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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universitdt Ulm in the summer term of 2019.
We mainly follow the [CKN82| in a modern fashion. This work is aimed at enthusiastic
Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.

Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1
Talk 7: The Blow-up estimate part 1

Lukas Niebel

The aim of this talk is to provide a partial proof of the following Proposition 2. This
proposition gives a criterion for the regularity of certain points of suitable weak solutions
by means of control of the parabolic mean of the gradient of w in cylinders shrinking to
that point. Let us recall some notation first. Given any point (¢,2) and a radius r > 0 we
introduce the cylinders

Qr(t,x) = {(s,y) ER4\t—r2 <s<t,\x—y|<r}
Qi(t.o) = {(sp) B! |1

The cylinders Q; (¢, z) are useful in the sense that (t,z) € Q7 (t,z), while (¢t,z) ¢ Q. (¢, ).
2
Therefore we may apply Corollary 1 to the cylinders Q(¢,x) to show that the point
(t,x) € Q% (t,x) is regular.
2

7 1,
t——r<s<t+=r|z-yl<r;.
8 8

PROPOSITION 2. There is an aabsolute constant €3 > 0 such that for all suitable weak
solutions (u,p) of the Navier-Stokes in a neighborhood of a given point (t,x) satisfying

1 1
limsup—/ |Vul? d(t,z) < =e3
=0 T JQi(t) 2

are regular in (t,x).

This theorem is going to be used to show Theorem B in [CKN82]|, namely that the
singular set S satisfies 221(S) = 0.

The proof of Proposition 2 is based on a rather technical decay estimate for a quantity
M. (r) in terms of M,,d. and F,. These quantities are analogues to the quantities intro-
duced in section 3. However they are defined on the translated cylinders Q) (¢,x) instead
of on the cylinder @, (¢,x). The estimate and its proof are going to be subject of the next
talk. We are going to use it to prove Proposition 2 for now. To provide a shorthand way
of writing it down we introduce several dimension-less quantities depending on u,p and f.
Without loss of generality we may restrict to the case (¢,z) = (0,0) by translation in space
and time. Writing @} = Q;(0,0), we define

1 5
G*(r)=r_2/ f d(t, ) K*(r)=r_%/8 (/ |p|da:) dt
Q: -Ir2 \J/B,(0)

T

1) =5 [ fulbld(t.o) Hy =7 [ -

T

d(t,z)

5.0) =" [ wuld(to) F() = [ 1t de)

T T

where

WEi-f ufds
Br(0)
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Let us compare these quantities to their analogues from section 3. Clearly 9, G, K are ex-
actly the same integral, with the only difference that they are now defined on the translated
cylinder Q7(0,0). The quantity F.(r) corresponds to the quantity F'(r) with ¢ = % fixed
and again @,(0,0) swapped by @ (0,0). The function 6. (r) is used to provide a Shorthand

way of writing down the regularity condition in Proposition 2, i.e. limsup d,(r) < 283 We
r—0
define the function

2 8
M.(r)=G;(r)+ Ho(r) + Jo(r) + K2 (1),
which satisfies the following decay estimate.

PROPOSITION 3. Let p > 0 and let (u,p) be a suitable weak solution of the Navier-
Stokes System with force f on the cylinder Q;(0,0). If it holds 6.(p) <1 and F.(p) <1,
then the following decay estimate holds

M.(r) <C [(;) M. (p) + (3)2 (322 (52 () + M.(9)6.(p) + Fup) + &(p))]

for some constant C' >0 and all 0 <r < 4p Moreover M, (r) is finite for all r < 4p

COROLLARY 1. There exists absolute constants €1,e2 > 0 such that the following holds.
We consider a cylinder Q,(t,x) and any suitable weak solution of the Navier Stokes system
in the given cylinders with a force term f € L9 for q > 2. Suppose that

5
i3 [t 4
2 etdbla e E [ ([ bla) ase
Qr () 1-r2 \J B, ()

Fy(r) = % /Q G <z

’

and

then it must hold |u| < Cr™t Lebesgue almost everywhere in the smaller cylinder Q%(t,x).
In particular u is reqular on Qg(t,x).

PROOF OF PROPOSITION 2. By translation of (u,p) we may assume that (¢,z) =
(0,0). Let (u,p) be a suitable weak solution of the Navier Stokes System in a neigh-
borhood D of (0,0). We want to apply Corollary 1 and verify its assumptions to prove
that (0,0) is a regular point. It holds @ = Qr(%rz,()) which suggest that we can use

Corollary 1 applied to the point (%7’2 0). Let 7 <1 such that Q} c D, then it holds
R R ICORY AT

whence lir% F,(r) =0 due to the fact that f € L'(D). This shows that, by Corollary 1, the
r—
point (0,0) € Qg(%ﬁ, 0) is regular if for example it holds

2

5
r 1
lim inf T_Q/ ul® + |u| [p| d(¢, ) + Y / (/ D] dy) ds<eg
r—0 T(O,§T2) 757“2 B.(0)

which can be written as

limiélf Go(r)+J.(r)+ K.(r) <ey.

00|

-

Due to the nonnegativity of the involved terms the latter condition is clearly verified if it

holds
N TN
3 5
liminf M, (r) < &1 := min _17(_1) 7(_1) )
r—0 3 3 3
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We claim that there are constants €3 € (0,1] and ~ € (0, %] such that whenever it holds
M.(p) > &1, Fe(p) <3 and 6,(p) < &3

for some p > 0 with Q7 c D it follows that M.(yp) < %M*(p). To show the existence of
such constants we choose

< min L L
ind —_ =

7 (C6)5 4

and then €3 > 0 such that

1
1 1
€3 < min{—7251, 1} and e3 + (?)2

IA

72
12C &1 6C"
Let us suppose that M. (p) > &1, that F.(p) < ez and that d.(p) < e3. In this case it holds
1 1
M (p) <&, > M.(p).

Using the decay estimate from Proposition 3 we deduce

<ol (5 ano+ (8) [ (2) Jonn -2(2) )

for all r < ip. Choosing r =yp < ip and using the assumptions on v and €3 we deduce

<o lsiane (2) [ (2) oo o) o}

1 1 1 1
<M (p)+ =M. (p)+ =& < =M,(p).
G (p) 5 (p) 551< 3 (p)

Now let us show that

liminf M., (r) < &;.
r—0

We first note that due to ¢ > % it holds

F*(r):r_%/m|f|3d(t,$)SC’(/{D?:|f|qd(t,w))%r%_l2_5qSCT% (/D|f|qd(t,x))2%

for all » < 1 such that Q> c D by Hélder’s inequality. This shows 1i1r(1) F.(r) = 0, which
r—

together with the assumption yields a radius rg > 0 such that F,(r) < e3 and 0. (r) < e3 for
all 7 < rg. This is due to the assumption that limsup d.(r) < %53 < £3. Let us now suppose
r—0
that lim ié’lf M, (r) > ;. We claim that there is N € N such that M, (yVrg) < &;. Assuming
r—
the opposite would be true it must hold that M. (y"rg) > &; for all n € N. Consequently
as we have proven before it follows that

M. (7y"r) < (%)n M, (r9)

for all n € N, which is a contradiction to lim iélf M., (r) > ;. This is only due to the fact that
T—

M. (ro) is finite. Hence, we may assume that M, (yVrg) < &; for some N € N. Now if it were
true that M, (yV*1rg) > & we could conclude that &; < M, (7N *1r) < %M* (vNro) < %51
which is a contradiction. By induction it follows that M, (7N**rg) < & for all k € N,
whence liITIL iglf M, (r) < &;. This shows that (0,0) is a regular point. O
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In preparation of the proof of the decay estimate we are going to start with an bound
of H, in terms of G.(r), d.(r) and in terms of A, (r), which is given by

Ai(r)= sup r_l/ |u]2 (t,-)dz.
{t}xBr(0)

_Tp2 1.2
g7 <t<8r

Let us fix a suitable weak solution (u, p) of the Navier Stokes system in a neighborhood D
of (0,0). Let 7 >0 such that Q; c D. Clearly it holds that A,(r) <7 1Ej < co.

LEMMA 5.1. For any r such that Q c D it holds

2
H.(r) <C(G(r) + Au(r)o.(r))
for some constant C > 0.

PROOF. At almost every time t it holds

/| NCE
(/ " <t>dx)§ ( [0 o] d)

sc/ |ul? (¢)dz / |V Jul*| (t)dz
Br(U) BT(O)

gc/ |ul? (t)dz / |Vl () [u] (t)dz
B, (0) B, (0)

3 % 2 % 2 %
<C / f (£)da ( / 74l (t)dx) ( / ) (t)dx)
B.(0) 5,(0) 5,(0)

3 % % uz . %
o[ i) ) ( / N (t)d) ,

where we have used Holder’s inequality, the Poincaré inequality on the ball B,(0), the

Cauchy-Schwarz inequality and the definition of A,(r). Integration in time from —%TQ to

uf? (t2) = (8) do

Wl

%7"2 yields

2

/_i (/BT(O) o (t)sdx)% (/BT(O) fuf? (t)dx)% dt

8

< (rA.(r)? (/Q |u|3d(t,m))3 (/Q |Vu|2d(t,x))2r%

1 1
= A2 (1) G2 (r)b.(r)?
by Hélders inequality. Applying Young’s inequality we conclude

(NI

rQH*(r) <C(rA.(r))

Ho(r) < Cr 6 A2 (1)G3 ()6, (1)} < C(GE () + Ay (1)5.(1)).
]

REMARK 1. Let 7 > 0 such that Q c D, then A, (r) <7 'E and 6,(r) <r 'Ej. Tt can
be shown similar to Lemma 3.1 that G.(r) can be bounded by A,(r) and J,(r) and thus
must be finite. This is going to be proven in the next talk given by Marius. By Lemma
5.1 we deduce that H.(r) is finite as well. Furthermore, due to the fact that p € L%(D)
it holds that K.(r) is finite. Finally J.(r) can be bounded by A.(r),d.(r),G.(r) and
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K. (r), whence M,(r) must be finite. The latter claim is going to be shown in the talk
given by Marius, too.
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