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Preface

These are lecture notes for the advanced master’s course on the 3D incompressible
Navier-Stokes equations at Universitdt Ulm in winter term 2018/19. Except for the first
and the last chapter, the notes follow the excellent recent textbook [4]. Students are
encouraged to consult further literature, such as the classical books [1,3,5].

Except for the very end of the course, I chose to work exclusively on the three-
dimensional torus such as to simplify the presentation. However all mentioned results
from the first four chapters have a straightforward extension to the whole space R?, or
to (sufficiently regular) bounded domains, which certainly represent the physically most
relevant case.

I would like to thank Dr. Jack Skipper for typing considerable parts of these notes.

Corrections and suggestions should be sent to emil.wiedemann@uni-ulm.de.
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CHAPTER 1

Introduction

The Navier-Stokes equations are
Oru(z,t) + (u-V)u(z,t) + Vp(x,t) = vAu(x,t)
divu(x,t) =0.

Here, (z,t) € Q x [0,T], where Q c R? some domain, and we have the unknown velocity
field

w Qx[0,T] - R%
the unknown pressure field

p: Qx[0,T] > R;
and the given constant viscosity v > 0. It can be written in components, for i =1,...,d:

d d
Otul- + Z uj(?jul- + 8ip =V Z Q%Jul

j=1 7=1

d
Z 8jUj =0.
7=1

The Navier-Stokes Equations (NSE) describe the time evolution of the velocity and
pressure of a viscous incompressible fluid (e.g. water) without external forces.

1.1. Physical Derivation (Sketch)

Conservation of mass: At every time a volume element Q cc Q should conserve the
mass of fluid (incompressibility). This means that inflow and outflow of u into € have to
balance:

/~ w(a,t) - n(z) dS(x) = 0,
[s]9)

where n(z) is the outer unit normal of the surface dQ at the point z. For regular enough
boundary 02 and u by the Gauss-Green theorem, the surface integral is equal to

/ divu(z,t) dz,
Q

and since this should equal zero for every Q, we conclude divu =0 everywhere in ).
Conservation of momentum/Newton’s 2°¢ law: Consider a fluid particle initially lo-
cated at x € Q and denote its location at time ¢ by X (z,t) (“Lagrangian description”).
Newton’s 2" law for this particle (point) reads “F = ma”, and by assuming constant
density (“m =1") we obtain

X(z,t) = F(X(x,t),t).
The particle trajectory map is determined by the ODE

X(z,t) =u(X(z,t),t),
X(x,0) =,
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because the particle moves according to the flow of u. Therefore, by the chain rule,
X(x,1) = (X (2,1),1) + (X (1) - V)u(X (2, 1), 1)
= atu(X7t) + (U(th) : V)U(Xat)

where the second term represents the phenomenon known as advection.

Even without external forces (like gravity), there are two kinds of “internal” forces:
The pressure: the fluid “pushes” itself due to incompressibility, and a force results called
the pressure gradient —Vp. Example: rotating fluid in a disk, where the pressure gradient
is precisely the centrifugal force so —Vp is the centripetal force, orthogonal to w.

The friction due to viscosity: In a discrete setting, the velocity differences between
neighbouring fluid particles would cause a friction force proportional to

u(z + hej, t) —u(z,t).
Summing over all “neighbours” of x, we obtain
4 u(z + hej,t) — 2u(x,t) + u(z - hej, t)

> =

J=1

where # is the appropriate scaling; indeed, then this expression is precisely the discrete
Laplacian, which converges, as h — 0, to Au(z,t).
In total, we obtain

Ou(X,t) + (u-V)u(X,t) + Vp(X,t) = vAu( X, t),
i.e. the NSE.

1.2. Elementary Mathematical Properties
The incompressible NSE
Ou(x,t) + (u-V)u(z,t) + Vp(zx,t) = vAu(z,t)
divu(x,t) =0,

have a “good part” of parabolic nature (i.e. the heat equation dyu = vAu). The “bad parts”
non-linear advection term (u-V)u and non-local terms Vp and divu. Note there is no
evolution law for the pressure.

1.2.1. Energy balance. If u is smooth we can multiply the (NSE) by u and integrate
over (space) (2 to obtain

/ﬁtu-udx+/(u-v)u-udw+/Vp-udac:u/Au-uda:. (1.1)
Q Q Q

The first term of (1.1) becomes

331 ol do = 5 b ) gy,

Further, we note, by integrating by parts, that
/ (u-V)u-ude= / Zuiujajui dz = —/ Z Ojuuju; do —/ Zuiﬁjujui dzx.
Q Qi Qij Qi

Thanks to incompressibility (divu =0 or Y, 0;u; = 0) we see that the last term vanishes,
whereas the remaining one is precisely the negative of the left hand side, hence

/Q(u-v)u-ud:r=0.
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For the term involving the pressure in (1.1) we can also integrate by parts to obtain

/Vp-udxz—/pdivudxz()
Q Q

again by incompressibility. For the last term on the RHS of (1.1) we integrate by parts
and see that

V/Au-udx=—1// |Vul? dz.
Q Q

In total, after also integrating in time, we obtain

1 ¢ 1
—/ lu(z, t)|? dz + I// / |Vu(z,s)* dz ds = —/ lu(z,0)* dz.
2/ 0 Ja 2 /o

This suggests that v € LZHL(Q) n L°L2(R) is a suitable function space for NSE (the
so-called energy space).

1.2.2. Elimination of pressure. Note that, by virtue of incompressibility (divu =
0), the nonlinearity can be written in divergence form (using Einstein’s summation con-
vention):

[(u . V)U]Z = ujajui = 8](ujuz) = (diVU@U)Z‘,

were we wrote (u® u);; = u;u; and the divergence of a matrix field is taken row-wise: Let
A:Q % [0,T] - R™? then div A is a vector field given by (div A); = Y 0jAij.
Hence the NSE can be written in divergence form as

Oyu +div(u @ u) + Vp =vAu,
div u =0.

Take the divergence of the NSE and we obtain
div Oy + divdiv(u @ u) + div Vp = pAdivu

and as divu = 0 both the first term and the last term vanish. Further, we note that
div Vp = Ap and so we obtain

-Ap =divdiv(u ® u),

which is a Poisson equation for the pressure. (In the case of a bounded domain this would
be supplemented by a Neumann boundary condition.)

If u € L? then this can be solved by some distribution p, and we can write this (sym-
bolically) as

p=-A""divdiv(u®u)
and hence
du +div(u®u) - A~ divdiv(u ® u) = vAu.
The operator A™! is given as a singular integral operator: E.g. in R? we have

) 4

Alf=C .
Rr3 |7 -y

This is a non-local operator: Even if f is compactly supported, A™' f will, in general, not
be. For the NSE this means that fluid particles may interact, through the pressure, even
when they are far away from each other.
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Existence of weak solutions | Uniqueness | Regularity

Yes Yes Yes

d=2
d=3]| Yes (We will show) Unknown /no | Unknown (Millennium Problem!)

TABLE 1. State of the Art for incompressible NSE

1.3. Related Models
1.3.1. Ideal fluids, Euler. We can set v = 0 and thus model “Ideal fluids” without
friction. This gives the Euler equations
Oru+diviu®@u)+vp=0
divu = 0.
Here without the parabolic term from the Laplacian, the mathematical theory is very

different.

1.3.2. Compressible fluids. We can study compressible fluids (like air) where we
have an extra non-negative scalar field p modelling the density:

O (pu) + div(pu ® u) + Vp(p) = divS(Vu)
Op + div(pu) =0,
the (isentropic) compressible Navier-Stokes equations. Here, S denotes the Newtonian

stress tensor, and the pressure is now a constitutively given function of the density (e.g.
the polytropic pressure law p(p) = p”, v > 1 the adiabatic exponent).

1.3.3. Non-Newtonian fluids. To study non-Newtonian fluids (like blood), we re-
place the Au with divS(Vu), where S is non-linear, e.g. the p-Laplacian:

S(Vu) = |[Vulf?vu
and we recover the standard NSE for p = 2. (To be precise, one usually uses only the
symmetric part of Vu.)

The NSE are widely used by physicists, engineers, geo-scientists etc. for atmospheric
and ocean dynamics, weather forecasting, turbulence theory, etc.
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Function Spaces and Weak Solutions

We choose as a domain the three dimensional torus T3 = R3/27Z3; it has the advantages
of being compact and having no physical boundaries at the same time. In other words, we
look for space periodic solutions:

u(z + 2rk,t) = u(x,t) VkeZ3

The analysis of functions on T? is simplified by the Fourier series: For u € L'(T?), meaning

27 p2m p2m
/ |u(z)| dz = / / / |u(x1,z2,23)| dxy dzg dog < oo,
T3 o Jo Jo

we can define the Fourier coefficients

N 1 —ik-x 3
U = —= e u(z)dzx e Cp, keZ°.
o= g [ @) dae
If ¥ 1ez3 [uk| < o0, then the Fourier inversion formula says that
u(z) =Yy, Gpe®.

keZ3

We only work with real-valued functions u, which implies that dy, = G_y, for k € Z3.
By Plancherel’s Theorem, for u € L?(T?) we have that

/ (@) do = (21)* T Jiul?,
T3 keZ3

and in particular v € L? if and only if @ € I, i.e.

Z |ﬂk|2 < 00.

keZ3

2.1. Fourier Characterisation of Sobolev Spaces

Let s € N, then one usually defines, with the multi-index « € Ng, the Sobolev norm

2 2 2 3 2 Ao 2
lllzrs (rsy = Nulza sy + 20 10%ull2(gs) = (27) [Z farl”+ > D 107wl |,
lo<s keZ3 || s keZ3
where we used Plancherel’s Theorem in the last equality. Note that the derivatives are
taken in the weak (distributional) sense.
Further, we can integrate by parts to see that

1 ik . 1 ik A
djuy = @) /T?)e Fou(x) da = lkjW/]T?’e Mou(z) do = ik;y,
and hence
0% ur ] = kP
and thus

lulfre ey = (2m)° 3 3 JalP [k

keZ3 |al<s
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It turns out (exercise!) that this is equivalent to the norm
2 3 25\ |2
e oy = (2m)° 32 (1 + [kI™*) ]
kez3
Note that this is even well-defined when s ¢ N!
DEFINITION 2.1. Let s >0, then H*(T?) contains all functions u € L*(T?) such that
luls = (2m)% 3 (1 + 1K) gl < co.
keZ3
When s € N, this definition coincides with the definition by weak derivatives. It will be

useful to consider homogeneous Sobolev spaces, where the zero-th Fourier mode is zero.

DEFINITION 2.2. (1) The homogeneous space L?(T?) consists of all u ¢ L?(T?)
such that

/’ u(z)dx =0 (i.e. 19 =0).
T3

(2) The homogeneous Sobolev space H*(T?) is defined as H*(T%) n L?(T?), with the
norm

lul. = 2r)° 0 [kl
keZ3~{0}

(3) For s <0, we define H~(T?) as the dual space of H*(T?).

An element v € H=*(T?) can be represented as
v(z)= ) Dpet?
keZ3~{0}
with
2 ~2515 |2
[0l rsy = 3 [R5l f? < oo
k+0

Indeed, as the dual pairing is given by

(v,u) = Y Opig = . Ogtig,
k+0 k+0
using Cauchy-Schwarz we obtain

R 1/2 1/2
~ ~ v ~ S =28\ S|
ol < 3l = 3 28w s(zw 2 |vk|2) (ZW |uk|2) < oo,

k=0 k0 |k7|S k+0 k+0

2.2. Helmholtz Decomposition

Consider now vector-valued maps u € L2(T3;R3), i.e. u = (u1,up, us) with uy,us, uz €
L%(T3;R). Recall the incompressibility (divergence-free) condition divu = 0, which in
terms of Fourier coeflicients reads

J=1 J

3 3
0=divuy =Y Ojuj =i k;j(t;)x =ik - Q.
-1
(Note that now 7y, € C3.) This motivates the following definition of “solenoidal” (i.e.
divergence free or incompressible) vector fields.
DEFINITION 2.3. We define the space H = H(T?) as
{ue L*(T*R?): k-up=0 Vk=0}.

Note that H may contain vector fields that are not in H' and hence div is not well
defined simply by taking derivatives. H is equipped with the L? norm.
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LEMMA 2.4. Every ue H(T?) is weakly divergence free in the sense that
/ u(x) - Vo(x) dz =0
T3

for all ¢ € H(T?).
ProOF. We can write u as a Fourier series as u(z) = ¥ ;.0 ﬁjeij"”, then using orthogo-
nality in the form [ e e kT g = djk, we obtain
/ u(z)-v(e ) de= [ Y ;e (-ik)e " da = / ik - @y, dz =0
T3 T3 j20 T3
since u € H(T?). Further, since {e_ik'z}kezs\{o} form an orthonormal basis (ONB) of
H'(T%), the computation extends to any ¢ € H'(T?). O
DEFINITION 2.5. The space G = G(T?) is defined as
G= {g e L*(T3R3?): g=vV¢ forsome ¢e Hl(T?’)}.
Hence Lemma 2.4 says that G and H are orthogonal subspaces of L.
THEOREM 2.6 (Helmholtz decomposition). L? = G®H, i.e. for all u € L>(T3;R?) there
exist unique g € G and h € H such that
u=¢g+h and /g-hdazzO.
T3

Moreover, if u e H*(T?) then g = V¢ for ¢ e H*(T?) and h e H*(T?).

PrOOF. We can write u as a Fourier series and see that (i )ezs € >. We can then
write each 4 as a linear combination of k and a vector wy perpendicular to k. Thus for
all k#0, let 4 = apk +wg with k-wg =0 and o € C. Note that by orthogonality

Jtu|* = |ow I + wil® (2.1)
and hence
u(x) = Z ﬂkeik'm = Z(akk+wk)eik'm = Z —iakVeik'm+ Z wkei’” = Vo(x)+h(x),
k+0 k=0 k=0 k%0
where
o(z) =) —iae®®  and  h(z) = > wye.
k=0 k+0
Note that
I6l%: = - larlPlkP and A2 = Y wil?
k+0 k+0
and so, as
3 JaPE1 + [wil? = Y ] < oo,
k=0 k+0

hence ¢ € H' and h e L? and thus g€ G and h e H.

Further, suppose that v € H*(T?) and multiply (2.1) by |k|** to conclude that ¢ € H**!
and h e H*.

Finally, we must show uniqueness. Suppose that u = hy+ V1 = ha+ Voo for hy,ho e H
and V¢1,Vea € G, then

(hl - hg) + V(Qf)l - ¢2) =0 implies that ||h1 - h2 + qul - V¢2”2 =0
and then we can apply Lemma 2.4 to see that
lhy = ha|® + [V 1 - Vo * = 0
and so h1 = hy and V¢1 = V. O
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DEFINITION 2.7. The orthogonal projection from L?(T?) onto H is called the Leray
projection: If w=h+ g with h € H and g € G, then Pu = h.

In Fourier series (exercise!)

Pu(z) =), (’&k G kk) elhe,

k20 |k[?

Note that the following useful lemma only holds true when the spatial domain has no
physical boundaries.

LEMMA 2.8. P commutes with derivatives, i.e. PO, = 0,,P.

Proor. In Fourier series we see that

o D,k apk, . -k —
Pﬁ]uk = ajuk — jlkT2 k} = lkJUk — lk]Wk = lkj (Uk; — W’f = (%Puk
and so we are done. O

2.3. The Stokes Operator

DEFINITION 2.9. The space V = V(T%) is given by V = H n H'(T%;R?), with the H'-
norm.

That is, V consists of weakly divergence-free vector fields with “extra regularity” H?.

DEFINITION 2.10 (Stokes operator). The Stokes operator is defined as —-PA, in the
domain V n H?(T3;R3).

We notice that from Lemma 2.8 that if u e V n H?, then
-PAu=-APu=-Au

since u € H. Hence the Stokes operator is simply —A. However, on bounded domains this
is no longer true in general — we cannot necessarily commute derivatives with the Leray
projector. (On a bounded domain one includes information on the boundary condition in
the definition of the space H; this amounts to a weak formulation of the slip condition
u-n=0 on Jf.)

THEOREM 2.11. There exists a family {wy }ren of smooth vector fields on T3 such that

(1) {wy} is an orthonormal basis of H,
(2) wy are eigenfunctions of the Stokes operator with eigenvalues 0 < A\p < Ay < -+ <
/\j S oo,
(3) {wy} form an orthogonal basis of V.
PROOF. For each k € Z® \ {0} choose vectors my, m_y € R® such that
e mp Lk m_p Lk, mplm_g,
o [[mgcos(k - z)|L2(rsy = [mysin(k - z) | L2(rsy = 1,
L4 m(_k) =m—g.
Then {my cos(k-x)} u{mysin(k-z)} c H: Indeed,
my cos(k - x) da =0, mysin(k - z) dz =0,
T3 T3
and k- my cos(k-x),k-mygsin(k-x) = 0 by choice of my. Hence, we have an orthonormal

family in H whose members are also in the domain of the Stokes operator (because they
are smooth). Moreover,

—Amy cos(k-x) = —my 28]2 cos(k - ) = +my|k|* cos(k - z) = |k|*my, cos(k - x),
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so we can define |k|? := \;, and similar for sin(k- ), whence (2) is proved after re-labelling
indices from Z3 \ {0} to N. To show that these functions form a Hilbert basis of H, let
u e H and write

) 1 ) 1 )
u(z) = Z e = 2 Z e + 5 Z e ke

k+0 k+0 k+0
1 1

= = Y (tg +tg) cos(k-x) + = > i(ag — ) sin(k - ),
2 k#0 2 k#0

and we see that both (a + @i_) and i(dy, —4_;) are in R® and perpendicular to k. This
becomes, for some ag, b, ¢, di, ak, B € R,

> (apmy + bpm_g) cos(k - z) + Y (cpmy + dim_g) sin(k - )

k+0 k+0
= Y (agmy + bogmy) cos(k - x) + Y (cpmy — d_gmy) sin(k - )
k+0 k+0
= Z agmy cos(k-x) + Z Bemysin(k - z).
k+0 k%0

Finally, show orthogonality in V: Indeed, if wg,w; are two of the given eigenfunctions of
the Stokes operator with eigenvectors \g, \; (k #1), then using integration by parts,

(Vwg, Vwy) = (wg, =Awy) = N (wg, wr) =0
by orthogonality in H. O
REMARK 2.12. The H'-norm of wy, is v Ag, because

bnly = [ el o= [ v de=- [ wdugdo
T T T

“ e [ honl? do = Ml = M
T

We have now defined enough machinery so that we can consider weak solutions to the
NSE.

2.4. Weak Solutions
Suppose that (u,p) is a smooth solution of the NSE. Then
Ou+ (u-V)u-vAu=-VpeG.

The requirement of v € G is equivalent, by the Helmholtz decomposition, to

/ v-¢pdr=0
T3

for all ¢ € H. It will be convenient to choose ¢ from the smooth class of functions
Dyi={pe C2(T? x [0,00)): dive(t) =0 Vt20}.
Note that we do not restrict ¢ to be zero at t =0. So if ¢ € D,, then the NSE imply

/ 8tu-¢da:dt+/ /(u-V)u-quxdt—l// Au-¢dxdt=0
0 T3 0 T3 0 T3

where the term involving the pressure has been “projected away” by the choice of test
function. Integration by parts in the 0; and the A terms gives

—/Ooo/TSu-@tgi)dxdt+/ooo/TS(u-V)u-qz5dxdt

+1//0°o/T3Vu:Vgﬁd:z:dt:/Tzin-(Z)(O) dz. (2.2)
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On the other hand, we have already derived the energy equality:

/|u z,t)[% dx+y/ /|Vu(a: s> dzds = = /|u0| dz,

which suggests that u € L2(0, 00; V) nL>(0, 0o; H) is the appropriate function space. Note
that for ¢ € D, and ue LH n L2V (2.2) is well-defined. Thus, we have the following:

DEFINITION 2.13 (Weak Leary-Hopf solution of the NSE). A vector field u € L*(0, 00; H)N
L?(0,00; V) is called a weak (Leray-Hopf) solution of the NSE if (2.2) holds for all ¢ € D,,.

It will be convenient to check that this definition can actually be tested on a smaller
class of test functions than D,. Therefore, set

:{¢:’;dk(t)wk(x): dkecgo([ovoo))}7

where {wy} is the eigenbasis of the Stokes operator from Theorem 2.11. Clearly we have
that D, c D,,.

LEMMA 2.14. If u € L=(0,00; H) n L?(0,00; V) satisfies (2.2) for all ¢ € Dy, then it
even satisfies (2.2) for all ¢ € Dy, i.e. it is a weak solution.

PROOF. Let ¢ € Dy, then for every t >0, ¢(t) € H, and we can write

(.t = 3 di(t)uwy(z)

k=1
since {wy} form a Hilbert basis of H. Set

de wk(x ED
Then ¢y = ¢ in C’([O7 00); V). Indeed,

suplo(0) - on (O} =su | 3 de@yueO =sup 3 M (0),

k=N+1 t k=N+1

as {wy} are orthogonal in V' and ||wg|y = VA (from remark after Theorem 2.11). This
then becomes, as A\ increases to oo,

x A2d2(t
sup Y. kk()< 1sup Z A2d2(t)
U op=N+1 Ak ANt kN1
1 [e =]
= 5 sup Y. (FAwg(z)di(t), -Awy(x)di(t)) 2
N t k=N+1

by orthogonality. We then see that we can bound this above by

1 1
— sup||-A <— ¢ 5 =0
oy Sup | = Agl 213y P &) | 7272

as N — oo, since supy [|¢(t)] g2(r3y is independent of N.
Furthermore, ;¢ — 9;¢ in L?(0,T; L?(T?)) because

/O 1046 - e |2 s i = / S d()wea) ||L2(T3)dt

k=N+1

Z 2dt -0
0 k=N+1

as N — oo, where the latter convergence follows from

Orp € C*(T? x [0, 00)) € C([0,00); H)
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and hence
- 2 2
SUp Y (di(1))* = sup 1017 2 pay < 00
k=1

It follows that

/ /8t¢N-udxdt—>/ /atqb-udxdt,

0 0

/ /VQSNIVdedt—)/ /qu:Vudmdt,
0 0

/Ooo/¢N(0)'UO(£L’)Vu dz dt—»/ooo/gz)(o).uo(m) de dt.

For the remaining term [ [(u-Vu)-¢y dz dt, we will use the Sobolev embedding H'(T?) <
L5(T3), so it follows that

Sup lén =@l Le(rsy < CSI;D lén = dllv =0
as N — oo. Thus, by Holders’s inequality,
|| [ v @v-o)avad< [ [llvaloy - ol do s

<l I9ul 2 3l - Sl s — 0

as N — oo. (We note that using again the same embedding theorem we have |u| 1213 <
C||u||L§L2 < C”“”LEH; and so ||u||L§L§ < 00.) So if we consider the equation for a weak
solution to the NSE (2.2) with ¢ used as a test function, then we see that every term
will converge to the corresponding one with ¢ € D, and so (2.2) follows for ¢ € D,. O

For later reference, we prove another lemma which allows us to test a weak solution
with functions of the form x4, +,1¢ for ¢ € D,, for almost every ¢; < t2, where x denotes the
indicator function of a set. This is a consequence of the Lebesgue differentiation theorem,
which we recall without proof:

THEOREM 2.15 (Lebesgue differentiation theorem). Let 2 ¢ R"™ be measurable and

feLi (), then for almost every x € Q we have
1

lim ———— - dy = 0.
S ATERES] BE(I)If(y) f(@)| dy

A point x for which the statement of the differentiation theorem is true is called a
Lebesque point of f; the theorem thus says that, given a locally integrable function on a
domain, almost every point in that domain is a Lebesgue point.

LEMMA 2.16. Let u be a weak (Leray-Hopf) solution of NSE. Then

to )
—/ / u-8t¢dxdt+/ /(u-V)u-qﬁd:}:dt
t1 T3 t1 T3

to
+ 1// / Vu:Ve¢de dt = / u(t1) - ¢(t1) da —/ u(te) - p(t2) dz  (2.3)
ty JT3 T3 T3
for every ¢ € Dy and almost all 0 <ty < ty, including t1 = 0.

REMARK 2.17. Later we will see that this is even true for all (and not just almost all)
times.

PrROOF. We prove only the case t; = 0 in detail. So let ¢t > 0 and consider a smooth
(cut-off) function ¢ : R - R such that

¢ (20,
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o ((t)=1fort<-1and ((t)=0fort>1,
e ( is monotone decreasing.

Then, for every € > 0, set

Gm=¢(=2).

Thus, (. (restricted to ¢ > 0) is a smooth approximation of the indicator function x[g.,1-
If ¢ € D,, then the product (¢ is still in D,, so using it as a test function in the weak
formulation of NSE gives

—/OOO/TBu-({)t(Cecb) dxdt+/ooo/w(u.v)u.(<€¢) de dt
e [ [ ooy arar= [ o0 a

(for the term involving u°, note that ((0) = 1 for sufficiently small €¢). The two integrals
including space derivatives are easily seen to converge as € - 0: Indeed, (. converges almost
everywhere to x[o,], and the integrand (u-V)u-((c$) is bounded pointwise by |(u-V)ul|¢],
uniformly in €, which is of course integrable. Hence, by the dominated convergence theorem,

/0‘” /Ts(u-v)u-(Ceqb) de dt - /Ooo /TS(“'V)“'(X[O,tg]¢) Ao dt = /OtQ /Ts(u-V)u-qb d de

as € = 0, and likewise

/OOO/TBVU:V(CEQS)d:cdt—>/0t2/£r3vu:v¢dxdt

(of course the space derivative does not hit (., which depends only on time).
The first integral, which contains the time derivative, is a bit more delicate. We
compute

/ooo/ﬂ*su.at(CGQb)dxdt:/OOO/EBu'gelqbdmdt-i_/ooo/Egu'geat¢d$dt,

and the latter integral is seen, as before, to converge to

to
/ / - Oy dax dt.
0o JT3

For the integral involving (!, observe that by definition,

G =¢'(=2).

€

which also implies, by the fundamental theorem of calculus, that f0°° ¢(t) dt = -1 for every
€ > 0. Note also that ¢/ is supported in B.(t2). Therefore,

/Ooo/Tgu-Ce'qbdxdt+/T3u(t2).qg(tz)dx
s/t:ileé(tﬂ /1r3“(t)'¢(t)‘“(t2)'¢(t2)da;| gt

1 to+e
Slclers [ ][ u(t)- 0t ~utta) - oe2) s
€ to—e€ T3
as € > 0, provided ts is a Lebesgue point of the map
to / u(t) - 6(t) da.
T3

Since, by Lebesgue’s theorem, this is the case for almost every t2 > 0, by collecting all
terms we finally arrive at (2.3) in the case t; = 0.

dt -0
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In the general case, we would use the test function ((t)&(t)¢(x,t), where (. is as
before and

&0=¢(").

The passage to the limit ¢ = 0 can then be achieved in exactly the same way as above. [




CHAPTER 3

Existence of Weak Solutions

3.1. Galerkin Approximation

3.1.1. A toy example: the heat equation. To illustrate the Galerkin method in
the simplest possible setting, let us consider the Cauchy problem for the heat equation on
the torus:

du=Au on T,

u(t =0) = u®. (3.1)

Let {wg}reny be an eigenbasis of —A and “project” the problem to the finite dimensional
subspace Py H :=span{wy,...,wy}: If u(t) is in this space for every ¢, then so is dyu(t),
and thanks to the eigenfunction property also —Au(t) € PyH. Therefore, the projected
version of the heat equation simply reads

3
Owuy =Auy on T°,

un(t=0) = Pyu’. (3.2)

This equation is known as the Galerkin heat equation of order N, and we want to solve
it in PyH. To this end, take the ansatz uy(x,t) = L, d¥ (t)w;(x), insert it into (3.2),
multiply by wy (k=1,...N), and integrate in space:
(d)' () + Adiy (£) = 0
d{cv(o) = (uovwk)L27
where we used orthonormality and the eigenfunction property of the w;. This is a system
(actually a decoupled one in this simple case) of linear ordinary differential equations,
which has a global smooth solution by standard ODE theory.
We wish to let N — oo and hope to obtain a solution to the original problem in the

limit. To this end, observe that multiplication of (3.2) with its solution uy and integration
in space yields (in analogy to NSE) the energy equality

1 t
—/ lun (, t)[? dx+/ / |Vuy (2, s)]* de ds
2 ’]1‘3 0 ']1‘3
1 0 1 0
== |Pyvu’ ()| dz < = |u” (z)| dz,
2 Jrs 2 Jrs

and thus a uniform (in N) bound of the Galerkin sequence in L*°L? n L2H'. By the
Banach-Alaoglu Theorem we may therefore take a weakly*-convergent subsequence (not

relabelled), so that uy — u € L™ L% Hence for every ¢ € C°(T?3 x [0, 00)), we have

/ / un O do dt — / / w0 dx dt,
T3 T3
/ / unAo¢ dr dt—>/ / uA¢ dz dt,
o Jr3 o Jr3
17
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and finally
/ Pyulo(t =0)dz - [ u’p(t =0)dz,
T3 T3
because Pyu’ — u” in L?. Tt thus follows that u is a weak solution of (3.1). Note that we
did not make any use of the L2 H'-bound.

3.1.2. Galerkin for NSE. Recall the basis of eigenfunctions of —A (now viewed as
the Stokes Operator) from Theorem 2.11. Let Py H :=span{ws,...,wy} and consider the
projection operator Py:L? - PyH given by

Z“wj

using the L? inner product. Clearly, for all u € H we have Pyu — u in H, as an orthonormal
basis of H (i.e. in the L%norm). Indeed,

o0 o0
2 2 2
IPxvu=ulze =1l > (wwi)wl*= 3 (u,w;)l* =0
j=N+1 Jj=N+1

as N — oo.

DEFINITION 3.1. The N-th order Galerkin approximation of the NSE with initial data
u® € H is the solution of the equation

3tuN+PN[(uN-V)uN] =vAuy, (33)
un(0) = Pnug.

Note we have not yet proved that such uy exists! Again we have “projected away” the
pressure. Like for the heat equation, we want to take N — oo.
From the energy estimate, we expect a uniform bound of the form

t
sup/ lun (z,t)]* dz + 2V/ / |Vun(z, s)|*> dz ds < C < oo, (3.4)
t Jo 0 Jo
so by the Banach-Alaoglu Theorem we will be able to pass to weak limits:
uy ~u, Vuy —Vu

weakly in L.

So far, the general strategy seems similar as for the heat equation. However, for NSE,
there are two main issues to solve:

First, the Galerkin approximation (3.3) and thus the resulting system of ODEs now
feature a quadratic term, so that the ODE solution is prima facie only obtained up to
a possibly finite blow-up time; indeed, the simplest quadratic ODE, 4 = 22, does exhibit
finite-time blow-up. Even worse, the existence interval [0,7) might depend on N and
could therefore, in the worst case, converge to zero as N — oo, so that in the limit, we
would be left with nothing. It turns out, luckily, that such blow-up scenarios can rather
easily be ruled out by virtue of the finite dimensional energy equality (3.4).

Once we have globally existing Galerkin approximants {uy } yey Which satisfy the uni-
form bound (3.4), we need to establish that the weak limit u is a weak solution. For the
heat equation (and more generally for linear equations), this was trivial. However, for the
NSE, in the weak formulation we have the nonlinear term

/OOO/TB(UN-V)UN-Qdedt

and it is not clear whether

(un - V)uny = (u-V)u!
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For example in 1D we see that
uy(z) =sin(Nz) =0 but u%(z)=sin’(Nz) 40,

meaning that weak limits and nonlinearities do, in general, not converge. However, if
we knew uy — u strongly and Vuy — Vu weakly, then it would follow (uy - V)uy —
(u-V)u weakly. The strong convergence of ux will be obtained by means of the following
compactness result, which can be seen as a time-dependent version of the classical Rellich
compactness theorem:

LEMMA 3.2 (Aubin-Lions). Let 0 < T < oo and assume for some 1 <p,q < oo that

||uN”Lq(O,T;V) + ||3tUN||LP(0,T;v') <C,

for a constant C' + C(N). Here, V' is the dual space of V. Then there exists a subsequence
{un; }jen such that uy, - u strongly in L9(0,T; H), for some ue L1(0,T; H).

PrOOF. Consider for k € N the map t — (un(t),wg)r2. It is not difficult to see
(exercise!) that this map is weakly differentiable with weak derivative (J;un (t),wy), which
is a well-defined LP function since dyun € LYV’ and wy € V, and so (cf. exercise) s —
(un(s),wy) is (absolutely) continuous and

S

(un(8),wr) = (un(s*),wg) +/ (Orun,wy) dt

S*
for all s,s* € [0,T]. Again by continuity we may invoke the mean value theorem for

integrals to conclude there exists an s* € [0,7'] such that

1

T
(un(s*),wy) = ?/0 (un,wy) dt.

Hence,

/ (3tUN7 wk) dt|

*

sup |(un(s), we)| < [(un(s™), we)| +
0<s<T

1 T T
<7 | Nenli iy at+ [ lomlv oy d.

We can now use Hoélder’s inequality combined with the facts that [lwg|2(rsy = 1 and
|wellv = v/ Ak to obtain the bound

1, -1 _1
< le tunl zao,riamy + TP [0un | ooV Ak < Co + v/ M Co

where we have used that ||Oyun | » (0,7, ) is uniformly bounded and by Poincaré’s inequality
we have [lullg < Clully, which gives a uniform bound on |un| raco,r;m)- It follows that
Pruy := Z?zl(uN,wj)wj is in C([0,T]; H) and

k
s(up) ||PkuN(s)||H < Z(Cl + 02\/>\j) < k:(Cl + Ca9r/ )\k)
se(0,T j=1

as Aj is increasing.

Claim 1: For every k, { Pyun}neny has a subsequence converging in C'([0,T]; H). For
this, we will use the Arzela-Ascoli Theorem. As P, H is finite-dimensional, it suffices to
check that the sequence is uniformly bounded and equicontinuous. From the previous
estimate we already have uniform boundedness, so all we need to check is equicontinuity.
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Since P, H is finite-dimensional, || - |z and | - |y are equivalent in P,H, and so
to
||PkuN(t2) - PkuN(tl)HH = 8thuN(3) ds
t1 H
to
< / 0 Pty ()] dis
t1

to
Sck/ ||athuN(S)||Vl ds

t1

to Il] to 1_%
ka( / ||6thuN(s)||1€/,ds) ( / ds)
t1 t1

- -1
< Ckth _tll P

where we used Hélder’s inequality and that [|0; Prun||ze (s, 1,17y is uniformly bounded in
N. Thus we may apply the Arzeld-Ascoli theorem, which proves the claim.

Claim 2: {uy} has a subsequence that is Cauchy in L(0,7;H). Clearly Claim 2
implies the theorem. By a diagonal argument (exercise), we can select a subsequence (still
denoted {un}) so that {Pyun} is convergent in L9(0,T; H) for all k € N (see Claim 1).
We will show this sequence is Cauchy in L(0,T; H).

Claim 2a: For every § > 0 there exists k € N such that

T
/ [ Prun(s) —un(s)||% ds<é
0

for all N > k. Indeed, we know that C > |un|aqo,r;vy and as (Vw;, Vwy) = (-Awj, wy) =
)\j(wj,wk) = )\j5jk7 then

q
2

T T [ oo
o /0 [Vun(s)]7, ds = /0 (ZIAA(uN(s),wj)LzP) ds

o

T{ oo
2/0 ( Z )\j|(uN(s),wj)L2|2) ds,

j=k+1
so as \; are increasing we obtain

q
2

T
q
ds= AL, / [P (s) —un ()], ds.

g (T =
Z/\13+1/0 ( Z |(UN(S)ij)L2|2)

j=k+1

and now Claim 2a follows from the fact that A » oco.
Next, recall that (for the k from Claim 2a) Pyuy is Cauchy in L9(0,T; H), so there is
an Ny € N such that

T
| 1Puns) = Prans (9] as <5
0
for all N, M > Ny. By the triangle inequality,
lun = untllLago,rmy < lun = Peun||pago,r:my + | Peun = Peunt || Lago,r;m)

1
+ luns = Pl pogo,r;my < 36

and since § > 0 was arbitrary, Claim 2 follows and we are done. O

Only one ingredient is missing before we can embark on the existence proof for weak
solutions:
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LEMMA 3.3 (LP interpolation). Let 2 be a measure space and u € LP(Q2) n L1(Q) for
some 1 <p<q<oo. Thenue L™(Q) for all p<r <q, and |lullpr < |ul$|ulie®, where

1_ lo
rop q
PROOF. Using Holder’s inequality with £, ﬁ we see that
A-a)r
/ " dz = / | " i < ( / p? dx / ful? dac v
Q Q Q
1-a]"
= [llullgs lul "]
and so we are done. O

3.2. The Existence Proof

THEOREM 3.4 (Existence of weak solutions). For every u’ € H there exists a weak so-
lution of the NSE with initial data u®. Moreover, this solution satisfies Oyu € L /5(0 T;V").

loc

ProOOF. Step 1: Existence of Galerkin approximations, locally in time. Recall the
N-th order Galerkin equation:

Odrun + Py[(uy - V)un] = vAuy,
UN(O) = PNUO.

We take the ansatz
N

un (z,t) Z (t)w;(z)

and multiply the Galerkm equation by wy, and integrate:

N
/ ZdN (x)dx+/ Pa( S d (1) (t)w;(x) -V )un () -wy () da
']T3 T3

Ji=1
N
=vy dN( t)Aw;(x) - wi(x) da.
By orthogonality of {wy} in L? and the eigenfunction property, this gives

(d¥)'(t) + y/\de ;1 dY ()d) (t) Biji = 0,
J»

with £=1,...,N and
B [ (wy(a) - Vi) -un(e) da.
T

Indeed, (Pyv,wy) 2 = (v,wy) 2 for all v € L? by a simple linear algebra argument.
This is a system of N ODEs for the N unknown functions d (k = 1,...,N), with
initial condition

O = [ unle)une) do.

(The latter is obtained by multiplying

N
= 2. d5 (0)w;(x)
j=1

by wy, and employing the initial condition ux(z,0) = Pyu’(z). Note again (Pyu’(z),wy(z)) =

(u°, wi())).
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By classical ODE theory (Picard-Lindelof/Cauchy-Lipschitz) there exists a time Ty > 0
and a solution {dév}k=17.,.7N e C1((0,Tx)) of this system.

Step 2: Show T = oo for all N, via energy estimates. Let s € (0,7x). Multiply the
Galerkin equation at time s with uy(s) and integrate in = to get

dun(s) -un(s) dzx +/ Pn(un(s)-V)un(s)-un(s) dz
T3 T3

=v | Aun(s)-un(s) dz.
T3
Observe each integral in order: for the first we see that

1d
Orun(s) -un(s) de==-— |uN(8)|2 dz,
T3 2 dt T3

for the second,

/PN(uN(s)-V)uN(s)-uN(s) d:z::/ (un () - V)un(s) - un (s) dz
T3 T3
3

_ J l l
_NZ:l /T o ()0, by (s)uily (s) da

3 .
= _ Z y 8$jugv(3)(uﬁv(s))2 dx
=1

3 )
- . axjugv(s)uﬁv(s)axjuév(s) dz=0
jm1JT

using incompressibility, and for the last term we see that
v | Auyn(s)-un(s)dz= —V/ |Vuy(s)| dz.
T3 T3
Hence for all s € (0,7x) we obtain the (finite-dimensional) energy equality
1d
2 dt
We note that this equality implies (after integration in s) that

s () 7213y + VI VN (5)]7 275y = 0.

1 1 had 1
sup S Jun ()2 < SuplZ2  and / [Vun (s)[22 ds < — ]2,
t 2 2 0 2v

thus {uy} are uniformly bounded in L*(0, o0; H) n L%(0, 00; V).
In particular, since uy (z,s) = Yn, dY (s)wg(z) and since {wy} is an ONB in L2,

d
lun ()72 = X 1di (s)P?
k=1

and this is bounded in s. It follows that {de(s)}k:L.._,N is uniformly bounded in s and
hence Ty = oo.

Step 3: Bound Oyupy in an appropriate norm (in order to apply Aubin-Lions).

Let ¢ € V and take the L?-inner product with the Galerkin equation:

(Orun, @) =v(Aun, ¢) - (Pn(un - V)un, ¢)
=v(Aun, ¢) - ((un - V)un, Pyo),

where for the last equality we used the self-adjointness of the projection Py. For the first
term

[ (Aun, 9)| = v|(Vun, VO)| < v Vun | 2| ¢]lv,
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and for the second

1 1
[((un-V)un, Py@)| < un| sl Vunll 2| Pxdl s < [unlz:lun] 7ol Vunllz [ Pxé e
using interpolation (Lemma 3.3). Now we can use the Sobolev embedding ||v| 16 < C|v| g1 =

Cllv|lyv = C||Vv| 2 and the projection property |Pyo|v < ||¢|yv to obtain

1 3
[((un - V)un, Pn@)| < Cllun | f2 [ Vun] ;2 6lv-

It follows from the definition of the dual/operator norm

1 3
|Orunvr < v[Vun|pz + Cllun |2 [Vun| ;s

and thus for any 0 < T < oo

T 4 T 4 T 2 )
/ YN dssC’u/ IVan (s[4 ds+0/ | 2|V (s) 2 ds.
0 0 0

Using Hélder’s inequality in time on both terms (first L3(on 1), L3/? second L, L') we
obtain

I

1

1 T 2
<CVTs [(/0 [Vun(s)|? ds)

which becomes

2
+ C”“’N“Zm (0,T:H) ”uN(S) ”%2 (0,T;V)

L 3 3 2
< COVTs[lun (220 7oy + Clunl e o 1oy lun (22 0.0

which is bounded uniformly in N (for fixed v and T"!) owing to the energy estimates from
Step 2.

Step 4: Extract a convergent subsequence.

By Banach-Alaoglu, there is a subsequence {uy;, }; such that

*

UNj -~ Uu
weak-* in (0, 00; H), and another subsequence {uy,,}; such that
Vuy,, ~w in L*(0, 00; L*(T?)).

It is easy to show that (exercise!) w = Vu. For any fixed 0 < T' < oo, extracting yet another
subsequence if necessary (not relabelled), the uniform bound on dyuy gives

Oy — Oyu  in L4/3(0,T; V7).
Even better, by a diagonal argument we obtain a subsequence such that

at’LLN X 8tu in 1-14/3(07 (oo V’)

loc

Choosing yet another subsequence and applying again a diagonal argument, we obtain
by Lemma 3.2 (Aubin-Lions)

uUN = U

strongly in L2 (0, 00; H).

Step 5: Show the limit is a solution of NSE.
By Lemma 2.14, it suffices to choose a test function of the form

o(x,t) = i di,(t)wi(x) € Dy

k=1
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Let T be so large that supp(dg) c [0,T) for all k =1,...,m. By the Galerkin equation,
for any N >m we have

—/ /uN-8t¢dxdt+y/ /VuN:Vqﬁdxdt
o Jrs3 o JT3
+

/ (un - V)uy - ¢ dz dtz/ ug - #(0) d.
0 T3 T3

Weak convergence uy;, S in L%(0,T; L*(T?)) gives

—/ / uN-atqbdxth—/ /u-@tqbdzz:dt
0 T3 0 T3

and Vuy — Vu in L?(0,T; L*(T3)) gives

/ /VUN:V¢dxdt—>/ /Vu:qudedt.
0o Jts 0o Jr3

Only the non-linear term needs some more attention, we see that
(uny - V)uny = (u-V)u=((uy —u) - V)uy — (u- V) (un —u).
Firstly,
) T
|/ /3((uN ) V)uy - ¢ do dt| < c¢/ luy = 2 | Fun 2 dt
o JT 0

< Cpllun = vl z200,1;,2) | Vun |l L2 0,7;22)

and we see that this converges to zero as | Vun | z2(o,r;z2) is bounded and [[un —u| z2¢0,7;12)
converges to zero as N — oco. Secondly,

/ooo/TB(u'v)(UN‘U)-gf)dxdt»o

as N = oo asue L?}x and V(uy —u) converges to zero weakly in Lix. It follows that
/ /(uN-V)uN-qﬁd:rdte/ / (w-V)u-¢dedt
0 T3 0 T3

—/w/ u-8t¢+1/Vu:V¢+(U-V)u-¢)dxdt=/ up - ¢(0) dz.
0 T3 T3

Hence u is a weak solution. O

and so

The bound on the time derivative allows us to obtain a useful continuity property in
time, typical for balance equations in continuum mechanics:

PROPOSITION 3.5. The solution constructed in Theorem 3.4 is (after alteration on a
set of times of measure zero, if necessary) contained in the space C([0,00);V"), and it
satisfies the statement of Lemma 2.16 even for all (and not just almost all) 0 <t < t.

PROOF. This will be proved in the exercises, based on the property dyu € L?O/S(O, SHN
]

In fact, one can show that this proposition is true for every Leray-Hopf solution, not
just the (possibly particular) one constructed in Theorem 3.4. Of course, if Leray-Hopf
solutions are unique, this distinction is unnecessary, but uniqueness is still unknown in
three dimensions.



CHAPTER 4

Strong Solutions

4.1. Some More on Bochner Spaces

For this entire chapter, let 0 < T' < oo be arbitrary but fixed. We collect a few technical
results to be used later.

PROPOSITION 4.1. Let X be a Banach space and suppose u,w € L*(0,T; X). Then the
following are equivalent:

(1) Oru=w in the weak sense;
(2) There exists £ € X such that, for a.e. t € (0,T),

uy=e+ [ us) ds

(3) For every ve X', in the weak sense it holds that
d
E(uav) = (U),’U).
Moreover, if one (and thus all) of these conditions holds, then u can be altered on a nullset
of times so that it belongs to C([0,T]; X).
ProoOF. Exercise. u
PROPOSITION 4.2, Let ue L*(0,T; H'(T%)) and dyu € L*(0,T; H™*(T%)). Then,
(1) we C([0,T]; LA(T));
(2) the map t %Hu(t)”i2 is weakly differentiable with

d1
NI, = (u(0), (1) for a.e. te (0.T);
3)
ma ()l 5 C (Jul o + 100l ).

PRrROOF. Let n € C°(R) be a standard mollifier (in the time variable), that is, n > 0,
Jen(0) df =1, suppn c B1(0), and 1 = n(|6]). Set ne(t) := % (é) and, for any f € L] (R),
Joi=feme ie.

fe(t) = /_E ft=71)n(r) dr.

Consider now u as given in the statement and extend it to t € R by zero, so that its
mollification is well-defined on all of [0,T"]. For €,6 >0, us and u, are smooth in time, and
we may thus use the standard Leibniz rule to compute

Sl = s =2 [ (wlt) = us(0)) - @rc (1) = Buus (1) (4.1)

Observe that for a.e. s € (0,7), ue(s) - u(s) in H (T?) and dyuc(s) ~ dyu(s) in H(T?)

(
(exercise). Pick such an s and integrate (4.1) from s to ¢ to obtain

e (t) = us(t) 172 < ||ue(8)—uzs(<<>’)llriz+2/0 |(ue(T) = us(7), Oruc(T) = Orus(7))| dr
25
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By choice of s, the first expression on the right hand side converges, as €¢,d - 0, to zero,
and so does the dual pairing under the integral, for almost every 7. But then the integral
itself converges by dominated convergence (exercise).

It follows that {uc}eso is Cauchy in C([0,T]; L?(T?)), and since this space is Banach,
it follows u, = u € C([0,T]; L?(T?)), whence (1) is established.

For (2), again by the classical Leibniz rule,

d
SOl =2 [ u(0)-0u.(t) ds
T3

and hence, after integration from s to t,

o)1 = b e +2 [ [ () - Oyu(r) dr 42)

and the same equality follows for u instead of w. by similar convergence arguments as
before. Application of Proposition 4.1 (2) then gives the desired characterisation of the
weak time derivative.

Finally, for (3), integrate (4.2) in s over (0,7) to arrive at

T
Tlue(t)]17: S/O Jue()172 ds +T(llulfop + 10rul7zg1),
and thus (3) follows because t is arbitrary and the right hand side is independent of t. [J

COROLLARY 4.3. Let u,v € L*(0,T; H'(T®)) and du, v € L*(0,T; H-*(T3)). Then
the map t — (u,v) is absolutely continuous with weak derivative

d
E(u,v) = (Oyu,v) + (u, Opv).

ProoF. This follows from the polarisation identity
1 2 2 2
(u,v) = 5 (Ju+ o™ = ful™ ~ o]
and the preceding proposition. ]

The following can be seen as an extension of Proposition 4.2 to higher order Sobolev
spaces:

PROPOSITION 4.4. Letn € No and suppose u € L2(0,T; H"2(T?)) and dyu € L (0, T; H™(T?)).
Then, u e C([0,T]; H™(T?)), and

oo Ju(®) s < © (Iall 2 v + 100l 2 n ) -

PrOOF. We indicate only the formal argument and remark that the rigorous proof
proceeds exactly as in Proposition 4.2 by time mollification.
So assume wu is smooth and take for simplicity n = 0, then we compute

d d
NI = L Iva()

=2/ Vu:dVu de
T3

- / Au-pu do < Ju(t) 2o + |00u() |,
’]1‘3
and the estimate

sup [u(®)llgnes < € (ull 2 pnee + 107l 2 10
te[0,T]

follows, as before, by integrating first from s to ¢ and then by integrating in s from 0 to
T. O



4.2. PROPERTIES OF STRONG SOLUTIONS 27

4.2. Properties of Strong Solutions

DEFINITION 4.5 (Strong solutions). A strong solution of NSE is a weak solution with
additional regularity

we L%(0,T; H(T3)) n L*(0,T; H*(T?)).

Strong solutions have very nice properties, like energy conservation, uniqueness, and
smoothness; however, given initial data u® € V, a strong solution is known to exist only on
a possibly finite time interval (whether or not the existence time can actually be finite is
precisely the Navier-Stokes Millennium Problem).

LEMMA 4.6. Let u be a strong solution, then Oyu, (u-V)u, Au e L?(0,T; L*(T?)).

PROOF. From the assumption u € L2(0,T;H?) it follows immediately that Au €
L?(0,T;L?). For the nonlinear term, note that H? embeds continuously into L*, so
that

T T
| asdes [ [ 19608 o de s Clulf el

It remains to estimate the time derivative. In view of Lemma 2.16 and the remark after
Proposition 3.5, for every smooth divergence-free vector field ¢ € C*(T?) (note, no time
dependence here) and every t € [0, 7] we have

ABU(t)-¢dx:43u0.¢dx—/otA3VVu:V¢+(u.v)u.d)dxds

=/T3u0-¢da:+/0t/T3VAu-qb—(u-V)u-quxds,

as u has weak second space derivatives. Proposition 4.1 allows us to take the time derivative
of this equality to obtain, for every t € [0,7],

(9tu-¢>dx:/ vAu-¢—(u-V)u-¢de.
T3 T3

Let ¢ € C°°(T?) be any smooth vector field and ¢ = ¢ + Vrr its Helmholtz decomposition,
so that div¢ =0. Then, as u(t) € H,

O do= [ O (1) ds
T3 T3
=/ vAu-Py - (u-V)u-Py dx
T3

= / P(vAu—(u-V)u) -9 de,
T3

and since v was arbitrary, it follows that dyu = P(Au—(u-V)u). By the previous estimates,
this is indeed in L2(0,T, L?).
O

LEMMA 4.7. Let u be a strong solution. Then, for any w € L?(0,T; H),

T
/ / (Opu+ (u-V)u-vAu) -wdz dt=0.
0 T3

Note that the integral in fact is well-defined by the previous lemma.

PROOF. By similar arguments as in the proof of Lemma 2.14, the space D, is dense in
L?(0,T; H), and therefore it suffices to consider w € D,. Using such w as a test function
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in the weak formulation gives

/WU(T) ~w(T) da;—/Tg w® - w(0) da

T
=/ / u-Ow —vVu: Vw - (u-V)u-w dz dt.
0o JT3

But clearly, since w is a strong solution,

T T
/ / Vu:dexdt=—/ Ay - w dx dt,
0 T3 0 T3

and by Proposition 4.1 and Corollary 4.3 also

T T
/ u(T)-w(T) dx—/ u’-w(0) dx—/ / u-@twdxdt=/ Oyu-w dx dt.
T3 T3 o Jr3 0o JT3

Putting everything together, we arrive at the conclusion. 0

LEMMA 4.8. For any ueV, we have
/ (u-V)u-udz=0.
T3

PrOOF. Write b(u,u,u) = [15(u-V)u-u dz = 0, then this is a trilinear form. For
smooth vector fields, we have already established b(u,u,u) =0 (in the formal derivation of
the energy equality). Therefore, if u. = u * 7. denotes a standard mollification, we have

b, w, w)| < [b(w,u,w) = b(ue, u, u)]
+ [b(te, wyu) = b{te, Ue, w)| + [b(te, Ue, u) — b(Ue, ue, ue ).

But the first term is estimated as
/ |u — uc||Vul|lu| dz — 0

— 0: This follows from the embedding H' c L% ¢ L? and Hélder’s inequality with

as
% % z. The other two terms are estimated in the same way. (|

THEOREM 4.9 (Energy equality). A strong solution satisfies the energy equality, i.e.
for every s <t we have

¢ 1
L up da:+u/ / Vu(z, 7)P dr = 5/, u(s)[? ds.
T3 s T3 T3

PROOF. In Lemma 4.7, we may take w := x[4,ju and thus obtain

T t
0= / (Opu+(u-V)u-vAu)uxps do dr = / (Oput(uV)u-vAu)u dx dr.
0 T3 s JT3

By Proposition 4.2, u-dyu = 14 |u|?2,, and

//uatuda:dT—— lu(t |2da:——/ lu(s)|? ds,
T3 T3

whereas (by a very simple approximation argument)

Au-udzr=- | |vu*dz,
T3 T3

and finally
/ (v -V)u-udz=0
T3

thanks to Lemma 4.8. This completes the proof. O
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LEMMA 4.10. Let u be a weak solution of NSE and U € L*(0,T; H> nV) a vector field
with O;U € L*(0,T;L?). Then U is a valid test function in the definition of weak solution
for u, that is,

/T u(t) - U(t) de - /T W U(0) da

t
=// u-OU -vVu: VU = (u-V)u-Udx ds (4.3)
0 J13

for every t € [0,T].

PrROOF. We only give a sketch. As before (e.g. in the proof of Lemma 2.14), we
approximate U by fields in D, by means of the projection operator Py onto the span of
the first N Stokes eigenfunctions. For every thus obtained Uy, (4.3) is valid. One then
takes the limit N — oo. The only term requiring some care is [; u(t)-U(t) dz, as we need
to converge pointwise in ¢. But by Proposition 4.4 (with n =0), we have

S[up] U~ = Un) () g < C(1UN = Untll g2 grz + 10:(Un = Uni) [ 252) »
te|0,T

meaning that {Uy} is Cauchy, and thus convergent, in C([0,7]; H'). The proof now
proceeds as in Proposition 4.4. O

THEOREM 4.11 (Weak-strong uniqueness). Let U be a strong solution and u a weak
solution that satisfies the energy inequality, and assume both solutions share the same initial
data u® € H. Then w=U almost everywhere.

PRrROOF. The proof relies on an estimate of the relative energy between v and U, defined
as

Fra(t) = /T Tl t) - U )P da

In the course of the computation, we use three ingredients:

(1) The weak formulation for u, tested with U, as justified by Lemma 4.10:

/Tgu(t) U dx—/Tg W0 U(0) da

t
=//u-@tU—uVu:VU—(u-V)u-Ud:cds;
0 Jr3

(2) The pointwise solution property of U, integrated against u:

T
/ / (DU + (U - V)U = vAUY - da dt = 0,
0 T3

as justified by Lemma 4.7;
(3) The energy (in)equalities for u and U, as justified by assumption and by Theo-
rem 4.9, respectively:

1 t 1
L o dx+u// vz, )2 dfg—/ ()2 ds
2 Jrs s JT3 2 J1s

and similarly for U.
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Using (1), we obtain

Ef / |u(x,t) (z t)|2 dz
-5 [ G o do+ 3 / U (2 )2 dae / u(t) - U(t) do
']I‘3
=-/ (. )2 dx+—/ U (2, 6)| da
2 Jrs 2 Jrs

t
—//u-atU—uVu:VU—(u-V)u-Udmds—/ u’ - U da.
0 JT3 T3

By, the energy inequalities, (3) and the assumption u° = U, the sum of the inital terms is
non-positive and can thus be neglected in the estimate, so that

t
Erel(t)s—//u-@tU—VVu:VU—(u-V)u-deds
0 JT3

t t
—V/ |Vu|® dz ds—v/ |VU|? da ds.
0 T3 0 T3
Integrating by parts and using (2), we can write this as

t
Eml(t)s—//u-@tU—Vu-AU+(U-V)U-udxds
0 JT3

t
—u// |Vu - vU|* dz ds + R (4.4)
0 JT3

t
:—1// |Vu - VU|* dz ds + R,
0 JT3
where
t
R:_/ (U-V)U-u+(u-V)u-Udz ds.
0 JT3
Similar arguments as in Lemma 4.8 yield
/(U-V)u-ud:E:O, /(u-V)U-Uda:=O,
T8 T3
whence
t
R:—/ / (U-V)U =) -1~ (u-V)U —w) - U dz ds,
0 JT3

and finally an application of the formula [, (U-V)(U - u) - (U - u) dz = 0 gives

R=- // ((U=-u)-v)(U-u)-U dx ds.
T3

We thus obtain the estimate
t
IR| < / / U = ||V - Vul|U] de ds
0o J13

] . (4.5)
< 1// VU = Vul dz ds + O(v) / 10 ()] / U = uf? dz ds,

0o J1s 0 T3
where we used the weighted Young’s inequality ab < % +(52§ for suitable §, depending on

v.
In total, using (4.5) in (4.4), we obtain

o / [0 ()2 = Erar(s) ds
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and since U is a strong solution, |U]|2. € L'(0,T), and we may then use Grénwall’s
inequality to conclude E,. =0, which implies the theorem. (|

THEOREM 4.12 (Weak-strong stability). Let U be a strong solution and u a weak solu-
tion that satisfies the energy inequality, with initial data U° € H and u° € H, respectively.
Then there exists a constant, depending only on the norm of U in L®°H' n L?H? and on
the viscosity v, such that for all t € [0,T]

Ju(t) = U ()2 (rsy < e lu’ -

PRrOOF. The proof is almost identical to the one of the preceding theorem, only that
the initial terms do not cancel. It is left as an exercise. The reader might also want to give
an explicit formula for the constant C' in terms of U and v. U

UOHLQ(TB) .

4.3. Local Existence of Strong Solutions
LEMMA 4.13 (Agmon’s inequality). Let u € H?(T?), then, for some constant C,
12y 1172
Jull = < Clulg? ulz3

ProoFr. We split the Fourier series of u into low and high frequencies, with M > 0 to
be chosen later:

l’) - Z ﬁkeik-x

k+0

Z akeikm_"_ Z /&keikm

|k|l<M |k|>M

Z ﬁkeikmlk”kl—l_'_ Z akeik-x|k|2|k|—2
|k|l<M |k|>M

| 1/2 . 1/2
SIIUIIgl( 2 p) +IIUII,qz( 2 ﬁ) :
|k|sM| | |k|>M| |

It is easy to see that
1/2
1
B]\/[(O)\B1(0) |$|

L\
[Z7)
M .2 1/2
(/ —2 d’l”) < CMI/Q,
1 T

and similarly

1 12 1 1/2
T <C / — dx)
(|k|§:M |k|4) ( R3\ By (0) |J’i|4

oo 1"2 1/2
=C (/ — dr) <CM™2,
M T

IA

Q

so that in total

lul < C (MY g+ M7 u )
H

The choice M = ” ” 2 now yields the result. O

THEOREM 4.14 (Existence of strong solutions). Let u® € V. There exists a constant

C > 0, depending only on the viscosity v, such that there exists a strong solution at least
on the interval [0,T], where T = C[|[Vu’|}3
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PRrROOF. Recall the Galerkin equation (3.3),
drun + Pn[(un - V)un] = vAup,
un(0) = Pyuo,

for which we have seen to have global smooth solutions. Multiply this equation by —Auy
and integrate in space to obtain

- OruN - Aupy dx+u/ |AuN|2 dx—/ (un - V)un - Auy dx = 0.
T3 T3 T3

This means
1d

~—— | Vun|32 + v|Aun|3s dz = / (un - V)upy - Auy dz, (4.6)
2 dt T3

and we wish to estimate the right-hand side. For this, we use Agmon’s inequality and the
estimate |un| gz € C||Aupn| 2 (which is trivial to show in Fourier):

|/ (un - V)upn - Aupy dx
’]I‘S

< Jun |z | Vun | 2| Aun | 2
1/2 1/2
< Cllull 2l 2 Vunll 2 | Auy] 2

3/2 3/2
< C|vun ¥ | Aun |37,

Young’s inequality ab < % + % for = + % =1, applied here with p=4 and ¢ = %, gives

1
P

1
(un - V)uy - Auy dz| < C(v)[Vun|f. + §V||AUN||%%

T3
so that (4.6) becomes

d
EHVUN”%? +v]|Auy|[72 < C@)|[Vun|$e. (4.7)

Setting aside the Laplacian term for the moment, we see that Y := |[Vuy||7, satisfies the
ordinary differential inequality
Y'(t) <OY (1), Y(0) = Pyvu’l7a

and hence Y (t) < X (t) for the solution of the corresponding equation X’ = CX3, X(0) =
Ivu®(2, > Y (0). It is not difficult to compute X (t) explicitly as

vul||?
\/1 - 2Ct|vu?,
If we set T' = m, we obtain X(T) = 2|vu’|7. and therefore Y'(¢) is uniformly

bounded in [0,7"], which in turn means that the uy are bounded in L*(0,7T; V'), uniformly
in N.

Coming back to (4.7) and integrating from 0 to T', we observe (recalling that |[Vuy|?,
is bounded, on [0,T7, by 2|vu|7,)

T T
[ 18unls dt < [P = [V un(DIs +C [ I9un] d
0 0
T
<Ivall+C [ [Vuyls de
0

<[ vu°2. + 20TVl |5

7
- 1w
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by choice of T. It follows that the uy are also bounded, uniformly in NV, in the space
L2(0,T; H*(T3)).

We know already that a subsequence of {uy}neny converges to a weak solution of
NSE. Selecting from this sequence another subsequence that converges additionally in
L*=(0,T;V)NL2(0,T; H?(T?)) (this exists by the Banach-Alaoglu theorem, and the bounds
just derived), we see that the weak solution is in fact in L>=(0,7;V) n L2(0,T; H?(T?)),
and is thus a strong solution up to time 7. O

4.4. Regularity of Strong Solutions

It turns out that even when only u® € V, the strong solution of the NSE will automati-
cally be C* smooth on the (open!) time interval (0,7'), for any T up to which the solution
exists in the strong sense. This is an effect of parabolic regularisation.

First we need a crucial Banach algebra property:

THEOREM 4.15. Let s > %, then H*(T3) embeds continuously into L*(T3) and forms
a Banach algebra, that is,

luv]| s < Cllull s [v] &,
where the constant depends only on s.

ProoOF. We give the proof only for u,v € H?, as this is the situation we shall need.
However the general statement follows similarly (by replacing |k|® by (1 + |k|)®). So let
x € T? and using Holder’s inequality, we obtain

_ 1/2 1/2
> are™ | <Y |l = Y lanllklIk ™ < (Z Iﬂkl2lkl25) (Z Ikl‘%) :

k=0 k=0 k=0 k+0 k+0

|u()] =

But the first factor is precisely the homogeneous H*-norm of u, and for the second factor
we compute

Yk <0 L de- C’/ 2728 dr,
%0 R3Bo(1) |7* 1
which is finite if and only if 2-2s < -1, i.e. s> % Thus we obtain the embedding assertion
as required.

Let now u,v € H*(T?), then by the above computation the Fourier series of u and v
are absolutely convergent, and thus we may form the Cauchy product to calculate

u(z)v(x) = (Z ake”‘*z) (Z Ojeij'w) = Z ( Z ﬂk_lf}l) ek (4.8)

k#0 Jj#0 kez3 \lezZ3

so that oy, = ¥jez3 k-0 (the Fourier transform of the product becomes a convolution).
As another ingredient we recall the inequality |k|° < C(|k =I|° +|I|®), where C depends
only on s > 0.
We can now estimate

luv|[Fre = 3 (1 + [ @
k+0

= > (L+[k)

keZ3

<Cy

keZ3

<C )

keZ3

2

> Aty

leZ3

Yo+ E=17) + (L + ) gty
leZ3

2

2

+C Y

keZ3

2

> (L +[k = 1) gy
leZ3

> (LI )ty

leZ3
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Let us define the function (1 +|V|*)u(z) := Yge0(1 + |k|*)ie®®, then obviously
11+ 1V )ul 2 < Cllulms,
and similarly for v. By (4.8), then, we see that

> (Lk=1Yag o = [((L+ VD))ol and 3 (L+IT) ar—r = [u((L +[V[)0) IR,
leZ3 leZ3

so that (using Plancherel’s Theorem and Hélders)

Juvl[7e < C YL+ V) w)olil + € 3 [[u((1+]9)0) 7]
k=0 k=0

=C (I + V)l + [u((L+[9F))3.)
< C(lolZellulFy, + lullZe ol )
<O (Il ulF. ).
where in the final step we used the embedding H® ¢ L*. U

THEOREM 4.16 (Higher regularity). Let m >2 and u® € V. n H™(T3). Then the strong
solution of NSE with existence interval [0,T] even satisfies

we L=(0,T; H™) n L*(0,T; H™).

PROOF. Let (uy) denote the smooth Galerkin approximations, as usual. The existence
proof for strong solutions yielded uniform (in N) bounds for
lunllpeem + lun L2
By induction, we will deduce such an estimate for m instead of 1. So let us assume the
induction hypothesis
S%P (lun ]| Lo grm-1 + |unllL2gm) -
Taking the H™ inner product of the Galerkin equation with wy and then using Theo-
rem 4.15, we obtain
§E||UN||HW +v||Vun|lzm = =((un - V)un, un) gm
< (un - V)un|am un | mm

< Nlunllgm [Vun || gmllun || gm
1
< §V||VuN||?1m +C(v) lun | Fm-

Note that in the last step, we made use of the Cauchy-Schwarz inequality with € (ab <
ea’ + C(e)b?).
This results in
d
dt
where g = C(v)|un/|?n € L*(0,T) uniformly in N, by virtue of the induction hypothesis.
Gronwall’s inequality therefore yields

t
e ()1 < [y exp ( [ ot ds).

Since the right hand side is finite and independent of N, we obtain the bound

lun lim + vIVunlZm < (CO)unFm) lun lEim = g0 un|Fm, (4.9)

sup |lun||pee grm < o0o.
N
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Going back to estimate (4.9) and integrating in time, we get (using the bound just derived)

T
lun (T)[Zrm = [ [ Fm + VU [rm < /0 g(t) dt- Tlun||zerrm,

which entails

1 T
|Vun|Fm < = e Fm + [ g(8) dt - Tuy||zeesim | -
v 0
As the right hand side is finite and independent of N, we obtain the desired bound

sup || un || g2 gm+1 < oo.
N

The sequence {uyn} converges to the strong solution u of NSE, but by the bounds just
obtained and the Banach-Alaoglu Theorem, it also converges weakly* in L™ H™ and weakly
in L2H™*!. 1t follows that w is contained in these spaces, as claimed. O

THEOREM 4.17 (Space regularity). Let u be a strong solution of NSE on [0,T]. Then,
for every 0 < e < T and every m e N, ue C([0,T]; H™(T?)).

PROOF. By definition, u € L?(0,T; H?), and therefore for almost every s; € (0,¢),
u(s1) € H?. Choosing such s; and using u(s;) as initial data, and keeping in mind the
uniqueness of strong solutions, we obtain from Theorem 4.16 u € L%(sy,T; H?), and so
we may choose an s € (s1,€) such that u(sy) € H3. In this way we obtain a sequence
0<s1<8y<83<...<esuch that ue L™ (s, T; H™) n L3 (s, T; H™?).

Observe that this implies dyu € L?(e, T; H™ 1), because

O = -P((u- V)u) + vAu.
Clearly, the last term is in L?(e, T; H™!), but also the nonlinear one: Since u € L™ (e, T; H™*!)
and Vu € L?(¢,T; H™1), by the Banach Algebra property also (u-V)u € L?(e, T; H™1)
(so this is actually better than required).
Thus, by virtue of Proposition 4.4, this implies
weC([e,T); H™)
and so we are done. O

- THEOREM 4.18 (Time regularity). Let u be a strong solution, ¢ >0, and j,k € N. Then
Hue L™ (e, T; H*(T?)).

PrOOF. We proceed by induction over j.
We use once more

Ou = -P((u- V)u) + vAu. (4.10)

Similarly as in the previous proof, we bound |P((u-V)u)| ;+ at each time by ||w g ||w] grr+1,
and |Au|gr < |ul gr+2. But both these are bounded, uniformly in ¢, in the respective
Sobolev norms by virtue of Theorem 4.17.
For the induction step, differentiate (4.10) j — 1 times with respect to ¢ to obtain
) J-1 j-1 ) o )
Hu=-3 ( . )P((@,fu V)& ) + v A
i=0
But by induction hypothesis, the first j — 1 time derivatives are in L*(0,7; H™) for every
m, and so we can apply similar arguments as in the induction base to conclude. ]

Recalling that a function which is contained in Sobolev spaces of arbitrary order is in
fact smooth, we obtain:

COROLLARY 4.19. Let u be a strong solution of NSE on [0,T]. Then, for every e >0,
ueC®(T3 x [6,T]).
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4.5. Blowup and the Beale-Kato-Majda Criterion

It can not be excluded that a strong solution ceases to be strong after finite time. There
is a rich theory of possible blow-up scenarios, although it might turn out that blowup can
actually not happen (this is the Millennium Problem).

4.5.1. Vorticity. Let u be a strong solution on [0,7], then it is smooth (in space) for
any t € (0,7]. Define the curl operator, which acts on smooth vectorfields u € C*(T3;R3)
and yields another such vectorfield, by

(Curlu)i = €ijaj’u,k,
where €5, is the Levi-Civita symbol, i.e. €, = 1 if (¢,5,k) is an even permutation of
(1,2,3), € = -1 if (4,7, k) is an odd permutation, and €;;; = 0 otherwise. Note we applied
the summation convention.
It is easy to see that div curlw = 0 for any choice of u, and also curl Vp = 0 for any scalar

field p. Taking the curl of NSE and denoting w = curlu (which is known as the vorticity of
the flow), we obtain

0w + curl((u- V)u) = vAw.

A short computation shows curl((u-V)u) = (u-V)w - (w-V)u, so we arrive at the vorticity
equalion

Ow + (u-V)w - vAw = (w- V)u.

The right hand side is called the vortex stretching term; in 2D it is not present, and the
vorticity equation is simply a linear transport-diffusion equation' that satisfies a maximum
principle in any LP norm (including L*°). This is another, very important way, to see why
the 2D NSE are so much better behaved than the 3D NSE.

LEMMA 4.20. Let u € C®(T3;T?) be divergence-free, then
lwllz2 = [Vl 2.

PrOOF. The computation goes like this:
1ol = [ (05 €imndna)
= [ G = 81n000) 0y

=/8juk8juk—8juk8kuj =/8jukajuk=/|Vu|2,

where we used [ djupOgu; = 0 owing to an integration by parts and the divergence-free
property. ]

4.5.2. Blowup.

DEFINITION 4.21. Let u® € V and u be a corresponding Leray-Hopf solution of NSE. A
time T > 0 is called the blowup time for the solution if u is a strong solution on [0, 7™ —€]
for any € > 0, but it is not a strong solution on [0,7*].

A few remarks are in order. First, it is possible that no blowup occurs and hence no
(finite) blowup time exists — this is trivially so e.g. for the zero solution. Secondly, if there
is a blowup, then the blowup time is uniquely determined by u: Indeed, as long as the
strong solution exists, it is unique in the class of Leray-Hopf solutions (Theorem 4.11).

LOf course to solve this equation, the nonlocal coupling between u and w needs to be taken into
account. The coupling law is known by the name of Biot-Savart and is a Fourier multiplier operator of
order —1.
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A more substantial remark is that 7% is the smallest time at which |Vul|z2(T*) = oo.
Indeed, the proof of Theorem 4.14 shows that u € L2(0,7; H?) as long as u € L= (0,T; H'),
so that a solution that exits in the former space will thereby also exit in the latter.

THEOREM 4.22 (Beale-Kato-Majda). Let u’ € V and u be a corresponding Leray-Hopf
solution of the NSE. If T >0 is such that

T
/ o] e dt < oo,
0

then u is a strong solution on [0,T].

Proor. We multiply the vorticity equation by w and integrate to obtain
/8tw-w+(u-V)w-w+V|w|2 dx=/(w-V)u-wdx.

The first term equals % [ |w[? dz, the second one is zero by the usual computation involving
the divergence-free property, and the third is non-negative and can be dropped. Hence,
using Lemma 4.20,

d
allwIIQ < /IWIIVUIIWI dz < o= Vull 2w 2 < Wl w72,
and so by Gronwall’s inequality,
T
[Vu(T)|72 < |u°[f exp (/0 oo () e dt)-

Since, by assumption, the right hand side is finite, then so is |Vu(T')| 12, and following the
remark after Definition 4.21, we conclude. O



CHAPTER 5
The Vanishing Viscosity Limit

So far we kept v > 0 constant. It has become clear that virtually all estimates during
this course have crucially relied on v > 0, and blow up as v N\ 0. In fact, except for the
Beale-Kato-Majda criterion, all the results presented so far are false or, in case of existence
of weak solutions, completely unknown for v = 0, in which case the resulting system is
known as the Euler equations.

An obvious question that arises in the study of turbulent flows (for which a dimension-
less number proportional to v™!, the Reynolds number, is typically very large) is whether
the (Leray-Hopf) solutions of the NSE converge, as v \ 0, to a solution of the Euler equa-
tions, if the latter exists. This is known as the viscosity limit problem. It turns out there
is a crucial difference between the cases with and without physical boundaries.

5.1. The Periodic Case

We give here a particularly elegant way to handle the viscosity limit, due to P.-L. Li-
ons |3, Chapter 4.4].

5.1.1. Dissipative Solutions of the Euler Equations. We consider now the Euler
equations,
Ou+(u-V)u+Vp=0
divu =0,

whose energy % Jrs |u]* dz is formally conserved by a similar computation as for NSE.
Therefore the function space L*(0,T'; H) appears suitable for the study of solutions.

For the following formal computation, suppose u is a smooth solution with data u°,
and let U € C*®(T? x [0,T];R?) be any divergence-free field. Denote

E(U) = -0,U -B((U-V)U),

which in a sense measures how far U is from being a solution of Euler.
Then, subtracting the equations for w and U, we get

(O +u-V)(u-U)+(u-U)-VU +Vr = E(U)
for some scalar field 7. Next, multiply this by v — U and integrate to obtain

1d

td |u—U|2d:c+/'(u-V)(u—U)-(u—U)dx
2dt T3 T3

+/ (w=U)-VoymlU(u-U) de = | EU)-(u-U)da,
T3 T3

where Vgym = %(V + V') denotes the symmetric gradient. Note that the second integral
vanishes by the usual integration by parts argument, so we can estimate

1d

-—/ |u—U|2d:cs||Vsme||Loo/ w-UPdz+ [ BU)-(u-U)da.
2 dt T3 T3

T3
38
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Gronwall’s inequality then leads to

1 t
—/|u—U|(t)2deexp(/ IV sy 1 ds)/|u0-U(0)|2 dz
0

2
+/Ot/exp(/: 1V U = dT)E(U)-(u—U) dz ds.

Recall from the exercises that C([0,T7];L2) is the space of functions in L*(0,T; L?)
that are weakly continuous in the sense that, for every ¢ € [0,T], u(s) — u(t) weakly in
L? as s —t.

Our formal computation motivates the following definition:

DEFINITION 5.1 (dissipative solutions). Let u € L*(0,T;H) n C([0,T];L?3), with

u(0) = u®. Then u is a dissipative solution of Euler if (5.1) holds for every U € C([0,T]; H)
such that E(U) € L'(0,7T; L?) and VsymU € L'(0,T; L>).

(5.1)

REMARK 5.2. (1) The function spaces in this definition are chosen precisely such
that each term in (5.1) is well-defined.
(2) Choosing U =0, we obtain simply

1 1
5/|u(7s)|2 dz < 5/|u0|2 dz V20, (5.2)

meaning that energy is not produced (but preserved or dissipated). This explains
the terminology.

(3) It can be shown that every solution in the sense of distributions that satisfies the
weak energy inequality (5.2) is also a dissipative solution in the sense of the given
definition. Conversely, there exist dissipative solutions that are not solutions in
the sense of distributions. As we shall see, however, dissipative solutions are
useful regardless of any ontological debates as to whether dissipative solutions are
“really” solutions of the Euler equations.

PROPOSITION 5.3 (Weak-strong uniqueness). Suppose U € C([0,T); H) is such that
VsymU € LY(0,T; L), and is a solution of Euler in the sense that E(U) =0 almost every-
where. Then any dissipative solution with w(0) = U(0) is equal to U almost everywhere.

PRrOOF. This is a direct consequence of (5.1). O

Note that dissipative solutions coincide, in particular, with the smooth solution as long
as the latter exists.

LeEMMA 5.4. Letu e L®(0,T; H)nC([0,T]; L%), withuw(0) = u®. Then u is a dissipative
solution of Euler if (5.1) holds for every smooth divergence-free U € C*(T3 x [0,T]).

PROOF. Let U be as in Definition 5.1. First we observe that then 9,U € L'(0,T; L?).
Indeed,

aU = -P((U-v)U) - E(U).

By assumption, E(U) has the required regularity.
Moreover, a simple calculation yields

(U-V)U =2(VsymU)U — %v|U|2,
so that
P((U-V)U) = 2P((VymU)U).

But since the latter is the product of a matrix field in L' L® and a vector field in L™L?,
we see that P((U - V)U) e L'L2.
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Next, let n a standard mollifier in x and set, as usual, n.(z) = 6%77(%), so that U, :=
U * ne is a smooth function in the space variables. Moreover, by the integrability of
AU, just shown, d,U. € L'(0,T;C*) for every k € N, and by Proposition 4.1 this entails
U. € C([0,T];CF) for every k € N.
Thus, we may compute
E(U) =-0,U. -P((Uc - V)U,)
=[-0.U -P((U-V)U) ]+ [P((U-V)U)c - P((Uc- V)Uc)]
= E(U)e + 2P((VoymU)U) e = 2P((VymUe) Ue)
= E(U)e + 2P[((VoymU)U)e = (VoymUe)Uc].

(5.3)

On the one hand, E(U), - E(U) in L'L? as ¢ - 0. On the other hand, since VU €
L'L™ and U € L L?, both ((VsymU)U ), and (VsymUe)Ue converge to (VsymU)U in L' L2,
so the second expression in the last line of (5.3) converges to zero in L'L?. Hence, E(U,)
converges to E(U) in L*L?.

Therefore, all the integrals in (5.1) converge appropriately as € — 0, so that (5.1) is
valid for U if it was valid for each U..

Time regularity can be guaranteed by regularising also in ¢, which poses little problem
since there is no nonlinearity of 9,U. ([l

5.1.2. The Viscosity Limit.

THEOREM 5.5. Suppose U € C([0,T]; H) is such that VsymU € L'(0,T;L>), and is a
solution of Euler in the sense that E(U) = 0 almost everywhere. Let (u,),s0 be a family
of Leray-Hopf solutions, satisfying the weak energy inequality, with u,(0) = U(0) for every
v >0. Then,

limu, =U strongly in L=(0,T; H).

v—>

PROOF. First we will show that a subsequence of {u, } converges weakly to a dissipative
solution of Euler. It suffices to use smooth test fields, as shown in Lemma 5.4. So let
v e O(T3 x [0,T];R?) be divergence-free. Then, using v as a test field in the definition
of weak solution of NSE, for every ¢ € [0,T] we have

¢ t
—/ / ul,-8tvd:vds+/ / (uy - V)uy, -vde ds
o Jr3 o Jrs

+y/0t/TSVu,,:Vvd:pds:/TSU(O)-v(O)dx—/TSuz,(t)-v(t)dx.

By definition of E(v) and the divergence-free property of both fields (see Lemma 4.8), we
thence get

//TSUV dxds—//TS (uy —v) - V)v - (uy —v) dz ds

+V/0 /TgVuy:Vvdxds:/TgU(O)-v(O)d:c—/TguV(t)-v(t)dx.

We recall the energy inequality for u,,

1 t 1
-/ hy (1) 2 d:v+u/ IV (2, 7)|? dTg—/ U (O) ds,
2 Jrs o JT3 2 Jrs
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and further observe that

t
1/ |v(t)|2d:c=1/ |v(0)|2d:1:+//v-3tvdxds
2 T3 2 T3 0 JT3
t
:1/ |v(0)|2d:c—//U.(E(U)Jr(v_v)v)dxds
2 Jrs 0o JT3
t
- [P [ [ o) aras
2 Jrs 0 JT3

Using these ingredients (and simply dropping the H!-term in the energy inequality for wu, ),
we can estimate

%/T hy (1) — 0 (1)? de%AS|U(o)—u(o)|2 dz

t
—//((u,,—v)-V)v-(uV—v)dxds
0 J13
t t
+y// Vu,,:Vvdxds+/ E(v) - (u, —v) dz ds
o Jrs 0 JT3

and further

1 1 !
3 [0 -o@F do<g [ 10©) = o@P do+ [ ol [ - of dods
2 Jrs 2 Jrs 0 T3

¢ t
+CI// V| 12 ds+/ E(v) - (u, —v) dx ds.
0 o JT3
But note that, by virtue of the energy inequality,
IV 12 < C(T) [V | 1212 < C(T)w 2T (0)] 12,

and hence Gronwall’s inequality yields

%/m_vp(t) deexp(/O 1V syt 1 ds)/|U(0)—v(0)|2 dz
+/O /exp (/S [V symv| 1o dT) E(v) - (u, —v) + C(T) 2| U(0)]| 2 dz ds.

As v — 0, the last term vanishes, and the uniform bounds on w, in L*H give weak*-
convergence in that space, so that on the right hand side, w, can be replaced by the
weak® limit u. For the left hand side, one can show that u, even converges in the space
C([0,T7]; L?), and since the functional u + [ |[u-v(t)[* dz is weakly lower semicontinuous,
the left hand side can only decrease in the limit. O

5.2. Bounded Domains

As soon as physical boundaries are involved, the viscosity limit gets much more difficult.
While the theory of the NSE as presented in these notes carries over to smooth bounded
domains in a rather straightforward way, the limit v — 0 behaves very differently. The
reason is as follows: the NSE are usually equipped with Dirichlet boundary conditions (u =
0 on 012), which in the context of fluid mechanics are called “no-slip boundary conditions”.
Since the passage v — 0 formally turns a second-order system into one of first order,
we cannot impose the same conditions on Euler. The most common choice are the “slip
boundary conditions” u-n =0 on 0f2, where n denotes the outer unit normal. This change
of boundary conditions causes the formation of a boundary layer.

As an analogy, consider the 1D heat equation d;u = vAw on [0, 1] x [0, T"] with Dirichlet
boundary condition and initial data u® = 1. The boundary condition will instantaneously
lead the (smooth) solution to attain u(0) = u(1) =0, and for small times the solution will
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be approximately 1 in the interior and decay to zero steeply in a neighbourhood of the
boundary points of size ~ v/vt. The same is expected for the NSE.

DEFINITION 5.6. Let Q ¢ R3 be a smooth bounded domain, then u € C([0,T]; L2 (22))n
L%(0,T; H} (2)) is said to be a weak solution of the NSE if it is weakly divergence-free and

satisfies
—/ /u-8t¢dxdt+/ /(u-V)u-qudxdt
0 Q 0 Q

+V/0°o/QVu:V¢d:cdt:/QuO-¢(0)dx—/ﬂu(T)-gb(T)d:z

for every divergence-free ¢ € C1(Q2 x [0,T]) such that ¢ =0 on 9.
The last condition — that the test function has to vanish on the boundary — is decisive.

THrOREM 5.7 (Kato 1984 [2]). Let Q c R? be a smooth bounded domain, and {u,},»0 a
family of weak solutions of the NSE satisfying the energy inequality, with initial u°. Suppose
there exists a smooth solution u of Euler with initial datum u®. Then, u, — u strongly in

L®(0,T; L*()) if and only if

T
limy/ / |V, |* dz dt = 0, (5.4)
0 Qy

where €, == {x € Q : dist(x,00) < v}.

PRrROOF. We only give a proof sketch. The difficult direction is to show that (5.4)
implies the desired convergence. We have

/|uy—u|2dx=/|uy|2daz+/|u|2dx—2/uy-udx
Q Q Q Q
52/|u0|2dx—2/ul,-udx.
Q Q

For the last integral, we would like to use u as a test function in the weak formulation of
the NSE. However, this is not allowed since only u-n =0 at the boundary, and it may well
be that the tangential component of v is non-zero.

Kato’s idea is now to cutoff u near the boundary. To this end, let n € C*°(0,00)
such that n(0) = 0, n(x) = 1 for every z > 1, and 7 is monotone non-decreasing. Set
d(z) :=dist(z,0Q) and let

v () ==U(M)-

14

(5.5)

It is now tempting to use n,u as a test function, as this now satisfies the correct boundary
condition. However this function will, in general, not be divergence-free!

By Poincaré’s Lemma, however, since divu = 0, there exists a smooth potential ¢ : Q —
R3 such that curl¢ = w and ¢ =0 at 9Q. Set

vy, = curl (n,0) ,

then v, is divergence-free, is zero on the boundary, and agrees with u except on ,.
Moreover one can show various estimates such as

[Vl re < Cv7 2, (5.6)

In particular, |u—v,| 2 = 0o(1) as v - 0, and therefore, (5.5) turns into

/|uy—u|2dx52/|u0|2dx—2/u,,-vl,dx+0(l).
Q Q Q



5.2. BOUNDED DOMAINS 43

Using v, as a test function and following a computation similar to the proof of Theo-
rem 4.11, we arrive at

s, () = u(t)]|72 < o(1) + / (Clluy = ul* + Ry (s)) ds,
0
where

R,(t) = / (uy - V)(uy = vy) - uy + vVuy, : Vo, da.
Q

It remains to show fg R, ds—0.
We consider only the second term, using (5.6):

/ vVu, : Vv, dz
Q

<V||Vu | 2 [Vull 2 + vIIVu [ 20, [V = Vool 22,

-1/2

<OV Vuy | 2 + Cov™ 5| Vuy | 2¢q,)-

The time integral of the second term goes to zero by assumption, and so does the integral
of the first term by virtue of the energy inequality:

t t 1/2
[t ass et (v [Cvnas) s era 0
0 0
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