [0, ∞] measurable
and λ > 0. Then

∫
λ f + g dµ = λ

∫
f dµ +

∫
g dµ. Moreover, if f ≤ g, then∫

f dµ ≤
∫

g dµ.

Proof. Let ( fn) and (gn) be sequences of simple functions such that fn ↑ f
and gn ↑ g. Then λ fn + gn ↑ λ f + g. Using monotone convergence and
Lemma 3.57, we obtain∫

λ f + g dµ = lim
n→∞

∫
λ fn + gn dµ

= lim
n→∞

λ
∫

fn dµ +
∫

gn dµ = λ
∫

f dµ +
∫

g dµ

The second assertion is clear from the definition and was already ob-
served in the proof of Theorem 3.62.

Definition 3.65. Let (Ω, Σ, µ) be a measure space. A null set is a set
N ⊂ Ω such that there exists a set M ∈ Σ with N ⊂ M and µ(M) = 0.
Now let P = P(x) be a property which, depending on x, may be true or
false. We say that P holds almost everywhere or for almost every x ∈ Ω,
if {x ∈ Ω : P(x) is false} is a null set. If µ is a probability measure, we
also say that P holds almost surely if it holds almost everywhere.

Remark 3.66. Note that we do not assume that a null set N is measurable.
A measure space in which all null sets are measurable is called complete.
It is not hard to see that the measure space (Ω, M , µ∗) in the proof of
Carathéodory’s theorem, Theorem 3.42, is always complete.

We note that there is a straightforward procedure to complete a mea-
sure space by minimally enlarging the σ-algebra and thus the domain of
the measure to make all null sets measurable.

Example 3.67. Consider (R, B(R), δ0). Then almost every (or more pre-
cisely, δ0-a.e.) x ∈ R is equal to 0.

Consider (R, B(R), λ). Then almost every (or more precisely, λ-a.e.)
x ∈ R is not equal to 0. In fact, almost every x ∈ R is irrational.

Corollary 3.68. Let (Ω, Σ, µ) be a measure space and f : Ω → [0, ∞] be mea-
surable. Then

∫
f dµ = 0 if and only if f (x) = 0 for almost every x ∈ Ω.
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3.7 The Lebesgue integral

Proof. If f is a simple function, then the assertion is obvious. In the gen-
eral case, let a measurable f : Ω → [0, ∞] with

∫
f dµ = 0 be given. Let

( fn) be an increasing sequence of simple functions converging to f . Such
a sequence exists by Proposition 3.53. It follows that

∫
fn dµ = 0 for

all n ∈ N. Hence, by the case above, {x ∈ Ω : fn(x) 6= 0} is a null set,
whence there exists Mn ∈ Σ with µ(Mn) = 0 such that fn(x) = 0 for all
x 6∈ Mn. Put M :=

⋃
n∈N Mn. Then M ∈ Σ and µ(M) ≤ ∑∞

n=1 µ(Mn) = 0.
Moreover, x 6∈ M implies that f (x) = 0. Hence f = 0 almost everywhere.

If, conversely, f = 0 almost everywhere, then there exists a measurable
set M with f (x) = 0 for all x 6∈ M. If g is a simple function with 0 ≤
g ≤ f then g−1[{x}] ⊂ M for all x > 0. By the definition of the integral
for simple functions,

∫
g dµ = 0 and hence, since g ≤ f was arbitrary,∫

f dµ = 0.

Exercise 3.69. Let (Ω, Σ, µ) be a measure space and f : Ω → [0, ∞] be
measurable. Show that ν : Σ→ [0, ∞], defined by

ν(A) :=
∫

A
f dµ :=

∫
1A f dµ,

defines a measure on (Ω, Σ).
Moreover, show that if µ(A) = 0, then ν(A) = 0. In other words, ν

is absolutely continuous with respect to µ, which is usually denoted by
writing ν� µ.

Remark 3.70. In the setting of Example 3.69 the function f is called the
density of ν with respect to µ.

In probability theory a density for a distribution is commonly taken
with respect to the Lebesgue measure. According to the Radon–Nikodym
theorem a probability measure P on B(R) has a density with respect to
the Lebesgue measure if and only if it is absolutely continuous with re-
spect to the Lebesgue measure. Equivalently, this is the case if and only if
its distribution function F(x) := P((−∞, x]) is an absolutely continuous
function. Not every continuous real function is absolutely continuous,
but every Lipschitz function is.

Theorem 3.71 (Fatou’s Lemma). Let (Ω, Σ, µ) be a measure space, fn : Ω→
[0, ∞] be measurable and set f (x) := lim infn→∞ fn(x). Then f is measurable
and ∫

f dµ ≤ lim inf
n→∞

∫
fn dµ.

Proof. Note that f (x) = supk≥1 infn≥k fn(x). Let gk(x) := infn≥k fn(x).
Then gk is measurable by Exercise 3.55. Clearly gk ↑ f . So it follows from
monotone convergence that supk∈N

∫
gk dµ =

∫
Ω f dµ. On the other

hand, ∫
f dµ = sup

k∈N

∫
gk dµ ≤ lim inf

n→∞

∫
fn dµ.
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3 Measure and Integration

Indeed, for every n ≥ k we have gk ≤ fn and thus
∫

gk dµ ≤
∫

fn dµ.
Since this is true for all n ≥ k, we have

∫
gk dµ ≤ infn≥k

∫
fn dµ. By

taking the supremum over k ∈ N on both sides, the above inequality
follows.

Definition 3.72. Let (Ω, Σ, µ) be a measure space, f : Ω → K be mea-
surable. Then f is called integrable if

∫
| f |dµ < ∞. We write f ∈

L 1(Ω, Σ, µ).
If K = R, we set ∫

f dµ :=
∫

f+ dµ−
∫

f− dµ.

Note that if | f | is integrable then f+ and f− are both integrable nonneg-
ative functions. If K = C, we set∫

f dµ =
∫

Re f dµ + i
∫

Im f dµ.

Note that if | f | is integrable, then Re f and Im f are both integrable real-
valued functions.

If f is an integrable (real or complex) measurable function and A ∈ Σ,
we define ∫

A
f dµ :=

∫
f1A dµ

Lemma 3.73. Let (Ω, Σ, µ) be a measure space.

(a) For all integrable f , we have |
∫

f dµ| ≤
∫
| f |dµ.

(b) If f is integrable and λ ∈ K, then λ f is integrable and
∫

λ f dµ =
λ
∫

f dµ.

(c) If f and g are integrable, then f + g is integrable and
∫

f + g dµ =∫
f dµ +

∫
g dµ.

Remark 3.74. Note that (b) and (c) can be expressed by saying that the
integrable functions form a vector space and the map f 7→

∫
f dµ is a

linear map from the integrable functions to K.

Proof. Let us first consider the case where K = R.
(a) We have∣∣∣∫ f dµ

∣∣∣ = ∣∣∣∫ f+ dµ−
∫

f− dµ
∣∣∣ ≤ ∫ f+ dµ +

∫
f− dµ =

∫
| f |dµ,

where we have used Corollary 3.64 in the last step.
(b) First note that by Corollary 3.64 one has

∫
|λ f |dµ = |λ|

∫
| f |dµ <

∞ if f is integrable. This proves that λ f is integrable whenever f is.
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3.7 The Lebesgue integral

Now, if λ > 0, then (λ f )+ = λ f+ and (λ f )− = λ f−. Thus, using
Corollary 3.64,∫

λ f dµ =
∫

λ f+ dµ−
∫

λ f− dµ

= λ
∫

f+ dµ− λ
∫

f− dµ = λ
∫

f dµ.

If, on the other hand, λ < 0, then (λ f )+ = −λ f− and (λ f )− = −λ f+.
Thus, in this case,∫

λ f dµ =
∫
−λ f− dµ−

∫
−λ f+ dµ

= λ
∫

f+ dµ− λ
∫

f− dµ = λ
∫

f dµ.

(c) Since | f + g| ≤ | f |+ |g|, it follows that∫
| f + g|dµ ≤

∫
| f |+ |g|dµ =

∫
| f |dµ +

∫
|g|dµ < ∞

if f and g are integrable.
Moreover, by definition and Corollary 3.64,∫

f dµ +
∫

g dµ =
∫

f+ dµ−
∫

f− dµ +
∫

g+ dµ−
∫

g− dµ

=
∫

f+ + g+ dµ−
∫
( f− + g−)dµ

(∗)
=
∫
( f + g)+ dµ−

∫
( f + g)− dµ

=
∫

f + g dµ.

Here, (∗) follows from integrating the identity f+ + g+ + ( f + g)− =
( f + g)+ + f− + g− and using Corollary 3.64.

In the case where K = C, for (b) and (c) one uses that
∫

f dµ =∫
Re f dµ + i

∫
Im f dµ. We omit the easy computations. For (a), we use

that for every complex number z one has |z| = supt∈R Re(eitz). So for
every t ∈ R one has

Re
(

eit
∫

f dµ
)
= Re

∫
eit f dµ =

∫
Re(eit f )dµ ≤

∫
| f |dµ.

Taking the supremum over t ∈ R, statement (a) follows.

Theorem 3.75 (Dominated convergence theorem). Let (Ω, Σ, µ) be a mea-
sure space and ( fn) be a sequence of integrable functions with the following two
properties.

(a) f̃ (x) := limn→∞ fn(x) exists for almost every x ∈ Ω, say outside the set
N ∈ Σ with µ(N) = 0.
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3 Measure and Integration

The technicalities
with f and f̃ are
required as f̃ might
not be measurable.
Alternatively, to
avoid speaking
about f̃ and N,
one could assume
that a measurable
f : Ω → K is given
that is pointwise
almost everywhere
the limit of the fn.

In the lecture we
discussed here how
the expected value
of random variables
is usually computed
using densities for
the push-forward
measure.

Recall that µΦ(A) =
µ(Φ−1[A]) for
all A ∈ F , see
Lemma 3.31.

(b) There exists an integrable function g with | fn(x)| ≤ g(x) for almost every
x ∈ Ω and all n ∈N.

Then f : Ω → K, defined by f (x) = f̃ (x) if x 6∈ N and f (x) = 0 if x ∈ N, is
integrable and

lim
n→∞

∫
| fn − f |dµ = 0.

In particular,

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof. Changing fn and f on a set of measure zero, we may assume that
(a) and (b) hold everywhere. By Proposition 3.30, f is measurable. Since
| f | ≤ g, it follows that f is integrable.

Now observe that | fn − f | ≤ 2g and hence 2g − | fn − f | ≥ 0. By Fa-
tou’s Lemma 3.71,∫

2g dµ =
∫

lim inf
n→∞

(2g− | fn − f |)dµ ≤ lim inf
n→∞

∫
2g− | fn − f |dµ

=
∫

2g dµ− lim sup
n→∞

∫
| fn − f |dµ.

So lim supn→∞
∫
| fn − f |dµ = 0, and therefore limn→∞

∫
| fn − f |dµ = 0.

By Lemma 3.73,∣∣∣∫ fn dµ−
∫

f dµ
∣∣∣ ≤ ∫ | fn − f |dµ→ 0.

This proves the claim.

Example 3.76. Let us give an example that condition (b) in Theorem 3.75
is necessary. Consider (R, B(R), λ). If we set fn := n1(0, 1

n )
, then ( fn) is

a sequence of simple functions converging to 0 everywhere. However,∫
R

fn dλ ≡ 1 6→ 0 =
∫

R
0 dλ.

Exercise 3.77. Consider the situation of Exercise 3.69, i.e. (Ω, Σ, µ) is a
measure space, f : Ω→ [0, ∞] is measurable and ν(A) :=

∫
A f dµ.

Show that g is integrable with respect to ν if and only if g f is integrable
with respect to µ and in this case,∫

g dν =
∫

g f dµ.

We close this section by considering the integration under a push-forward
measure, which is of great importance for applications.

Theorem 3.78. Let (Ω, Σ, µ) be a measure space, (M, F ) be a measurable space
and Φ : (Ω, Σ) → (M, F ) be measurable. We denote the push-forward of µ

under Φ by µΦ. Then for a measurable f : (M, F ) → (K, B(K)) we have
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3.8 On the connection between the Lebesgue and Riemann integral

f ◦Φ ∈ L 1(Ω, Σ, µ) if and only if f ∈ L 1(M, F , µΦ). In this case,∫
Ω

f ◦Φ dµ =
∫

M
f dµΦ.

Proof. First, let f = ∑n
j=1 ak1Ak be a nonnegative, simple function. Then

f ◦Φ =
n

∑
j=1

ak1Φ−1[Ak]

and thus, by the definition of the push-forward measure,∫
Ω

f ◦Φ dµ =
n

∑
j=1

akµ(Φ−1[A]) =
n

∑
j=1

akµΦ(A) =
∫

M
f dµΦ.

It follows that for nonnegative, simple functions the assertion holds true.
Now let f : M→ [0, ∞] be measurable and ( fn) be a sequence of simple

functions with fn ↑ f pointwise. Then, by monotone convergence and the
above,∫

Ω
f ◦Φ dµ = sup

n∈N

∫
Ω

fn ◦Φ dµ = sup
n∈N

∫
M

fn dµΦ =
∫

M
f dµΦ.

This shows that the assertion holds for arbitrary measurable positive f .
Since | f ◦Φ| = | f | ◦ Φ, it follows that f ∈ L 1(M, F , µΦ) if any only

if f ◦ Φ ∈ L 1(Ω, Σ, µ). The general formula follows by splitting real
valued functions f into the positive functions f+ and f− and complex
valued functions f into Re f and Im f .

3.8 On the connection between the Lebesgue
and Riemann integral

We next compare the Lebesgue integral with the Riemann integral. As
is well-known, every continuous function f : [a, b] → R is Riemann in-
tegrable. We now show that such functions are also Lebesgue integrable
and the Lebesgue integral agrees with the Riemann integral.

Theorem 3.79. If f : [a, b]→ K is continuous, then f is a Lebesgue integrable
function on ([a, b], B([a, b]), λ). Moreover,∫

[a,b]
f dλ = R-

∫ b

a
f (t)dt.

Proof. Let a sequence of partitions πn := (t(n)0 , . . . , t(n)kn
) with |πn| → 0

be given and let ξn = (ξ(n)1 , . . . , ξ(n)kn
) be a sequence of associated sample
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points. Put

fn :=
kn

∑
j=1

f (ξ(n)j )1
[t(n)j−1,t(n)j )

.

Then fn is a simple function and
∫
[a,b] fn dλ = S( f , πn, ξn).

Moreover, (a) | fn| ≤ ‖ f ‖∞ and the latter is integrable on our measure
space and (b) fn(t)→ f (t) for all t ∈ [a, b]. Indeed, for fixed t ∈ [a, b], we
have | fn(t)− f (t)| = | f (ξ(n)jn )− f (t)|, where ξ(n)jn is the sample point in

the interval [t(n)jn−1, t(n)jn ] and jn is chosen such that t lies in this interval. But

then |ξ(n)jn − t| ≤ |t(n)jn − t(n)jn−1| ≤ |πn| → 0 and hence, by the continuity of

f , it follows that | f (ξ(n)jn )− f (t)| → 0.
Hence the dominated convergence theorem, Theorem 3.75, applies and

shows that f is integrable and∫
[a,b]

f dλ = lim
n→∞

∫
[a,b]

fn dλ = lim
n→∞

S( f , πn, ξn).

Since, on the other hand, the Riemann sums converge to R-
∫ b

a f (t)dt, the
assertion follows.

Remark 3.80. Actually, the continuity assumption in Theorem 3.79 is not
needed, if one is willing to enlarge the σ-algebra. It can be proved that if
f : [a, b]→ K is Riemann integrable then it is almost everywhere equal to
a measurable function that is Lebesgue integrable and the Riemann and
the Lebesgue integral coincide.

There is also an extension of Theorem 3.79 to improper Riemann inte-
grals. We recall that if −∞ < a < b ≤ ∞ and f : [a, b) → R is continu-
ous, then f is called improperly Riemann integrable on [a, b) if the limit
limr↑b R-

∫ r
a f (t)dt exists. The limit is then called the improper Riemann

integral of f over [a, b) and denoted by R-
∫ b−

a f (t)dt.

Theorem 3.81. Let −∞ < a < b ≤ ∞ and f : [a, b) → R be continuous,
such that the improper Riemann integral R-

∫ b−
a | f (t)|dt exists, then f is in-

tegrable on ([a, b), B([a, b)), λ), the improper Riemann integral R-
∫ b−

a f (t)dt
exists and ∫

[a,b)
f dλ = R-

∫ b−

a
f (t)dt.

Proof. Pick a sequence (bn) ⊂ (a, b) with bn ↑ b. By monotone conver-
gence and Theorem 3.79,∫

[a,b)
| f |dλ = lim

n→∞

∫
[a,bn]
| f |dλ

= lim
n→∞

R-
∫ bn

a
| f (t)|dt = R-

∫ b−

a
| f (t)|dt < ∞.
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It follows that | f | is integrable on [a, b). Moreover, since 1[a,bn) f converges
to f pointwise and |1[a,bn) f | ≤ | f |, the dominated convergence theorem
yields∫

[a,b)
f dλ = lim

n→∞

∫
[a,bn)

f dλ = lim
n→∞

R-
∫ bn

a
f (t)dt = R-

∫ b−

a
f (t)dt,

where we have used Theorem 3.79 in the second step.

Remark 3.82. Similar results as in Theorem 3.81 also hold for improper
Riemann integrals that are improper on the left-hand side or on both
sides.

Example 3.83. In Theorem 3.81, the assumption that R-
∫
[a,b)| f (t)|dt exists

is crucial and cannot be omitted. An example is given by f : [1, ∞)→ R ,
defined by f (t) = sin t

t In this case, by integration by parts, we obtain

R-
∫ x

1

sin t
t

dt =
− cos t

t

∣∣∣x
1
− R-

∫ x

1

cos t
t2 dt→ cos 1− R-

∫ ∞

1

cos t
t2 dt

as x → ∞. The latter improper Riemann integral exists since |t−2 cos t| ≤
t−2 and the latter is integrable. It follows that the improper Riemann
integral R-

∫ ∞
1

cos t
t2 dt exists.

On the other hand, on each interval [kπ, (k + 1)π), we have | f (t)| ≥
|sin(t)|((k + 1)π)−1. It thus follows that∫

[1,∞)
f dλ ≥

n

∑
k=1

1
(k + 1)π

∫
[kπ,(k+1)π)

|sin(t)|dλ(t)

=
1
π

( n

∑
k=1

1
k + 1

)
· R-
∫ π

0
|sin(t)|dt.

Since the harmonic series diverges, it follows that f is not integrable on
[1, ∞).

Remark 3.84. In what follows, we will also use the ‘differential’ dt in
Lebesgue integrals instead of the (formally correct) dλ. We will thus
write ∫

[a,b]
f (t)dt or

∫ b

a
f (t)dt

to denote the Lebesgue integral of f on the interval [a, b]. This is partic-
ularly helpful when the function f depends on more than one variable.
To have this feature also at hand for general measures, we will frequently
write

∫
Ω f (x)dµ(x) instead of

∫
Ω f dµ to emphasize that we are integrat-

ing with respect to the variable x.
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3 Measure and Integration

Instead of [0, 1] we
could use a general
metric space here.

3.9 Integrals depending on a parameter
The main topic of this section is to interchange operations like integra-
tion, differentiation and taking limits. This is a topic at the very heart of
analysis.

Suppose that (Ω, Σ, µ) is a measure space. If we are given a map
f : [0, 1]×Ω → C such that f (t, ·) is integrable for all t ∈ [0, 1], we may
define F(t) :=

∫
Ω f (t, x)dµ(x). It is then natural to ask how F depends

on the parameter t ∈ [0, 1]. In this short section, we use the dominated
convergence theorem to prove some results in this direction.

Proposition 3.85. Let (Ω, Σ, µ) be a measure space. Furthermore, let f : [0, 1]×
Ω→ K be such that the following three properties hold.

(a) x 7→ f (t, x) ∈ L 1(Ω, Σ, µ) for all t ∈ [0, 1].

(b) t 7→ f (t, x) is continuous for almost all x ∈ Ω.

(c) There exists a g ∈ L 1(Ω, Σ, µ) such that | f (t, x)| ≤ g(x) for all (t, x) ∈
[0, 1]×Ω.

Then F : [0, 1]→ C defined by F(t) =
∫

Ω f (t, x)dµ(x) is continuous.

Proof. Let tn → t in [0, 1]. Then f (tn, x) → f (t, x) for almost all x ∈ Ω by
(b). Since | f (tn, x)| ≤ g(x) for all x ∈ Ω by assumption and g ∈ L 1(Ω),
it follows from the dominated convergence theorem, Theorem 3.75, that

F(tn) =
∫

Ω
f (tn, x)dµ(x)→

∫
Ω

f (t, x)dµ(x) = F(t).

This proves the continuity of F.

Proposition 3.86. Let I be an interval in R and (Ω, Σ, µ) be a measure space.
Furthermore, let f : I×Ω→ K be such that the following three properties hold.

(a) x 7→ f (t, x) ∈ L 1(Ω, Σ, µ) for all t ∈ I.

(b) t 7→ f (t, x) is differentiable for all x ∈ Ω.

(c) There exists a g ∈ L 1(Ω, Σ, µ) such that | ∂
∂t f (t, x)| ≤ g(x) for all

(t, x) ∈ I ×Ω.

Then F : I → K defined by F(t) =
∫

Ω f (t, x)dµ(x) is differentiable. Moreover,
∂
∂t f (t, x) is integrable for all t ∈ I and

F′(t) =
d
dt

∫
Ω

f (t, x)dµ(x) =
∫

Ω

∂

∂t
f (t, x)dµ(x).

Proof. Fix t ∈ I and let (tn) be a sequence in I that converges to t. De-
fine hn, h : Ω → C by hn(x) := (tn − t)−1( f (tn, x)− f (t, x)) and h(x) =
∂
∂t f (t, x). Then hn is integrable for every n ∈N as a linear combination of
integrable functions. Moreover, hn(x) → h(x) for all x ∈ Ω by assump-
tion. By the mean-value theorem, hn(x) = ∂

∂t f (ξn, x) for some ξn between
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Observe that the
2-dimensional

Lebesgue measure
λ2 is the product

measure of the
one-dimensional

Lebesgue mea-
sure with itself.

t and tn. In particular, |hn| ≤ g. Thus the dominated convergence theo-
rem shows that h is integrable and

F(tn)− F(t)
tn − t

=
∫

Ω
hn(x)dµ(x)→

∫
Ω

h(x)dµ(x) =
∫

Ω

∂

∂t
f (t, x)dµ(x).

This finishes the proof.

3.10 Product measures
In this section we construct a σ-algebra and a corresponding measure on
the product of two suitable measure spaces. Our motivation is to extend
the theory in order to deal with iterated integrals. The product measure
will allow us to write an iterated integral as a single integral with resprect
to the product measure.

Definition 3.87. Let (Ωk, Σk) be a measurable space for k = 1, . . . , n.
The product (measurable space) of the spaces (Ωk, Σk) is the measurable
space (∏n

k=1 Ωk,
⊗n

k=1 Σk), where ∏n
k=1 Ωi is the Cartesian product of the

sets Ωk, i.e., the set of all tuples (x1, . . . , xn) where xk ∈ Ωk and
⊗n

k=1 Σk
is generated by the cuboids A1 × · · · × An where Ak ∈ Σk.

Exercise 3.88. Let (Ω, Σ) and, for k = 1, . . . , n, also (Ωk, Σk) be measure
spaces. Let fk : Ω → Ωk be a function and define f : Ω → ∏n

k=1 Ωk by
f (x) = ( f1(x), . . . , fn(x)). Show that f is Σ/

⊗n
k=1 Σk-measurable if and

only if fk is Σ/Σk-measurable for all k = 1, . . . , n.

In the following, let (Ωi, Σi, µi) be σ-finite measure spaces for i = 1, 2.
We define a measure µ1⊗ µ2 on the σ-algebra Σ1⊗ Σ2 which is the prod-
uct of the measures µ1 and µ2 in the sense that

µ1 ⊗ µ2(A× B) = µ1(A)µ2(B)

for all A ∈ Σ1 and B ∈ Σ2. Note that as µ1 and µ2 are σ-finite, by Corol-
lary 3.38 there exists at most one such measure.

For a set Q ⊂ Ω1 ×Ω2 and x ∈ Ω1, y ∈ Ω2, we define the cuts [Q]x
and [Q]y by

[Q]x := {y ∈ Ω2 : (x, y) ∈ Q} and [Q]y := {x ∈ Ω1 : (x, y) ∈ Q}.

Lemma 3.89. For x ∈ Ω1, y ∈ Ω2 and Q ∈ Σ1 ⊗ Σ2 we have [Q]x ∈ Σ2 and
[Q]y ∈ Σ1.

Proof. We put G := {Q ∈ Σ1 ⊗ Σ2 : [Q]x ∈ Σ2}. We claim that G is a σ-
algebra on Ω1 ×Ω2. Clearly (S1) holds, since [Ω1 ×Ω2]x = Ω2. (S2) and
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