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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universität Ulm in the summer term of 2019.
We mainly follow the [CKN82] in a modern fashion. This work is aimed at enthusiastic
Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.
Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 9: Estimating the Singular Set and Estimates for u and
p in Weighted Norms

(Dennis Gallenmüller)

This talk splits into two independent sections. On the one hand, we prove the main
theorem subject to this seminar, namely Theorem B in [CKN82], which corresponds to
section 6 in the paper. On the other hand, this talk will prepare the proof of Theorems C
and D in [CKN82], which corresponds to section 7 of the paper. For this we provide two
lemmas concerning estimates of the velocity field u and the pressure p of a suitable weak
solution in some specific weighted norms.

1.1. Estimating the Singular Set

1.1.1. Completing the Proof of the Main Theorem. For convenience we recall
the main theorem and Proposition 2 from [CKN82].

Theorem 1.1 (Caffarelli, Kohn, Nirenberg (Theorem B)). For any suitable weak solu-
tion of the Navier-Stokes system on an open set in space-time, the associated singular set
satisfies P1(S) = 0.

Proposition 1.2 (Caffarelli, Kohn, Nirenberg (Proposition 2)). There is an absolute
constant ε3 > 0 with the following property. If (u, p) is a suitable weak solution of the
Navier-Stokes system near (x, t) and if lim sup

r→0

1
r

´
Q∗
r(x,t)

∣∇u∣2 ≤ ε3, then (x, t) is a regular

point.

The idea of the proof of Theorem 1.1 is to use Proposition 1.2 (cf. Proposition 1.6 in
talk 1) and a variant of Vitali’s covering lemma for parabolic cylinders (see Lemma 1.3) to
estimate the one-dimensional parabolic Hausdorff measure of S.
First, let us state and prove this variant of Vitali’s covering lemma for parabolic cylin-
ders. The classical Vitali lemma considers balls, but cylinders are more convenient for our
discussion due to the structure of the Navier-Stokes equations.

Lemma 1.3. Let C = (Q∗
ri(xi, ti))i∈I be any collection of parabolic cylinders contained

in a bounded subset of R3 × R. Then there exists a finite or countable subcollection C′ =
(Q∗

rij
(xij , tij))

j∈I′
, i.e. I ′ ⊂ I, which is disjoint and has the property that for all Q∗ ∈ C

there is a j ∈ I ′ such that Q∗ ⊂ Q∗
5rij

(xij , tij).

Remark 1.4. As in the other talks we use the notation

Q∗
r(x, t) ∶= {(y, τ) ∶ ∣y − x∣ < r, t − 7

8
r2 < τ < t + 1

8
r2} .

Proof. Set C0 ∶= C. Moreover, since (Q∗
ri
) is contained in a bounded subset, we have

sup
i∈I

ri < ∞. Hence, we can choose Q∗
1 ⊂ C0 such that 3

2rQ∗

1
≥ sup

i∈I
ri. Note that this is

possible, since by the definition of the supremum and 1
3sup
i∈I

ri > 0 we find some r such that

4



1.1. ESTIMATING THE SINGULAR SET 5

r ≥ sup
i∈I

ri − 1
3sup
i∈I

ri = 2
3sup
i∈I

ri.

Let us choose a countable subcollection of C inductively as follows:
Assume for n ∈ N we have already chosen (Q∗

k)
n

k=1. Then set

Cn ∶= {Q∗ ∈ C ∶ Q∗ ∩Q∗
k = ∅, k = 1, ..., n}.

Moreover, as long as Cn ≠ ∅ choose Q∗
n+1 ∈ Cn such that sup

Q∗∈Cn
rQ∗ ≤ 3

2rQ∗

n+1
. This is again

possible by the definition of the supremum as above.
Thus, the subcollection C′ ∶= (Q∗

k)k is disjoint and countable or finite by construction. The
latter case is considered if Cn = ∅ for some n ∈ N.
Now, we claim that given a Q∗ ∈ C/C′ there exists a n ∈ N0 such that Q∗ ∈ Cn but Q∗ ∉ Cn+1.
In the case that C′ is finite this is obvious, since Cn+1 = ∅ for some n ∈ N0. In the case that
C′ is countably infinite, the pairwise distjointness of C′ and the fact that C is contained in
a bounded set imply that rQ∗

n
tend to zero as n→∞. Now, given a Q∗ ∈ C/C′ by the same

reasoning as just mentioned there are only finitely many pairwise disjoint cylinders Q̃∗ ∈ C
such that 3

2rQ̃∗ ≥ rQ∗ . Assume now that Q∗ would not be deleted by intersecting one of
these Q̃∗. Then eventually after finitely many, say n ∈ N many, selection processes holds

rQ∗ > 3

2
rQ′∗

for all Q′∗ ∈ Cn. As Q∗ has not yet been deleted, we have Q∗ ∈ Cn. Therefore, we have
to make the selection Q∗ = Q∗

n+1 contradicting the fact that Q∗ ∉ C′. Thus, Q∗ has to be
deleted after finitely many steps yielding the claim.
The claim implies by definition of the selection process, that for every Q∗ ∈ C/C′ there is a
n ∈ N0 such that Q∗ ∩Q∗

n+1 ≠ ∅ and rQ∗ ≤ 3
2rQ∗

n+1
.

Let us write rn+1 ∶= rQ∗

n+1
. Therefore, the diameter of Q∗ in space direction is at most 3rn+1

and in time direction at most (3
2rn+1)

2. Hence, the maximal distance of a point (x, t) ∈ Q∗

to the parabolic center of Q∗
n+1 in space is 4rn+1. In time direction the maximal distance

of (x, t) to the parabolic center of Q∗
n+1 has to be considered for forewards and backwards

direction seperately, since the definition of the Q∗ involves different scaling forewards and
backwards in time. To be precise, the maximal distance backwards in time is

7

8
r2n+1 +

9

4
r2n+1

!
≤ 7

8
(arn+1)2. (1.1)

Here, we introduced some a ∈ R to be chosen such that the cylinder Q∗
arn+1 contains Q∗.

From (1.1) it follows that a ≥
√

25
7 , where the latter is less than 2.

For the forewards time direction we have to ensure that
1

8
r2n+1 +

9

4
r2n+1 ≤

1

8
(arn+1)2.

Thus, a ≥
√

19, which is less than 5. All in all, we showed that Q∗ ⊂ Q∗
5rn+1

for all Q∗ ∈ C
as the latter is obviously true for Q∗ ∈ C′, as 5 > 1. �

We have collected all tools needed to prove Theorem 1.1.

Proof. Let (u, p) be a suitable weak solution of the Navier-Stokes system. It suffices
to assume that (u, p) is only defined on an open bounded subset of R3 × R. Indeed, let
(Di)∞i=0 be a countable open covering of the potentially unbounded domain of definition of
(u, p). Then (u, p) is also a suitable weak solution on S ∩Di for all i by restricting the set
of testfunctions to those with support in Di. Assume we have already shown the theorem
for bounded domains, then P1(S ∩Di) = 0 for all i. Let δ > 0 and ε > 0. Now, for all

i choose a countable collection of parabolic cylinders (Q∗
rij

(xij , tij)) covering S ∩Di with
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rij < δ such that ∑j rij < P1
δ (S ∩Di)+ ε

2i
. Then ⋃

i
⋃
j
Q∗
rij

(xij , tij) = ⋃
i,j
Q∗
rij

(xij , tij) is a countable

collection covering S. Thus,

P1
δ (S) ≤ ∑

i,j

rij = ∑
i
∑
j

rij ≤ ∑
i

(P1
δ (S ∩Di) +

ε

2i
) = ∑

i

P1
δ (S ∩Di) + ε.

We can let ε → 0 to infer the countable subadditivity of P1
δ for all δ > 0. By definition of

P1
δ and the infimum, we know that P1

δ′(S ∩Di) ≤ P1
δ (S ∩Di) for δ ≤ δ′. Thus, by monotone

convergence

P1(S) = lim
δ→0
P1
δ (S) ≤ lim

δ→0
∑
i

P1
δ (S∩Di) = ∑

i

lim
δ→0
P1
δ (S∩Di) = ∑

i

P1(S∩Di) = ∑
i

0 = 0.

Therefore, we assume (u, p) to be defined on the open bounded set D ⊂ R3 ×R.
By Proposition 1.2 there is a constant ε3 > 0 such that for all (x, t) ∈ S holds

lim sup
r→0

1

r

ˆ
Q∗
r(x,t)

∣∇u∣2 > ε3. (1.2)

Now, let δ > 0 and V ⊂ D be a neighborhood of S. By the strictness of the inequality in
(1.2) for every (x, t) ∈ S we can choose a parabolic cylinder Q∗

r(x, t) with 0 < r < δ such
that

1

r

ˆ
Q∗
r(x,t)

∣∇u∣2 > ε3 (1.3)

and Q∗
r(x, t) ⊂ V .

Now the covering Lemma for parabolic cylinders (Lemma 1.3) yields a disjoint countable
subcollection (Q∗

ri(xi, ti))i such that

S ⊂ ⋃
(x,t)∈S

Q∗
r(x, t) ⊂ ⋃

i

Q∗
5ri(xi, ti).

Moreover, since Q∗
ri ⊂ V are disjoint and by (1.3) we obtain

∑
i

ri ≤ ∑
i

1

ε3

ˆ
Q∗
ri
(xi,ti)

∣∇u∣2 ≤ 1

ε3

ˆ
V
∣∇u∣2, (1.4)

where the right hand side is independend of the choice of ri and hence independent of δ.
Therefore, we estimate the Lebesgue measure of the singular set by using r < δ

∣S∣ ≤ ∣⋃
i

Q∗
5ri(xi, ti)∣ ≤ ∑

i

∣Q∗
5ri(xi, ti)∣ = ∑

i

Cr5i ≤ Cδ4∑
i

ri ≤ C
1

ε3

ˆ
V
∣∇u∣2 ⋅ δ4,

where in the last inequality we used (1.4). Since δ > 0 was arbitrary, we conclude that
∣S∣ = 0.
Also (1.4) and ri < δ imply that

P1
δ (S) ≤ ∑

i

5ri ≤
5

ε3

ˆ
V
∣∇u∣2

for all δ > 0, hence also the limit for δ → 0, i.e. the parabolic Hausdorff measure P1(S), is
less or equal than 5

ε3

´
V ∣∇u∣2.

Still the neighborhood V is arbitrary. Thus, we can choose a sequence Vn for example by

Vn ∶=D ∩ {(y, s) ∶ dist(S, (y, s)) < 1

n
} .

We need to show that the indicator function of Vn tends pointwise almost everywhere in
D to zero as n→∞. Indeed, S is closed, since its complement R, defined as

R ∶= {(x, t) ∶ ∃ neighborhood U of (x, t) such that u ∈ L∞(U)},
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is obviously an open set, because every point in R has an open neighborhood that contains
again only points in R by definition. Now, let (x, t) ∈ R. Then, there is some ball Bε(x, t)
around this point lying in R. Hence, for all n ∈ N large enough such that 1

n < ε
2 we

achieve (x, t) ∉ Vn, because else Bε(x, t) ∩ S ≠ ∅ would be a contradiction. Since, Rc = S
is a Lebesgue null set, we infer that the indicator of Vn tends to zero as n → ∞ almost
everywhere.
We also have

´
Vn

∣∇u∣2 ≤
´
D ∣∇u∣2 < ∞. So, dominated convergence implies that

P1(S) ≤ 5

ε3

ˆ
Vn

∣∇u∣2 n→∞→ 0,

finishing the proof. �

1.1.2. Some Corollaries. In general, Theorem 1.1 is not strong enough to imply
the uniqueness or strong time-continuity for suitable weak solutions, since still S could be
non-empty. On the other hand, there are interesting direct consequences, some of them
listed in the following.

Corollary 1.5. On T3 holds H 1
2 (T ) = 0, where T denotes the set of positive singular

times.

Proof. From Lemma 16.3 in [RRS16] we know that on T3 holds T = prt(S), where
the latter denotes the projection of S onto the time coordinate. Thus, it is sufficient to
prove the inequality

H
1
2 (prtX) ≤ CP1(X) (1.5)

for all X ⊂ R3 ×R.
Indeed, for every covering by parabolic cylinders (Qri(xi, ti))∞i=0 of X holds in particular
that prtX ⊂ ⋃

i
prtQri . Thus, for all δ > 0 holds

P1
δ (X) = inf {∑

i

ri ∶ X ⊂ ⋃
i

Qri , ri < δ}

≥ inf {∑
i

ri ∶ prtX ⊂ ⋃
i

prtQri , ri < δ}

= inf {∑
i

ri ∶ prtX ⊂ ⋃
i

(ti − r2i , ti), ri < δ}

= inf {∑
i

√
si ∶ prtX ⊂ ⋃

i

(ti − si, ti), si < δ2}

≥ inf {∑
i

√
diam([ti − si, ti]) ∶ prtX ⊂ ⋃

i

[ti − si, ti], si < δ2}

≥ C ⋅ H
1
2

δ2
(prtX).

Passing to the limit δ → 0 on both sides yields the desired inequality (1.5), completing the
proof. �

Corollary 1.6. Let
´
(
´
∣∇u∣2dx)2 dt < ∞ for a suitable weak solution (u, p) defined

on D ⊂ R3 ×R. Then (u, p) is regular on D.
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Proof. Let (x, t) ∈D be any point. We estimate using Hölder in the time-integration

lim sup
r→0

1

r

ˆ
Q∗
r(x,t)

∣∇u∣2 = lim sup
r→0

1

r

ˆ t+ 1
8
r2

t− 7
8
r2

1 ⋅
ˆ
Br(x)

∣∇u∣2dyds

≤ lim sup
r→0

1

r

⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
Br(x)

∣∇u∣2dy)
2

ds
⎞
⎠

1
2

⋅
√
r2

≤ lim sup
r→0

⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
D∩{s=t}

∣∇u∣2dy)
2

ds
⎞
⎠

1
2

= 0,

where in the last step we used dominated convergence as clearly the indicator of the

time interval χ[t− 7
8
r2,t+ 1

8
r2](s) → 0 for all s ≠ t and (

´ t+ 1
8
r2

t− 7
8
r2

(
´
D∩{s=t} ∣∇u∣

2dy)
2
ds) ≤

(
´
prtD

(
´
D∩{s=t} ∣∇u∣

2dy)
2
ds) which is bounded by assumption.

Thus, Proposition 1.2 implies that (x, t) is regular. �

A similar result follows by Proposition 1 in the paper.

Corollary 1.7. Let
´
(
´
∣u∣s + ∣p∣ s2dx)

s′

s dt < ∞ for a suitable weak solution (u, p)
defined on D ⊂ R3 ×R and 3 < s ≤ s′ satisfying 3

s +
2
s′ = 1. Then (u, p) is regular on D.

Proof. Let (x, t) ∈D be any point. We estimate using Hölder with exponents s′

3 and
1

1− 3
s′

in the time-integration, but first we Hölder in space in both summands with Hölder

exponents s
3 and 1

1− 3
s

= s′

2 .

lim sup
r→0

1

r2

ˆ
Q∗
r(x,t)

∣u∣3 + ∣p∣
3
2

=lim sup
r→0

1

r2

ˆ t+ 1
8
r2

t− 7
8
r2

ˆ
Br(x)

1 ⋅ ∣u∣3 + 1 ⋅ ∣p∣
3
2dydτ

≤lim sup
r→0

1

r2

ˆ t+ 1
8
r2

t− 7
8
r2

⎛
⎝
(
ˆ
Br(x)

∣u∣sdy)
3
s

+ (
ˆ
Br(x)

∣p∣
s
2dy)

3
s⎞
⎠
⋅ ∣Br(x)∣

2
s′ dτ

≤lim sup
r→0

1

r2
2

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
Br(x)

∣u∣s + ∣p∣
s
2dy)

3
s

⋅ 1dτ ⋅ ∣Br(x)∣
2
s′

≤lim sup
r→0

2

r2
⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(∣u∣s + ∣p∣
s
2dy)

s′

s
dτ

⎞
⎠

3
s′

(r2)1−
3
s′ ∣Br(x)∣

2
s′ .

Now the second factor involving the time integral over the measure of the ball Br(x) is
proportional to r(2−

6
s′

)+ 6
s′ = r2. Hence, this factors cancelles the prefactor of 1

r2
and infer

that the limit r → 0 tends to zero on the right hand side by dominated convergence similarly

as in the previous proof, which is valid due to
´
(
´
∣u∣s + ∣p∣ s2dx)

s′

s dt being bounded by
assumption. �

Corollary 1.8. Let (u, p) be a suitable weak solution of the Navier-Stokes system
which has cylindrical symmetry about some axis. Then singularities can only occur on the
symmetry axis.
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Proof. Assume there would be an off-axis singularity. Then, due to symmetry, this
would give rise to a whole circle on which the solution would be singular. But this contra-
dicts the fact that H1(S) ≤ CP1(S) = 0. So, possible singularities can only lie on the axis
of symmetry. �

1.2. Estimates for u and p in Weighted Norms

In the following we will prove two lemmas that play an important role in the proof of
Theorems C and D, which are subject to the subsequent talk.
The first lemma provides a weighted interpolation estimate.

Lemma 1.9. Let α,β, γ, r, s be such that:
(i) r ≥ 2, γ + 3

r > 0, α + 3
2 > 0, β + 3

2 > 0, and s ∈ [1
2 ,1],

(ii) γ + 3
r = s (α +

1
2
) + (1 − s) (β + 3

2
),

(iii) s(α − 1) + (1 − s)β ≤ γ ≤ sα + (1 − s)β.
Then there exists a constant C = C(α,β, γ, r, s) such that for all ε ≥ 0 holds the inequality

∥(ε + ∣x∣2)
γ
2 u∥Lr(R3) ≤ C∥(ε + ∣x∣2)

α
2 ∣∇u∣∥sL2(R3)∥(ε + ∣x∣2)

β
2 u∥1−sL2(R3) (1.6)

for all u ∈H1(R3) with ∥(ε + ∣x∣2)α−12 u∥
L2(R3)

< ∞.

Remark 1.10. Note that for functions u ∈ H1(R3) with compact support of course
we do not need to assume the weighted L2-norm of u with exponent α − 1 to be finite.
Also in the original paper, this assumption is not stated even for non compactly supported
functions u. Nevertheless, it is not clear to us how to relax this condition or even skip it.
Hence, we kept this assumption for completeness of the present notes.

Proof. Suppose we have already proven the lemma for ε = 1, then for ε > 0 we have
by rescaling

∥(ε + ∣x∣2)
γ
2 u∥

Lr

=
XXXXXXXXXXXX
(1 + ∣x∣2

ε
)
γ
2

u(x)
XXXXXXXXXXXXLr

ε
γ
2

=∥(1 + ∣y∣2)
γ
2 u(

√
εy)∥

Lr
ε
γ
2
+ 3

2r

≤C ∥(1 + ∣y∣2)
α
2 ∣∇y(u(

√
εy))∣2∥

s

L2
∥(1 + ∣y∣2)

β
2 u(

√
εy)∥

1−s

L2
ε
γ+ 3
r

2

=C ∥(1 + ∣y∣2)
α
2 ∣∇√

εy(u(
√
εy))

√
ε∣2∥

s

L2
∥(1 + ∣y∣2)

β
2 u(

√
εy)∥

1−s

L2
ε

1
2
(s(α+ 1

2
)+(1−s)(β+ 3

2
))

=C ∥(ε + ∣
√
εy∣2)

α
2 ∣∇√

εy(u(
√
εy))∣2∥

s

L2
∥(ε + ∣

√
εy∣2)

β
2 u(

√
εy)∥

1−s

L2
ε

1
2
(s 3

2
+(1−s) 3

2
)

=C ∥(ε + ∣x∣2)
α
2 ∣∇u∣2∥

s

L2
∥(ε + ∣x∣2)

β
2 u∥

1−s

L2
,

where we used assumption (ii) from the lemma. So, the case ε > 0 follows from ε = 1. For
ε = 0 we let ε → 0 in the inequality for ε > 0. To do so, we use dominated convergence,
which is valid as the pointwise almost everywhere convergence (ε + ∣x∣2)

γ
2
r ∣u∣r → ∣x∣rγ ∣u∣r

is clear and for ε small enough and γ ≥ 0 holds (ε + ∣x∣2)
γ
2
r ∣u∣r ≤ (1 + ∣x∣2)

γ
2
r ∣u∣r. This last

function is integrable because

∥(1 + ∣x∣2)
γ
2 u∥

Lr
≤ C ∥(1 + ∣x∣2)

α
2 ∣∇u∣2∥

s

L2
∥(1 + ∣x∣2)

β
2 u∥

1−s

L2

≤M +C ∥∣x∣α∣∇u∣2∥s
L2 ∥∣x∣βu∥

1−s
L2 < ∞
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for some number M < ∞, and we assume the right hand side of (1.6) to be finite for ε = 0,
since else the statement of the lemma is trivially true. For γ < 0, we simply estimate
(ε + ∣x∣2)

γ
2
r ∣u∣r ≤ ∣u∣r ∈ L1 and respecting (1.9). The convergence ε → 0 on the right hand

side of (1.6) is treated similarly.
We now want to simplify the proof in terms of which functions u need to be considered.
Again, without loss of generality, we assume that both weighted norms of u on the right
hand side of (1.6) are finite, since else the inequality is trivially satisfied.
Assume further that we have shown the inequality (1.6) already for all functions in H1

with compact support. Then for a general u ∈ H1(R3) we define ϕ ∈ C∞
0 (R3) to be a

radially-symmetric function with 0 ≤ ϕ ≤ 1, ϕ = 1 on B1(0) and ϕ = 0 outside B2(0), and
∣∇ϕ∣ ≤ 2. Then, the sequence of smooth functions (ϕn)n ∶= (ϕ ( ⋅

n
))
n
tends to 1 a.e. on R3

and (∇ϕn)n tends to zero almost everywhere. So, ϕnu ∈H1(R3) has compact support and
we can estimate

∥(1 + ∣x∣2)
γ
2ϕnu∥

Lr(R3)
≤C ∥(1 + ∣x∣2)

α
2 ∣∇(ϕnu)∣∥

s

L2(R3)
∥(1 + ∣x∣2)

β
2 (ϕnu)∥

1−s

L2(R3)

≤C ∥(1 + ∣x∣2)
α
2 ∣∇ϕn∣u∥

s

L2(R3)
∥(1 + ∣x∣2)

β
2ϕnu∥

1−s

L2(R3)

+C ∥(1 + ∣x∣2)
α
2 ϕn∣∇u∣∥

s

L2(R3)
∥(1 + ∣x∣2)

β
2ϕnu∥

1−s

L2(R3)
.(1.7)

All norms in (1.7) involving ϕn tend to the desired norm by monotone convergence, e.g.

∥(1 + ∣x∣2)
γ
2ϕnu∥

Lr(R3)
n→∞→ ∥(1 + ∣x∣2)

γ
2 u∥

Lr(R3)
.

The only problematic term is ∥(1 + ∣x∣2)α2 ∣∇ϕn∣u∥L2(R3) as (∇ϕn)n is not a monotonically
increasing sequence of functions. But here (and in fact only here) the assumption discussed
in Remark 1.10 comes into play and we have

∣(1 + ∣x∣2)
α
2 ∣∇ϕn∣u∣

2
≤ ∣(1 + ∣x∣2)

α
2

2

n
u ⋅ χB2n(0)/Bn(0)∣

2

= ∣(1 + ∣x∣2)
α
2

4
√

2√
22n

u ⋅ χB2n(0)/Bn(0)∣
2

≤
RRRRRRRRRRR

4
√

2(1 + ∣x∣2)α2√
1 + ∣x∣2

u ⋅ χB2n(0)/Bn(0)

RRRRRRRRRRR

2

≤ ∣4
√

2(1 + ∣x∣2)
α−1
2 u∣

2
∈ L1(R3),

since
√

∣x∣2 + 1 ≤
√

2∣x∣2 ≤
√

22n for all n ∈ N. By dominated convergence we infer that all
terms in (1.7) converge to the desired norms.
Now it suffices to show the inequality (1.6) only for smooth compactly supported functions.
Indeed, assume u is supported in BM(0), i.e. u ∈ H1(BM(0)). Clearly, for all 1 ≤ q ≤ ∞
and all measurable functions f holds

∥f∥Lq(BM (0)) ≤ ∥(1 + ∣x∣2)
δ
2 f∥

Lq(R3)
≤ (1 +M2)

δ
2 ∥f∥Lq(BM (0)).

Thus, the weighted norm and the unweighted norm on Lq(BM(0)) are equivalent. Note
that by (1.9) (see below) and assumption (i) we have r ∈ [2,6]. So by the continuous
Sobolev embedding H1(BM(0)) ↪ L6(BM(0)) and the fact that u ∈ H1

0(BM(0)) we can
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choose a sequence un ∈ C∞
0 (BM(0)) with un → u in H1 as n → ∞. Note that the conver-

gence in H1 implies the convergence in L6 and hence in Lr and L2 by Hölder. Thus,

∥(1 + ∣x∣2)
γ
2 u∥

Lr(BM (0))
← ∥(1 + ∣x∣2)

γ
2 un∥

Lr(BM (0))

≤ C ∥(1 + ∣x∣2)
α
2 ∣∇un∣∥

s

L2(BM (0))
∥(1 + ∣x∣2)

β
2 un∥

1−s

L2(BM (0))

→ C ∥(1 + ∣x∣2)
α
2 ∣∇u∣∥

s

L2(BM (0))
∥(1 + ∣x∣2)

β
2 u∥

1−s

L2(BM (0))
,

hence the lemma follows for u compactly supported.
To sum up, it suffices to prove the lemma for ε = 1 and u ∈ C∞

0 (R3).
We introduce the notation τ ∶= (1 + ∣x∣2) 1

2 , A ∶= ∥τα∣∇u∣∥L2 , and B ∶= ∥τβu∥L2 .
We first consider the case r = 2:
Assumption (i) implies γ > −3

2 and assumption (ii) implies

γ = s(α + 1

2
) + (1 − s) (β + 3

2
) − 3

2
= s(α − 1) + (1 − s)β.

We now introduce spherical coordinates (ρ, θ) on R3 to obtainˆ
R3

τ2γ ∣u∣2dx =
ˆ
S2

ˆ ∞

0
τ2γ ∣u∣2ρ2dρdθ

=
ˆ
S2

ˆ ∞

0
τ2γ ∣u∣2τρdρdθ +

ˆ
S2

ˆ ∞

0
τ2γ ∣u∣2(ρ2 − τρ)dρdθ.

By partial integration in ρ, while recalling u ∈ C∞
0 and the triviality ρ∣

ρ=0 = 0, we get
ˆ
S2

ˆ ∞

0
τ2γ+1ρ∣u∣2dρdθ = −

ˆ
S2

ˆ ∞

0

ρ2

2
(u ⋅ ∂ruτ2γ+1 + ∣u∣2(2γ + 1)τ2γ ρ

τ
)dρdθ

≤ −
ˆ
S2

ˆ ∞

0
ρ3τ2γ−1∣u∣2 (γ + 1

2
) + ρ2τ2γ+1∣u∣∣∇u∣dρdθ.

Thus, ˆ
R3

τ2γ ∣u∣2dx ≤
ˆ
S2

ˆ ∞

0
τ2γ+1ρ2∣u∣∣∇u∣ + ∣u∣2τ2γρ2 (1 − τ

ρ
− (γ + 1

2

ρ

τ
))dρdθ.

Now notice that by γ > −3
2 we have γ ≥ −3

2 + C̄ for some constant 1 > C̄ > 0. Hence,

τ

ρ
+ (γ + 1

2
) ρ
τ
≥ (1 − C̄)

√
1 + ∣x∣2
∣x∣ − (1 − C̄) ∣x∣√

1 + ∣x∣2
+ C̄

√
1 + ∣x∣2
∣x∣

≥ C̄
√

1 + ∣x∣2
∣x∣ ≥ C̄.

Using the last estimate and rearranging yieldsˆ
R3

τ2γ ∣u∣2 ≤ 1

C̄

ˆ
S2

ˆ ∞

0
τ2γ+1ρ2∣u∣∣∇u∣dρdθ

= 1

C̄

ˆ
R3

τ2γ+1∣u∣∣∇u∣dx

= 1

C̄

ˆ
R3

τ1+
γ
2 (τγ ∣u∣)2−

1
s ∣∇u∣∣u∣

1
s
−1dx

= 1

C̄

ˆ
R3

(τγ ∣u∣)2−
1
s (τα∣∇u∣)(τβ ∣u∣)

1
s
−1dx,
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where we used (ii), i.e. 1 + γ
s = α + β (1

s − 1).
Note that 1

s ∈ [1,2] and 1
2 +

1
2
(1
s − 1) + 1

2
(2 − 1

s
) = 1. Thus, we can apply the Hölder

inequality for three factors with exponents 2, 2
1
s
−1 , and

2
2− 1

s

to obtain

ˆ
R3

τ2γ ∣u∣2 ≤ 1

C̄
(
ˆ
R3

(τγ ∣u∣)2dx)
1− 1

2s

(
ˆ
R3

(τβ ∣u∣)2dx)
1
2s
− 1

2

(
ˆ
R3

τα∣∇u∣2dx)
1
2

= 1

C̄
(
ˆ
R3

(τγ ∣u∣)2dx)
1− 1

2s

B
1
s
−1A.

Rearranging and taking the whole inequality to the power s yields

(
ˆ
R3

τ2γ ∣u∣2dx)
1
2

≤ CB1−sAs,

finishing the proof in the case r = 2.

Now consider r > 2:
Define Rk ∶= {2k−1 < ∣x∣ ≤ 2k}. We note that q ∶= 1

1
2
− s

3

= 6
3−2s ∈ [3,6] as s ∈ [1

2 ,1]. Therefore,
by standard Lebesgue space interpolation on Rk with 1

q =
1−s
2 + s

6 and Poincare’s inequality
on balls (cf. section 4.5.2 in [EG92]) holds

∥u∥Lq(Rk) ≤ ∥u − ū∥Lq(Rk) + ∥ū∥Lq(Rk)
≤ ∥u − ū∥1−sL2(Rk)∥u − ū∥

s
L6(Rk) + ∥ū∥Lq(Rk)

≤ C∥u − ū∥1−sL2(Rk)∥∇u∥
s
L2(Rk) +Cd

−3+ 3
q

k

ˆ
Rk

∣u∣dx

≤ C∥u∥1−sL2(Rk)∥∇u∥
s
L2(Rk) +Cd

−3+ 3
q

k

√
∣Rk∣ ⋅ ∥u∥L2(Rk)

≤ C∥∇u∥sL2(Rk)∥u∥
1−s
L2(Rk) +

C

dsk
∥u∥L2(Rk), (1.8)

where we introduced the shorthand notation dk ∶= diam(Rk) and ū ∶= 1
∣Rk ∣
´
Rk
udx. We

also used the estimate

∥u − ū∥L2(Rk) =
⎛
⎝

ˆ
Rk

∣u − 1

∣Rk∣

ˆ
Rk

udy∣
2

dx
⎞
⎠

1
2

≤ C∥u∥L2(Rk) +C
⎛
⎝

ˆ
Rk

∣ 1

∣Rk∣

ˆ
Rk

udy∣
2⎞
⎠

1
2

≤ C∥u∥L2(Rk) +C (
ˆ
Rk

dx
1

∣Rk∣

ˆ
Rk

∣u∣2dy)
1
2

= C∥u∥L2(Rk),

which follows from Jensen’s inequality. Note that C does not depend on dk. Another
remark on (1.8) is concerning the use of the Poincare inequality for balls: By Theorem
1 in section 5.4 in [Eva10] there is a continuous linear extension operator E∶H1(Rk) →
H1 (B22k(0)). This means we estimate as follows

∥u − ū∥L6(Rk) = ∥Eu −Eu∥L6(Rk) ≤ ∥Eu −Eu∥L6(B
22k

(0))

≤ C∥∇Eu∥L2(B
22k

(0)) ≤ C∥∇u∥L2(Rk).
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Moreover, assumptions (ii) and (iii) yield s (α + 1
2
)+(1−s) (β + 3

2
) = γ+ 3

r ≤ sα+(1−s)β+
3
r .

Hence, s2 +
3
2 −

3s
2 ≤ 3

r , which rearranged gives

1

r
≥ 1

2
− s

3
. (1.9)

Or in other words, r ≤ q. So, Hölder with exponents q
r and q

q−r leads to

∥τγu∥Lr(Rk) ≤ C ∣Rk∣
q−r
qr ∥τγu∥Lq(Rk) ≤ Cd

3( 1
r
− 1
q
)+γ

k ∥u∥Lq(Rk), (1.10)

where we used that dk is comparable to τ on Rk. Indeed, dk = 2 ⋅ 2k, hence

τ =
√

1 + ∣x∣2 ≥ ∣x∣ ≥ 2k−1 = 1

4
dk.

On the other hand,

τ =
√

1 + ∣x∣2 ≤
√

1 + 22k ≤
√

2 ⋅ 22k =
√

22k =
√

2dk.

Thus, we can combine the non-weighted interpolation estimate (1.8) with the Hölder esti-
mate (1.10) to obtain

∥τγu∥Lr(Rk) ≤ Cd
3( 1
r
− 1
q
)+γ

k (∥∇u∥sL2(Rk)∥u∥
1−s
L2(Rk) +

1

dsk
∥u∥L2(Rk))

≤ C∥τα∣∇u∣∥sL2(Rk)∥τ
βu∥1−sL2(Rk) +C∥τ δu∥L2(Rk), (1.11)

where we used the definition δ ∶= γ + 3
r −

3
2 = γ +

3
r +

3
q − s and the identity

3

r
− 3

q
+ γ = s(α + 1

2
) + (1 − s) (β + 3

2
) − 3

q
= sα + (1 − s)β + s

2
+ (1 − s)3

2
− 3

q

= sα + (1 − s)β,
which follows from (ii).
We now take the sum of the inequalities (1.11) over k to obtain the inequality on the whole
R3. Note that then the left hand side is estimated by a

1
r + b 1

r ≤ 21−
1
r (a+ b) 1

r for a, b ≥ 0 by
concavity, and by using that Rk ∩Rj = ∅ for k ≠ j the sum over the integrals is simply the
integral over R3. On the right hand side we use Minkowski’s inequality on the summands
with τ δu and for the others we estimate using concavity of the square root and Hölder
with exponents 1

s and 1
1−s in the sum over k to get

∞
∑
k=0

(
ˆ
Rk

τ2α∣∇u∣2dx)
s
2

(
ˆ
Rk

τ2β ∣u∣2dx)
1−s
2

≤
√

2
⎛
⎝
∞
∑
k=0

(
ˆ
Rk

τ2α∣∇u∣2dx)
s

⋅ (
ˆ
Rk

τ2β ∣u∣2dx)
1−s⎞

⎠

1
2

≤
√

2
⎛
⎝
(
∞
∑
k=0

ˆ
Rk

τ2α∣∇u∣2dx)
s

⋅ (
∞
∑
k=0

ˆ
Rk

τ2β ∣u∣2dx)
1−s⎞

⎠

1
2

=
√

2AsB1−s.

We conclude the proof by applying the case r = 2 to the term C∥τ δu∥L2(R3) on the right
hand side with δ playing the role of γ, which is valid since δ = γ + 3

r −
3
2 > −

3
2 by (i). This

means, we can estimate

∥τ δu∥L2(R3) ≤ CAsB1−s,

which finishes the proof also for the case r > 2. �
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Let us now prove a lemma concerning weighted-norm bounds of the singular integral
operator (−∆)−1 div div, i.e. for later use we want to relate weighted norms of the pressure
and the velocity field of a suitable weak solution.

Lemma 1.11. If p ∈ L3(R3) is the solution of the differential equation

−∆p = div div(u⊗ u) (1.12)

on R3 for a function u ∈ H1(R3). Then for r, γ satisfying 1 < r < ∞ and −3
r < γ < 3 − 3

r
there exists a constant C such that for all ε ≥ 0 holds

∥(ε + ∣x∣2)
γ
2 p∥

Lr(R3)
≤ C ∥(ε + ∣x∣2)

γ
4 u∥

2

L2r(R3)
. (1.13)

Proof. Without loss of generality assume the right hand side of (1.13) is finite, else
the statement is trivial.
Define the operator Tijf ∶= c∂i∂j ( 1

x
)⋆f for f ∈ C∞

0 (R3). By Theorem B.6 in [RRS16] this
extends to a linear bounded operator from L3(R3) to itself. Note that uiuj ≤ ∣u∣2 ∈ L3(R3)
for all i, j, since u ∈ H1. Thus, for all i, j choose a sequence of testfunctions ϕijn

L3

→ uiuj .
Moreover, define

p ∶= −∣u∣2 +∑
i≠j
Tij(uiuj).

By the above we know p ∈ L3(R3). This is also the unique solution to (1.12) in L3. Indeed,
let p̃ ∈ L3 be another distributional solution. We check that p is a distributional solution.
For that let ψ ∈ C∞

c (R3) and observe

⟨−∆p,ψ⟩ = ∑
i

⟨−uiui,−∂i∂iψ⟩ +∑
i≠j

⟨Tij(uiuj),−∆ψ⟩

←∑
i

⟨uiui, ∂i∂iψ⟩ +∑
i≠j

⟨Tij(ϕijn ),−∆ψ⟩

= ∑
i

⟨∂i∂iuiui, ψ⟩ +∑
i≠j

⟨ϕijn , ∂i∂j(−∆)−1(−∆)ψ⟩

→∑
i

⟨∂i∂iuiui, ψ⟩ +∑
i≠j

⟨uiuj , ∂i∂jψ⟩

= ∑
i

⟨∂i∂iuiui, ψ⟩ +∑
i≠j

⟨∂i∂j(uiuj), ψ⟩

= ⟨div div(u⊗ u), ψ⟩.

Therefore, ∆(p − p̃) = 0 and p − p̃ ∈ L3, hence in particular p − p̃ ∈ L1
loc(R3). By Weyl’s

Lemma (cf. Theorem C.3 in [RRS16]) we obtain that p− p̃ is smooth. But since p− p̃ also
lies in L3 we get by the mean value property for all x ∈ R3 using Hölder

∣(p − p̃)(x)∣ ≤ C

r3

ˆ
Br(x)

∣p − p̃∣dx ≤ C

r3−
3
2

∥p − p̃∥L3(R3)
r→∞→ 0.

Thus, p defined above is the unique solution in L3.
We show that for i ≠ j holds

∥(1 + ∣x∣2)
γ
2 Tij(f)∥Lr(R3) ≤ C∥(1 + ∣x∣2)

γ
2 f∥Lr(R3) (1.14)
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for all f such that the right hand side is finite. This then proves the lemma, since by
scaling we infer for ε > 0

(
ˆ
R3

(ε + ∣x∣2)
rγ
2 (Tijf)r(x)dx)

1
r

= ε
γ
2

⎛
⎜
⎝

ˆ
R3

⎛
⎝

1 + ( ∣x∣√
ε
)
2⎞
⎠

rγ
2

(Tijf)r(x)dx
⎞
⎟
⎠

1
r

= ε
γ
2
+ 3

2r (
ˆ
R3

(1 + ∣y∣2)
rγ
2 (Tijf)r(

√
εy)dy)

1
r

= ε
γ
2
+ 3

2r (
ˆ
R3

(1 + ∣y∣2)
rγ
2 (Tij(f(

√
ε⋅))(y))rdy)

1
r

≤ Cε
γ
2
+ 3

2r (
ˆ
R3

(1 + ∣y∣2)
rγ
2 f r(

√
εy)dy)

1
r

= Cε
γ
2

⎛
⎜
⎝

ˆ
R3

⎛
⎝

1 + ( ∣x∣√
ε
)
2⎞
⎠

rγ
2

f r(x)dx
⎞
⎟
⎠

1
r

= C (
ˆ
R3

(ε + ∣x∣2)
rγ
2 f r(x)dx)

1
r

.

In the above we used

(Tijf)(
√
εy) = p.v.

ˆ
R3

C (∂i∂j
1

∣ ⋅ ∣) (x −
√
εy)f(x)dx

= p.v.

ˆ
R3

C
(√εyi − xi)(

√
εyj − xj)

∣√εy − x∣5 f(x)dx

= p.v.Cε−
3
2

ˆ
R3

(yi − xi√
ε
) (yj − xj√

ε
)

∣y − x√
ε
∣
5

f(x)dx

= p.v.Cε−
3
2
+ 3

2

ˆ
R3

(yi − zi)(yj − zj)
∣y − z∣5 f(

√
εz)dz

= T (f(
√
ε⋅))(y)

Note that the case ε = 0, i.e.

∥∣x∣γTij(f)∥Lr(R3) ≤ C ∥∣x∣γf∥Lr(R3) ,

is proven in [Ste57], where the bounds on γ stated in the lemma are exactly chosen to fit
into Stein’s theorem. Indeed, using ∂i∂j ( 1

∣x∣) = 3
xixj
∣x∣5 the function H(x,x−y) appearing in

Stein’s theorem, which is defined by

(∂i∂j
1

∣ ⋅ ∣) (x − y) =∶ 1

∣x − y∣3 ⋅H(x,x − y),

satisfies the bound

∣H(x,x − y)∣ = 3
∣xi − yi∣∣xj − yj ∣

∣x − y∣2 ≤ 3.
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Thus, all requirements for Stein’s theorem are satisfied.
So, assume (1.14) holds, then for ε ≥ 0 we get

∥(ε + ∣x∣2)
γ
2 p∥

Lr(R3)
=
XXXXXXXXXXX
(ε + ∣x∣2)

γ
2
⎛
⎝
−∣u∣2 +∑

i≠j
Tij(uiuj)

⎞
⎠

XXXXXXXXXXXLr(R3)

≤ ∥(ε + ∣x∣2)
γ
2 u∥

2

L2r(R3)
+∑
i≠j
C ∥(ε + ∣x∣2)

γ
2 uiuj∥

Lr

≤ ∥(ε + ∣x∣2)
γ
2 u∥

2

L2r(R3)
+∑
i≠j
C ∥(ε + ∣x∣2)

γ
2 u∥

2

L2r

≤ ∥(ε + ∣x∣2)
γ
2 u∥

2

L2r(R3)
.

Hence, it is left to prove (1.14). The case γ = 0 corresponds to the classical Calderon-
Zygmund estimate

∥Tij(f)∥Lr ≤ C∥f∥Lr .

Now decompose f into f = f1 + f2, where f1 = χ∣x∣≤1 and f2 = χ∣x∣>1. Note that (1+ ∣x∣2)
γ
2 ≤

1 ≤ 2
γ
2 (1 + ∣x∣γ) for γ ≤ 0 and else for ∣x∣ ≤ 1 holds

(1 + ∣x∣2)
γ
2 ≤ 2

γ
2 ≤ 2

γ
2 (1 + ∣x∣γ),

whereas for ∣x∣ > 1 holds

(1 + ∣x∣2)
γ
2 ≤ 2

γ
2 ∣x∣γ ≤ 2

γ
2 (1 + ∣x∣γ).

Now using the estimates for γ = 0 and ε = 0 proven before we obtain for positive γ

∥(1 + ∣x∣2)
γ
2 Tijf∥

r

Lr
≤∥(1 + ∣x∣2)

γ
2 Tijf1∥

r

Lr
+ ∥(1 + ∣x∣2)

γ
2 Tijf2∥

r

Lr

≤C ∥Tijf1∥rLr +C ∥∣x∣γTijf1∥rLr +C ∥Tijf2∥rLr +C ∥∣x∣γTijf2∥rLr
≤C ∥f1∥rLr +C ∥∣x∣γf1∥rLr +C ∥f2∥rLr +C ∥∣x∣γf2∥rLr

≤C ∥(1 + ∣x∣2)
γ
2 f1∥

r

Lr
+C ∥(1 + ∣x∣2)

γ
2 f1∥

r

Lr

+C ∥(1 + ∣x∣2)
γ
2 f2∥

r

Lr
+C ∥(1 + ∣x∣2)

γ
2 f2∥

r

Lr

=C ∥(1 + ∣x∣2)
γ
2 f∥

r

Lr
.

For γ ≤ 0 we estimate

∥(1 + ∣x∣2)
γ
2 Tijf∥

r

Lr
≤∥(1 + ∣x∣2)

γ
2 Tijf1∥

r

Lr
+ ∥(1 + ∣x∣2)

γ
2 Tijf2∥

r

Lr

≤∥Tijf1∥rLr + ∥∣x∣γTijf2∥rLr

≤C ∥2

2
⋅ f1∥

r

Lr
+C ∥ 2

2∣x∣−γ f2∥
r

Lr

≤C ∥2(1 + ∣x∣2)
γ
2 f1∥

r

Lr
+C ∥2(1 + ∣x∣2)

γ
2 f2∥

r

Lr

=C ∥(1 + ∣x∣2)
γ
2 f∥

r

Lr
.

This completes the proof of the lemma. �
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