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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universitdt Ulm in the summer term of 2019.
We mainly follow the [1] in a modern fashion. This work is aimed at enthusiastic Masters
and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.

Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.



Contents

Preface
Chapter 1. Talk 1: Introduction

Chapter 2. Talk 4: Background and Definitions
2.1.  On the initial boundary value problem
2.2.  Higher Regularity
2.3. Recurrent Themes

Bibliography

~ 3 Ot Ot e~ \V]

14



CHAPTER 1

Talk 1: Introduction

In this seminar course, we consider the three-dimensional Navier-Stokes equations given
by
du(z,t) + (u- V)u(z,t) + Vp(z,t) - Au(z,t) = f(z,t) 1
divu(z,t) =0. (1.1)

Here, (z,t) € 2x[0,T], where Q c R? some domain, and we have the unknown velocity
field

w:Q x [0,7] - R?;
the unknown pressure field
p:Qx[0,T] - R;
and the given force f:Q x [0,T] - R? with div f = 0 in Q x [0,T"]. Together with initial
data and boundary data, (1.1) turns into an initial boundary value problem
u(x,0) = up(x), x €, (1.2)
u(z,t) =0, xedQ,0<t<T.



CHAPTER 2

Talk 4: Background and Definitions

2.1. On the initial boundary value problem

First, note that the condition div f = 0 is not a restriction at all. Indeed, suppose
we want to solve (1.1) for a general force f € L9(Q) with 1 < ¢ < co. We may apply a
Li-Helmholtz decomposition to write f = V® + f1 with div fi = 0 and [ f1]eaxjory) <
C(q, ) 1 fll aaxpo,ryy- I (u,p) is a solution of (1.1) with the force term fi, it is easy to
see that (u,p+ @) is a solution to (1.1) with the right hand side V® + f; = f as desired.

To obtain an existence theory for arbitrary time intervals, we study weak solutions of
(1.1) for which the energy

T
ess sup0<t<T/ |u)? da:+/ / |Vul* dz dt < oo, (2.1)
Q 0 Q

is finite, where |Vu|2 =Y ‘@uj‘g. This choice is motivated by multiplying (1.1) by w,
integration and using integration by parts. (2.1) justifies why requiring a solution u to
have space derivatives of first order is a somewhat physical assumption.

If one instead multiplies (1.1) by 2u¢ for some ¢ € C*°(£2 x [0,T]) and integrates one
obtains

/Ot/ﬂ28tu-u¢)+2((u-V)u)-u¢—2Au-uq§+2Vp-u¢daz=/Ot/QQf-uqﬁdx.(Q.Q)

Since ulgpg = 0 by (1.2), we may use integration by parts without creating any boundary
terms. For the first term, we use 9y |u|* = 20,u - u, so

t t
_ 2 ~ 2
/0 /928tu-u¢ dz dt—/o at/Q|u| ¢ dx dt /Q|u| O do dt (2.3)
:/ |u(t)|2<bda:—/ |u(0)|2q§dx—/ ? 0,6 e dt.
Q Q Q

For the second part, integration by parts yields, using summation convention,

t t
/ / 'O ul p da dt = - / / |ul? dyulep da dt - / |ul? u'8;¢ daz dt (2.4)
0 JQ 0 JQ Q

t
=—//|u|2u-v¢d:):dt,
0 /o

since 0; lul* = 20;u7u? and dive = 0 by (1.1). For the third term, we get using ; |u|* =
20;u’u’ again

t t ¢
‘2/ /@aiujuj@bd“?/ /IVUI2¢dfc dt+2/ /aiujuj8i¢dx et (2.5)
0 JQ 0 JO 0 Jo
t t
:2/ /|VU|2¢d$ dt—/ /|u|28i61-¢> dz dt
0 JQ 0 JO
t t
=2/ /IVuI2<z>dmdt—/ /|u|2Ad>dxdt.
0 JQ 0JO
5
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Finally, for the last term, using divu = 0, we have

t . t . t .
2/ /@pu’gb dz dt=—2/ /p@iulgbdx dt—2/ /pu’@iqb dx dt (2.6)
0 Ja 0 Ja 0 Ja
t
:—2/ /pu-V(;Sda:dt.
0 JQ

Combining, (2.2),(2.3),(2.4),(2.5) and (2.6), we get

t t
/ﬂ|u(t)|2¢dx+2/o /Q|Vu|2¢)d:c dt:/ﬂ|u0|2¢dx+/0 /ﬂ|u|2 Oy + A¢) dz dt

(2.7)
t t
+/O/Q<|u|2+2p>u-v¢dxdt+z/o /Qf-ugbdxdt.

Pluggin in ¢ =1 in (2.7) we obtain

/Q|u(t)|2 dx+2/0t/Q|Vu|2 dz dt=/Q|u0|2+2/0t/Qf-udx. (2.8)

Note that for f = 0 in (2.8), we may formally conclude (2.1) with an explicit bound
depending on the initial date ug € L?*(Q2). The key point in proving existence of weak
Leray-Hopf solutions is the energy inequality, an inequality form of (2.8).

t t
/|u(t)|2 dx+2/ /|Vu|2 da:dts/|uo|2+2/ /f-udx, (2.9)
Q 0 JQ Q 0 JQ

for almost every t.

For the main result, the localized version of (2.9) is crucial. Taking any ¢ > 0 with
compact support in Q x (0,7") in (2.7), one may conclude the following generalized energy
inequality by estimating the first term by zero

T T
2/ / |Vul? ¢ dz dt < / / [|u|2 (010 + A@) + (Juf* +2p)u- Vo + 2u - f¢] dz dt.
0 Q 0 Q
(2.10)
By definition, any suitable weak solution satisfies (2.10). Last week, we saw that such a

suitable weak solution in fact exists (cf. David’s talk Lemma 2.2, Theorem 2.5, Farid’s
talk Lemma 1.3).

DEFINITION 2.1. We call a pair (u,p) a suitable weak solution to the Navier-Stokes
equation with force f on Q x (0,T) if the following conditions are satisfied.

(1) w,p, f are measureable on Q x (0,7") and
(a) feLi(2x(0,T)) for ¢>2 and div f =0,
(b) pe LT (Qx (0,T))
(c) for some Fy, F1 < oo we have

/ lul* dz < Ey for almost every ¢ € (0,T), and (2.11)
Q

T
/O /QIVu|2 dz dt < Ey. (2.12)

(2) u,p and f satisfy (1.1) in the sense of distributions on € x (0, 7).
(3) For each ¢ € C§°(2 x (0,T)) with ¢ >0, inequality (2.10) holds.
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Even for a suitable weak solution, it is not immediately clear that the right hand side
of (2.10) is well, defined, i.e. it is not obvious that the integrals

T T
/ / |u|2 u-Vodxdt and / / pu-Vodx dt
0o Jao 0o Ja

do exist. We will prove that this is the case.

2.2. Higher Regularity

Recall that a point (z,t) in space-time is regular if u € L2 (U) for an open neighbor-
hood U of (z,t). This is justified by the following result due to Serrin [2]. If u is a weak
solution of (1.1) on a cylinder 2 x (a,b) satisfying

/a 2
/ / [u|? dx dt < oo with 3 + - <1, (2.13)
q s

then u us necessarily Cm+2’5 in space on compact subsets of Q, provided f is C™” in space
with m >0 and 0 < 8 < 1. In particular if f is C* in space and (2.13) is satisfied, then wu is
C> in space. Regularity in time is more difficult. If uw e L*(0,T; L3(U)), then u is Holder
continuous in time. From this, if u € L;?.(U) in a neighborhood U of (z,t), then (2.13)
clearly holds, so u is smooth in space, provided f is smooth in space.

2.3. Recurrent Themes
The following three observations will be used frequently.

2.3.1. Interpolation inequalities for u and p. If B, c R3 be a ball of radius > 0
and let u e H'(B,). Then, the Gagliardo-Nirenberg-Sobolev inequality yields

/|u|‘1 dx<0(/ vl d:r) (/ f? dx)Q/Q_a+%( f? dx)q/Q, (2.14)

where C' >0, 2< ¢ <6 and a = (q 2). If B, is replaced by R3 the second term on
the right in (2.14) can be omltted Inequahty (2.14) follows from the classical Gagliardo-
Nirenberg-Sobolev inequality [3] by applying an extension operator to u € H'(B,). The
term T% makes (2.14) scaling invariant with respect to r > 0.

We will now use (2.14) to interpolate between (2.11) and (2.12). Take ¢ = 13—0 soa=1
in (2.14) and integrate in time. Then

T
/ lul'"* dzdt<C (E;/SEl + r-2E5/3T) . (2.15)
0o JB,
A particular consequence is that u e L3(Q x (0,T)), hence

T
/ / lul> u- v dz dt
0 Q

so the corresponding term in (2.10) is in fact finite if u is a suitable weak solution and

peC>®(Q2x(0,T)). Moreover, if g = g, SO a = % we get

< VOl Lo o,y 10l L3 axco,ry) < o0

T 83
/ (/ Ju|"? d:c) dt < C(ES By +r72E) " T). (2.16)
0 T
If we take the (distributional) divergence of (1.1), we get
0=Ap+0; (Wou') = Ap+9;0;(wu'),
hence

Ap = -0;0;(u'u’) on Q x (0,T) in the sense of distributions. (2.17)
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In addition, any solution u € C1(0,7;C%(Q)) of (1.1) on Qx (0,T) for f = 0 satisfying (1.2)
has to fulfill
v-Vp=v-Auon 0Qx (0,T),

by simply restricting (1.1) to 92 and multiplying with v.
Recall that in R3, the unique solution to —Awv = f, with f € LY(R?) is given by

o(z) = - / L i) dy.

T r3 |z =9
We may thus rewrite (2.17) as p = (-A)719;0; (u'u?).

First, we consider the case Q = R3. For u smooth enough, we have

1 1 i i X 1 1 P
p(z) = . /]1%3 mayz.ayj (u'v’) dy = ajju’ (z)w’ (x) + yo /R3 0y Oy, (m)u u’ dy,

where the latter has to be understood as a singular integral, i.e. a principal value lim._g f|
Also note that a;; =0 if ¢ # 5.

We now use standard Calderén-Zygmund theory, see for instance [5]. To that end, fix
i,j€{1,...,3} and consider the convolution operator

1 1
L f = — a, | ——17ay.
S]f 47T/]R3ay]ayl(|l‘—y|)f Y

dij - +3 (zi—yi)(zi-y,)

T-y|>e”

A computation yields 9,,0y, ( L ) = . We may write

le=yl) = " o=y le—yl®
Oz —
St = [ T )

with Q(y) = —6;; +31|’;|/2J Note that €2 is homogeneous of degree 0 and a computation shows

Jo2 Q(y) dS(y) = 0 for all 4,5. Clearly, Q is Lipschitz on S?. Thus, by Calderén-Zygmund
theory [5, §4.3, Theorem 3],

Sijt LY(R?) — LY(R?) is bounded for any 1< ¢<oco,i,j=1,...,3. (2.18)
AS a consequence

Ipll o (rsy = ”(‘A)_laiaj(ui“j)”Lq(R3) <C Z ”uiuj”Lq(RS) )
i.j

for some C = C(q) >0 and

HuiujHiq(Rg) = /RS ‘uiuj‘q dx < /R3 |u|2q dx.

This yields

/ [p|* dz < C/ [ul*? dz.
RS R3

In particular, if (u,p) is a suitable weak solution of (1.1) on R? x (0,T") we have

T T
/ / b dzdt<C / | dz dt < CEE,
0 R3 0 R3

by (2.15) using that we don’t need the second term in (2.14) since we are in the whole
space R3.
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For general 2 ¢ R? bounded, let Q; ¢ Q and ¢ € C5° () with ¢ =1 in a neighborhood
U of ;. Then for ¢ fixed we have using

o@ptat) =~ [ —a,on) dy (219)
1

1
2 [pAG +2(V, Vp) + pAp] d
4t Jrs o -yl

We plug in (2.17) for Ap in (2.19) and obtain using summation convention

1 1

[pA¢ +2(Ve, Vp) - ¢0;0;(u'v’)] dy. (2.20)
47’[‘ R3 |ZL'— |

op =
Now, we integrate by parts to remove all derivatives on p and u. Note that in order to do
this in a precise way, you have to cut out a ball B; of radius € and do integration by parts

L') is L}, .(R?), the boundary terms will vanish as ¢ - 0. We

there. However, since 0, (
lz—y

have

1 1 1
/ (Vo,Vp) dy=—/ 8yi(—)ai pdy—/ ——A¢p dy. (2.21)
Rrs |2 =y RS |z~ yl s |z =yl

For the last term in (2.20) we have

/ ——$0;0; (u'u’) dy = / Oy, ( ! )gf)@ (u'e’) dy (2.22)
®3 |2 =y R3

|z -yl

/ L 0.60;(u'?) dy
R3 |9C @/|

1 o 1 o
= . N/ tu? N/ ; tu?
/Ra@yjayl(lx_yl)gbuu dy+/ﬂ{38yl(|x_ |)8J¢uu dy
+/ Oy, (L)aigbuiuj dy+/ ——0;0j¢u’ w? dy
rs O \|z -y R |2 —yl

1 o 4
- / y; Oy, (f) pu'v’ dy+/ ——=0;pu'v’ dy
R3 |z — R3 |x yl

+/ —Yi 81<Z>uiuj dy +/ —8¢8j¢uiuj dy
3 |z -y R3 |7 -yl

1 o T; —
= Oy, Oy, | —— | pu'v? dy+2/ diputn! dy
/RB o (|~’U—y|) R3 |z — yl 7
+/ Oajqzbuuj dy
R3 |7 =Yl

Therefore, combining (2.19), (2.20), (2.21) and (2.22) we get

PO =p+p3+ps (2.23)
with
3 , . 1 1 o
p=aju(x)u! (z) + gy /1R3 Oy, Oy, (m) ou'u’ dy

1 1
p3 = —_— quu 274 dy + —
2’/’1’ R3 |g; yl 4 R3 |x yl

1 2 1 1 "
p4=(——+—)/ pA¢ dy + —181 p dy.
47 4 R3 |.117—y| 27'[' R3 |[1; yl

——0;0jpu’ ‘W dy
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Note that we have for z € Q, using ¢ =1 on U and ¢ =0 on R\ Q

1 1
/ ojpu’ W dy| + / ——0;0j¢u’ ‘“w! dy
21 Jrs |z - yl AT Jps |o - yl

1
P W O dy+—/

6l J Lok
<1 /| 2 ay+ 12 /| 2 a

where 6 := d(Q1,0U) > 0 gives lower bounds on |x -yl Slmilarly for p4, we have for z €

|ps| (z,t) <

|3 050 |ul” dy
ONU |x

1
il )< - | pllAg] d / o elbl dy
47 ONU |JJ |
||¢||c2 / o 19l /
d
Consequently,
lps| (z,t) + |pa| (z,t) < C/Q (|p| + |u|2) dy, for z € Q. (2.24)

Since the operators S;; are bounded by (2.18), there exists C' > 0 such that
/ |16|5/3 dz < Z/ |Sij(¢uiuj)|5/3 dz < C’Z/ |<15’uitaj|5/3 dz,
R3 i,j JR3 i,j JR3
and consequently

/ " de<CY / 6wt | de < C ] / ' da. (2.25)
0 i,j JR3 Q

From (2.24) and (2.25), we may deduce p e L7*(0,T; L*(Q1))).
We have using (2.15) and (2.25)

T 3/5-5/4
()
0 o

T 10 o
dt < C/ (/ lu|'" dz + 1) dt (2.26)
0 Q

T
<C (/ / ' dz dt + T) <C(E’Ey+ E’T +T),
0 Q

where the constant C' > 0 changes from line to line. For the remaining terms in (2.23), we
have using (2.24) and Jensen’s inequality

/OT (/Ql(|p3| +pa))”? dx)g/4 dt < C’|Q1|/T /(lpl + ul?) dx)5/3-3/4 dt (2.27)
< C/ ((/ lp| da 5/4+ (/Qlul2 dx)5/4) dt

<C / / p”* dz dt + CTE"
0 Q

5
= C bl oy + CTEY
Therefore, combining (2.26) and (2.27) we get using p = ¢p for a.e. ¢t and x €

||p||L5/4(0 T: L5/3(Q1)) > ||p||L5/4(0 T;L%3(Q1)) + |||p3| + |p4|||L0/4(0 T;L5/3(01)) < oo, (2-28)

if (u,p) is a suitable weak solution. Thus, we have proven the following
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LEMMA 2.2. If (u,p) is a suitable weak solution of (1.1) on Qx (0,T) and B, x (a,b) c
Qx(0,T), then p e LM(a, b;LS/S(Br)) and u € L5(a,b;L5/2(Br)),

PRrROOF. This follows from (2.28) and (2.16). O

In particular, the term [ [ p(u-V¢) in (2.10) is integrable, since if supp ¢ c Q1 we have
T
[ [ wvel dzarsc [l 001, @

T 1/5 T 4f5
5,
so [ 1y @) ([ 108, o)

=C ||u||L5(o,T;L5/2(Ql)) ||p||L5/4(0’T;L5/3(Ql)) )

by Holder’s inequality and since % + % = % + % = 1. Thus, we have shown that for any

suitable weak solution of (1.1), the right hand side of (2.9) exists.

2.3.2. Weak continuity. It can be shown, that any suitable weak solution u of (1.1)
is weakly continuous in time with values in L?(), i.e. for any w e L?(Q2) we have

/Qu(a:,t)w(m) dz —» /Qu(x,to)w(x) dz as t - to.

For a proof of this property we refer to [6, p. 281-282]. This has some important conse-
quences.

(i) We can evaluate w at times t and it makes sense to impose the initial condition
u(0) = ug in the sense that u(t) — ug in L?() as t - 0, i.e. u extends weakly
continously to [0,7).

(ii) The integrability condition (2.11) holds for every t € (0,7). If ¢ty € (0,7"), then
there exist ¢, — to with [ lu(t,)|? dz < Ey, otherwise (2.11) would not hold almost
everywhere. But since the L?(2)-norm is weakly lower semicontinuous and as u(t, ) —
u(to) as n — oo, we conclude fq lu(to)* dz < Eq.

(iii) If (u,p) is a suitable weak solution of (1.1) on € x (a,b), then for each a <ty < b and
¢ eC (2% (a,b)) with ¢ >0 we have

2 o 2
/Q|U(to)| ¢(to) d$+2/a /Q|Vu| ¢ dx dt (2.29)
to
< / / [[ul® (96 + ) + (|uf* +2p)u- Vo +2u- f¢] da dt.
a Q

This follows from (2.10), by choosing the positive test function ¢(z,t)x ((to=t)/e),
where € > 0 and y is a smooth function with 0 < x <1, x(s) =0 for s <0 and x(s) =1
for s > 1. Then (2.10) yields

2/:0 /Q |Vu|2 ¢X((t0_t)/€) dx dt < /ato /Q [|u|2 (8t (qu ((to—t)/z-:)) (230)

+ Ay ((to=0f2)) + ([uf* + 2p)u - Vo ((to=0)e)
+2u- fox ((to=t)fe) ] dx dt.
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Note that for ¢ < tg, x ((to-t)fc) - 1 as € - 0. Since 0 < x < 1, the dominated
convergence theorem yields that as e - 0 in (2.30)

to to
2/a /Q|Vu|2¢dmdts/a /Q[|u|2(8t¢+A¢+(|u|2+2p)u-v¢)+2u.f¢] (Z;;

to
 lim / / ul? 60, (x ((to-))2)) da dt,
e~V Ja Q

since all terms in u and p are integrable. Taking a closer look at the last term, we
observe that for u smooth enough

/a "’ / ul? 90, (x ((to=1)/=)) dz: dt = / / ! luf? $8; (x ((to-0)/e)) dt dz

- [ utto) P otto)x(0) d = [ futa)P ofa)x (o-a)) d
to
. / /Q O Jul? éx ((o-0):) dar d - / /Q By (to-)2) da dt.

If we let € - 0 we obtain

to
lim / [ul® 98, (x ((t-0))=)) da dt
Q

e=0/,

—/Q|u(a)|2¢(a) dx—/ato/gc‘)t il ¢ da dt—/ato/g|u|2 0,6 da dt
oty de— [ [ 0,(uf o) dwdr=— [ Ju(o) o(t0) da
Q a Q Q

which together with (2.31) proves (2.29). If w is not smooth in time, we can approx-
imate, so (2.29) holds for a.e. tg and any suitable weak solution (u,p). But by weak
continuity this implies that (2.29) has to hold for all ¢y. Like in (ii), for any ¢ € (a,b)
we may find ¢,, such that (2.29) holds along t,,. By dominated convergence, all double
integrals in (2.29) will then converge in the correct way as t, — to since the involved
functions are integrable on Q x (a,b) as (u,p) is a suitable weak solution. More-
over, for the single integral, we have using weak continuity and the Cauchy-Schwarz
inequality

/|u(t0)| o(to) dx = hm / ~u(to)v/ o(to) dx
1/2
<hm1nf /|u B o) dac /|u 1) 6 (to) dx) ,

hence [, lu(to)|? ¢(to) dz < liminf, e Jo lu(t,)|? ¢(t,) dz. Here we used that for
any v € L*(Q)

/Q(u(t“) ¢ (tn) —u(to) ¢(to))vdx
=/Qu(tn)(\/¢(tn)‘\/¢(t0))vdx+/9(u(tn)—u(to))\/gb(tg)v dz -0,

as n — oo since |[u(tn)l| 2y is bounded. This proves (2.29) for all ¢ € (a,b).
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2.3.3. The measures % and 2*. Recall that the k-dimensional Hausdorff mea-
sure in R? of a set X c R? is given by

AH(X) 1= Jim A (X) = sup A (X),

6>0
where
HF(X) = inf{Za(k)(diam U)*|Up c R? closed, X c | Uy, diam Uy < (5},
=1 =1

where a(k) is chosen such that #%([0,1]* x {0}%°*) = 1. In a completely analogous
manner, we define a “parabolic” Hausdorff meausre via

PP (X) = lim P¥(X) =sup Z2¥(X),
6-0* 0>0
with
PE(X) = inf{Zr? Qr, cR*xR, X c |JQp,10 < 5},
=1 (=1

where the supremum is taken over any parabolic cylinders, i.e. any sets

Qraot={(y,7) ER3xR||y—:co|$r,t—r2$73t}.

Like for 2%, one can show that £* is an outer measure for which all Borel sets are
measurable and a Borel regular measure on the g-algebra of measurable sets.

LEMMA 2.3. There exists C(k) >0 such that % < C(k)2*.

Proor. Let 0 < ¢ <1 and let Q; = Qr, ., be parabolic cylinders with 7, < 6. Let
dyp = diam Q. Then, clearly ry < dy. Moreover, by the Pythagorean theorem dy < +/7¢ + 7“% <
V/2rg, since 1y < § < 1. Thus, for X ¢ R? xR, we have

HF(X) < inf { > a(k)(de)*| Q¢ c R? x R parabolic cylinders , X ¢ U Qr,de < 6}
=1 =1

< 2 inf
(oo G

(=1

o )
Q¢ c R? x R parabolic cylinders , X ¢ | Q,7¢ < —}

k
= a(k)V2 25 5(X).
Taking § — 0 finishes the proof. ([l
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