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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universität Ulm in the summer term of 2019.
We mainly follow the [CKN82] in a modern fashion. This work is aimed at enthusiastic
Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.
Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 7: The Blow-up estimate part 1

Lukas Niebel

The aim of this talk is to provide a partial proof of the following Proposition 2. This
proposition gives a criterion for the regularity of certain points of suitable weak solutions
by means of control of the parabolic mean of the gradient of u in cylinders shrinking to
that point. Let us recall some notation first. Given any point (t, x) and a radius r > 0 we
introduce the cylinders

Qr(t, x) = 󳆟(s, y) ∈ R4 󳈌 t − r2 < s < t, 󳈌x − y󳈌 < r󳆣

Q∗r(t, x) = 󳆡(s, y) ∈ R4 󳈏 t − 7

8
r2 < s < t + 1

8
r2, 󳈌x − y󳈌 < r󳆦 .

The cylinders Q∗r(t, x) are useful in the sense that (t, x) ∈ Q∗r
2
(t, x), while (t, x) ∉ Qr(t, x).

Therefore we may apply Corollary 1 to the cylinders Q∗r(t, x) to show that the point
(t, x) ∈ Q∗r

2
(t, x) is regular.

Proposition 2. There is an aabsolute constant ε3 > 0 such that for all suitable weak
solutions (u, p) of the Navier-Stokes in a neighborhood of a given point (t,x) satisfying

lim sup
r→0

1

r

ˆ

Q∗r(t,x)
󳈌󰑢u󳈌2 d(t, x) ≤ 1

2
ε3

are regular in (t, x).

This theorem is going to be used to show Theorem B in [CKN82], namely that the
singular set S satisfies P1(S) = 0.

The proof of Proposition 2 is based on a rather technical decay estimate for a quantity
M∗(r) in terms of M∗, δ∗ and F∗. These quantities are analogues to the quantities intro-
duced in section 3. However they are defined on the translated cylinders Q∗r(t, x) instead
of on the cylinder Qr(t, x). The estimate and its proof are going to be subject of the next
talk. We are going to use it to prove Proposition 2 for now. To provide a shorthand way
of writing it down we introduce several dimension-less quantities depending on u, p and f .
Without loss of generality we may restrict to the case (t, x) = (0,0) by translation in space
and time. Writing Q∗r = Q∗r(0,0), we define

G∗(r) = r−2
ˆ

Q∗r

󳈌u󳈌3 d(t, x) K∗(r) = r−
13
4

ˆ 1
8
r2

− 7
8
r2
󳆚
ˆ

Br(0)
󳈌p󳈌dx󳆞

5
4

dt

J∗(r) = r−2
ˆ

Q∗r

󳈌u󳈌 󳈌p󳈌d(t, x) H∗(r) = r−2
ˆ

Q∗r

󳈌u󳈌 󳈏󳈌u󳈌2 − 󳈌u󳈌2r󳈏d(t, x)

δ∗(r) = r−1
ˆ

Q∗r

󳈌󰑢u󳈌2 d(t, x) F∗(r) = r−
1
2

ˆ

Q∗r

󳈌f 󳈌
3
2 d(t, x),

where

󳈌u󳈌2r =
 

Br(0)
󳈌u󳈌2 dx.

4



1. TALK 7: THE BLOW-UP ESTIMATE PART 1 5

Let us compare these quantities to their analogues from section 3. Clearly δ,G,K are ex-
actly the same integral, with the only difference that they are now defined on the translated
cylinder Q∗r(0,0). The quantity F∗(r) corresponds to the quantity F (r) with q = 3

2 fixed
and again Qr(0,0) swapped by Q∗r(0,0). The function δ∗(r) is used to provide a shorthand
way of writing down the regularity condition in Proposition 2, i.e. lim sup

r→0
δ∗(r) ≤ 1

2ε3. We

define the function

M∗(r) = G
2
3
∗ (r) +H∗(r) + J∗(r) +K

8
5
∗ (r),

which satisfies the following decay estimate.

Proposition 3. Let ρ > 0 and let (u, p) be a suitable weak solution of the Navier-
Stokes System with force f on the cylinder Q∗ρ(0,0). If it holds δ∗(ρ) ≤ 1 and F∗(ρ) ≤ 1,
then the following decay estimate holds

M∗(r) ≤ C
⎡⎢⎢⎢⎣
󳆘r
ρ
󳆝

1
5

M∗(ρ) + 󳆘
ρ

r
󳆝
2

󳆘M
1
2
∗ (ρ)δ

1
2
∗ (ρ) +M∗(ρ)δ∗(ρ) + F∗(ρ) + δ∗(ρ)󳆝

⎤⎥⎥⎥⎦
for some constant C > 0 and all 0 < r ≤ 1

4ρ. Moreover M∗(r) is finite for all r ≤ 1
4ρ.

Corollary 1. There exists absolute constants ε1, ε2 > 0 such that the following holds.
We consider a cylinder Qr(t, x) and any suitable weak solution of the Navier Stokes system
in the given cylinders with a force term f ∈ Lq for q > 5

2 . Suppose that

r−2
ˆ

Qr(t,x)
󳈌u󳈌3 + 󳈌u󳈌 󳈌p󳈌d(s, y) + r−

13
4

ˆ t

t−r2
󳆚
ˆ

Br(x)
󳈌p󳈌dy󳆞

5
4

ds ≤ ε1

and

Fq(r) = r3q−5
ˆ

Qr(t,x)
󳈌f 󳈌q d(s, y) ≤ ε2,

then it must hold 󳈌u󳈌 ≤ Cr−1 Lebesgue almost everywhere in the smaller cylinder Q r
2
(t, x).

In particular u is regular on Q r
2
(t, x).

Proof of Proposition 2. By translation of (u, p) we may assume that (t, x) =
(0,0). Let (u, p) be a suitable weak solution of the Navier Stokes System in a neigh-
borhood D of (0,0). We want to apply Corollary 1 and verify its assumptions to prove
that (0,0) is a regular point. It holds Q∗r = Qr(18r

2,0) which suggest that we can use
Corollary 1 applied to the point (18r

2,0). Let r ≤ 1 such that Q∗r ⊂D, then it holds

Fq(r) = r3q−5
ˆ

Qr

󳈌f 󳈌q d(t, x) ≤ r
5
2

ˆ

D
󳈌f 󳈌q d(t, x),

whence lim
r→0

Fq(r) = 0 due to the fact that f ∈ L1(D). This shows that, by Corollary 1, the

point (0,0) ∈ Q r
2
(18r

2,0) is regular if for example it holds

lim inf
r→0

r−2
ˆ

Qr(0, 18 r2)
󳈌u󳈌3 + 󳈌u󳈌 󳈌p󳈌d(t, x) + r−

13
4

ˆ 1
8
r2

− 7
8
r2
󳆚
ˆ

Br(0)
󳈌p󳈌dy󳆞

5
4

ds ≤ ε1

which can be written as

lim inf
r→0

G∗(r) + J∗(r) +K∗(r) ≤ ε1.

Due to the nonnegativity of the involved terms the latter condition is clearly verified if it
holds

lim inf
r→0

M∗(r) ≤ ε̃1 ∶=min

⎧⎪⎪⎨⎪⎪⎩

ε1
3
,󳆘ε1

3
󳆝

2
3

,󳆘ε1
3
󳆝

8
5
⎫⎪⎪⎬⎪⎪⎭
.
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We claim that there are constants ε3 ∈ (0,1] and γ ∈ (0, 14] such that whenever it holds

M∗(ρ) > ε̃1, F∗(ρ) ≤ ε3 and δ∗(ρ) ≤ ε3

for some ρ > 0 with Q∗ρ ⊂ D it follows that M∗(γρ) ≤ 1
2M∗(ρ). To show the existence of

such constants we choose

γ <min󳆢 1

(C6)5
,
1

4
󳆧

and then ε3 > 0 such that

ε3 <min󳆡 1

12C
γ2ε̃1,1󳆦 and ε3 + 󳆘

ε3
ε̃1
󳆝

1
2

≤ γ2

6C
.

Let us suppose that M∗(ρ) > ε̃1, that F∗(ρ) ≤ ε3 and that δ∗(ρ) ≤ ε3. In this case it holds

M
1
2
∗ (ρ) < ε̃

− 1
2

1 M∗(ρ).

Using the decay estimate from Proposition 3 we deduce

M∗(r) ≤ C
⎧⎪⎪⎨⎪⎪⎩
󳆘r
ρ
󳆝

1
5

M∗(ρ) + 󳆘
ρ

r
󳆝
2 ⎡⎢⎢⎢⎣

ε3 + 󳆘
ε3
ε1
󳆝

1
2
⎤⎥⎥⎥⎦
M∗(ρ) + 2󳆘

ρ

r
󳆝
2

ε3

⎫⎪⎪⎬⎪⎪⎭
for all r ≤ 1

4ρ. Choosing r = γρ ≤ 1
4ρ and using the assumptions on γ and ε3 we deduce

M∗(γρ) ≤ C
⎧⎪⎪⎨⎪⎪⎩
γ

1
5M∗(ρ) + 󳆘

1

γ
󳆝
2 ⎡⎢⎢⎢⎣

ε3 + 󳆘
ε3
ε1
󳆝

1
2
⎤⎥⎥⎥⎦
M∗(ρ) + 2󳆘

1

γ
󳆝
2

ε3

⎫⎪⎪⎬⎪⎪⎭
≤ 1

6
M∗(ρ) +

1

6
M∗(ρ) +

1

6
ε̃1 ≤

1

2
M∗(ρ).

Now let us show that

lim inf
r→0

M∗(r) ≤ ε̃1.

We first note that due to q > 5
4 it holds

F∗(r) = r−
1
2

ˆ

Q∗r

󳈌f 󳈌
3
2 d(t, x) ≤ C 󳆚

ˆ

Q∗r

󳈌f 󳈌q d(t, x)󳆞
3
2q

r
9
2
− 15

2
q ≤ Cr

3
2 󳆘

ˆ

D
󳈌f 󳈌q d(t, x)󳆝

3
2q

for all r ≤ 1 such that Q∗r ⊂ D by Hölder’s inequality. This shows lim
r→0

F∗(r) = 0, which

together with the assumption yields a radius r0 > 0 such that F∗(r) ≤ ε3 and δ∗(r) ≤ ε3 for
all r < r0. This is due to the assumption that lim sup

r→0
δ∗(r) ≤ 1

2ε3 < ε3. Let us now suppose

that lim inf
r→0

M∗(r) > ε̃1. We claim that there is N ∈ N such that M∗(γNr0) ≤ ε̃1. Assuming

the opposite would be true it must hold that M∗(γnr0) > ε̃1 for all n ∈ N. Consequently
as we have proven before it follows that

M∗(γnr0) ≤ 󳆘
1

2
󳆝
n

M∗(r0)

for all n ∈ N, which is a contradiction to lim inf
r→0

M∗(r) > ε̃1. This is only due to the fact that

M∗(r0) is finite. Hence, we may assume that M∗(γNr0) ≤ ε̃1 for some N ∈ N. Now if it were
true that M∗(γN+1r0) > ε̃1 we could conclude that ε̃1 < M∗(γN+1r0) ≤ 1

2M∗(γ
Nr0) ≤ 1

2 ε̃1
which is a contradiction. By induction it follows that M∗(γN+kr0) ≤ ε̃1 for all k ∈ N,
whence lim inf

r→0
M∗(r) ≤ ε̃1. This shows that (0,0) is a regular point. □
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In preparation of the proof of the decay estimate we are going to start with an bound
of H∗ in terms of G∗(r), δ∗(r) and in terms of A∗(r), which is given by

A∗(r) = sup
− 7

8
r2<t< 1

8
r2
r−1

ˆ

{t}×Br(0)
󳈌u󳈌2 (t, ⋅)dx.

Let us fix a suitable weak solution (u, p) of the Navier Stokes system in a neighborhood D
of (0,0). Let r > 0 such that Q∗r ⊂D. Clearly it holds that A∗(r) ≤ r−1E0 <∞.

Lemma 5.1. For any r such that Q∗r ⊂D it holds

H∗(r) ≤ C(G
2
3
∗ (r) +A∗(r)δ∗(r))

for some constant C > 0.

Proof. At almost every time t it holds
ˆ

Br(0)
󳈌u(t, x)󳈌 󳈏󳈌u󳈌2 (t, x) − 󳈌u󳈌2r(t)󳈏dx

≤ 󳆚
ˆ

Br(0)
󳈌u󳈌3 (t)dx󳆞

1
3 ⎛
⎝

ˆ

Br(0)
󳈏󳈌u󳈌2 (t) − 󳈌u󳈌2r(t)󳈏

3
2

dx
⎞
⎠

2
3

≤ C 󳆚
ˆ

Br(0)
󳈌u󳈌3 (t)dx󳆞

1
3
ˆ

Br(0)
󳈍󰑢 󳈌u󳈌2󳈍 (t)dx

≤ C 󳆚
ˆ

Br(0)
󳈌u󳈌3 (t)dx󳆞

1
3
ˆ

Br(0)
󳈌󰑢u󳈌 (t) 󳈌u󳈌 (t)dx

≤ C 󳆚
ˆ

Br(0)
󳈌u󳈌3 (t)dx󳆞

1
3

󳆚
ˆ

Br(0)
󳈌󰑢u󳈌2 (t)dx󳆞

1
2

󳆚
ˆ

Br(0)
󳈌u󳈌2 (t)dx󳆞

1
2

≤ C 󳆚
ˆ

Br(0)
󳈌u󳈌3 (t)dx󳆞

1
3

(rA∗(r))
1
2 󳆚

ˆ

Br(0)
󳈌u󳈌2 (t)dx󳆞

1
2

,

where we have used Hölder’s inequality, the Poincaré inequality on the ball Br(0), the
Cauchy-Schwarz inequality and the definition of A∗(r). Integration in time from −7

8r
2 to

1
8r

2 yields

r2H∗(r) ≤ C (rA∗(r))
1
2

ˆ 1
8
r2

− 7
8
r2
󳆚
ˆ

Br(0)
󳈌u󳈌 (t)3dx󳆞

1
3

󳆚
ˆ

Br(0)
󳈌u󳈌2 (t)dx󳆞

1
2

dt

≤ (rA∗(r))
1
2 󳆚

ˆ

Q∗r

󳈌u󳈌3 d(t, x)󳆞
1
3

󳆚
ˆ

Q∗r

󳈌󰑢u󳈌2 d(t, x)󳆞
1
2

r
1
3

= r2A
1
2
∗ (r)G

1
3
∗ (r)δ∗(r)

1
2

by Hölders inequality. Applying Young’s inequality we conclude

H∗(r) ≤ Cr−
1
6A

1
2
∗ (r)G

1
3
∗ (r)δ∗(r)

1
2 ≤ C(G

2
3
∗ (r) +A∗(r)δ∗(r)).

□

Remark 1. Let r > 0 such that Q∗r ⊂D, then A∗(r) ≤ r−1E0 and δ∗(r) ≤ r−1E1. It can
be shown similar to Lemma 3.1 that G∗(r) can be bounded by A∗(r) and δ∗(r) and thus
must be finite. This is going to be proven in the next talk given by Marius. By Lemma
5.1 we deduce that H∗(r) is finite as well. Furthermore, due to the fact that p ∈ L

5
4 (D)

it holds that K∗(r) is finite. Finally J∗(r) can be bounded by A∗(r), δ∗(r),G∗(r) and
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K∗(r), whence M∗(r) must be finite. The latter claim is going to be shown in the talk
given by Marius, too.
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