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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universität Ulm in the summer term of 2019.
We mainly follow the [1] in a modern fashion. This work is aimed at enthusiastic Masters
and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.
Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 1: Introduction

In this seminar course, we consider the three-dimensional Navier-Stokes equations given
by

∂tu�x, t� � �u � ©�u�x, t� �©p�x, t� �∆u�x, t� � f�x, t�
divu�x, t� � 0.

(1.1)

Here, �x, t� > Ω��0, T �, where Ω ` R3 some domain, and we have the unknown velocity
field

u�Ω � �0, T �� R3;

the unknown pressure field

p�Ω � �0, T �� R;

and the given force f �Ω � �0, T � � R3 with div f � 0 in Ω � �0, T �. Together with initial
data and boundary data, (1.1) turns into an initial boundary value problem

u�x,0� � u0�x�, x > Ω, (1.2)
u�x, t� � 0, x > ∂Ω,0 @ t @ T.
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CHAPTER 2

Talk 4: Background and Definitions

2.1. On the initial boundary value problem

First, note that the condition div f � 0 is not a restriction at all. Indeed, suppose
we want to solve (1.1) for a general force f > Lq�Ω� with 1 @ q @ ª. We may apply a
Lq-Helmholtz decomposition to write f � ©Φ � f1 with div f1 � 0 and Yf1YLq�Ω��0,T �� B

C�q,Ω� YfYLq�Ω��0,T ��. If �u, p� is a solution of (1.1) with the force term f1, it is easy to
see that �u, p �Φ� is a solution to (1.1) with the right hand side ©Φ � f1 � f as desired.

To obtain an existence theory for arbitrary time intervals, we study weak solutions of
(1.1) for which the energy

ess sup0@t@T

�
Ω
SuS2 dx �

� T

0

�
Ω
S©uS2 dx dt @ª, (2.1)

is finite, where S©uS2 �� Pi,j T∂iuj T2. This choice is motivated by multiplying (1.1) by u,
integration and using integration by parts. (2.1) justifies why requiring a solution u to
have space derivatives of first order is a somewhat physical assumption.

If one instead multiplies (1.1) by 2uφ for some φ > C
ª�Ω � �0, T �� and integrates one

obtains � t

0

�
Ω

2∂tu � uφ � 2 ��u � ©�u� � uφ � 2∆u � uφ � 2©p � uφ dx �

� t

0

�
Ω

2f � uφ dx.(2.2)

Since uS∂Ω � 0 by (1.2), we may use integration by parts without creating any boundary
terms. For the first term, we use ∂t SuS2 � 2∂tu � u, so� t

0

�
Ω

2∂tu � uφ dx dt �

� t

0
∂t

�
Ω
SuS2 φ dx dt �

�
Ω
SuS2 ∂tφ dx dt (2.3)

�

�
Ω
Su�t�S2 φ dx �

�
Ω
Su�0�S2 φ dx �

�
Ω
SuS2 ∂tφ dx dt.

For the second part, integration by parts yields, using summation convention,� t

0

�
Ω

2ui∂iu
jujφ dx dt � �

� t

0

�
Ω
SuS2 ∂iuiφ dx dt �

�
Ω
SuS2 ui∂iφ dx dt (2.4)

� �

� t

0

�
Ω
SuS2 u � ©φ dx dt,

since ∂i SuS2 � 2∂iu
juj and divu � 0 by (1.1). For the third term, we get using ∂i SuS2 �

2∂iu
juj again

�2

� t

0

�
Ω
∂i∂iu

jujφ dx � 2

� t

0

�
Ω
S©uS2 φ dx dt � 2

� t

0

�
Ω
∂iu

juj∂iφ dx dt (2.5)

� 2

� t

0

�
Ω
S©uS2 φ dx dt �

� t

0

�
Ω
SuS2 ∂i∂iφ dx dt

� 2

� t

0

�
Ω
S©uS2 φ dx dt �

� t

0

�
Ω
SuS2 ∆φ dx dt.
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6 2. TALK 4: BACKGROUND AND DEFINITIONS

Finally, for the last term, using divu � 0, we have

2

� t

0

�
Ω
∂ipu

iφ dx dt � �2

� t

0

�
Ω
p∂iu

iφ dx dt � 2

� t

0

�
Ω
pui∂iφ dx dt (2.6)

� �2

� t

0

�
Ω
pu � ©φ dx dt.

Combining, (2.2),(2.3),(2.4),(2.5) and (2.6), we get
�

Ω
Su�t�S2 φ dx � 2

� t

0

�
Ω
S©uS2 φ dx dt �

�
Ω
Su0S2 φ dx �

� t

0

�
Ω
SuS2 �∂tφ �∆φ� dx dt

(2.7)

�

� t

0

�
Ω
�SuS2 � 2p�u � ©φ dx dt � 2

� t

0

�
Ω
f � uφ dx dt.

Pluggin in φ � 1 in (2.7) we obtain
�

Ω
Su�t�S2 dx � 2

� t

0

�
Ω
S©uS2 dx dt �

�
Ω
Su0S2 � 2

� t

0

�
Ω
f � u dx. (2.8)

Note that for f � 0 in (2.8), we may formally conclude (2.1) with an explicit bound
depending on the initial date u0 > L2�Ω�. The key point in proving existence of weak
Leray-Hopf solutions is the energy inequality, an inequality form of (2.8).

�
Ω
Su�t�S2 dx � 2

� t

0

�
Ω
S©uS2 dx dt B

�
Ω
Su0S2 � 2

� t

0

�
Ω
f � u dx, (2.9)

for almost every t.
For the main result, the localized version of (2.9) is crucial. Taking any φ C 0 with

compact support in Ω � �0, T � in (2.7), one may conclude the following generalized energy
inequality by estimating the first term by zero

2

� T

0

�
Ω
S©uS2 φ dx dt B

� T

0

�
Ω

�SuS2 �∂tφ �∆φ� � �SuS2 � 2p�u � ©φ � 2u � fφ� dx dt.

(2.10)

By definition, any suitable weak solution satisfies (2.10). Last week, we saw that such a
suitable weak solution in fact exists (cf. David’s talk Lemma 2.2, Theorem 2.5, Farid’s
talk Lemma 1.3).

Definition 2.1. We call a pair �u, p� a suitable weak solution to the Navier-Stokes
equation with force f on Ω � �0, T � if the following conditions are satisfied.

(1) u, p, f are measureable on Ω � �0, T � and
(a) f > Lq�Ω � �0, T �� for q A 5

2 and div f � 0,
(b) p > L5~4�Ω � �0, T ��
(c) for some E0,E1 @ª we have

�
Ω
SuS2 dx B E0 for almost every t > �0, T �, and (2.11)

� T

0

�
Ω
S©uS2 dx dt B E1. (2.12)

(2) u, p and f satisfy (1.1) in the sense of distributions on Ω � �0, T �.
(3) For each φ > C

ª

0 �Ω � �0, T �� with φ C 0, inequality (2.10) holds.
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Even for a suitable weak solution, it is not immediately clear that the right hand side
of (2.10) is well, defined, i.e. it is not obvious that the integrals� T

0

�
Ω
SuS2 u � ©φ dx dt and

� T

0

�
Ω
pu � ©φ dx dt

do exist. We will prove that this is the case.

2.2. Higher Regularity

Recall that a point �x, t� in space-time is regular if u > Lªloc�U� for an open neighbor-
hood U of �x, t�. This is justified by the following result due to Serrin [2]. If u is a weak
solution of (1.1) on a cylinder Ω � �a, b� satisfying� b

a
��

Ω
SuSq dx�s~q dt @ª with

3

q
�

2

s
@ 1, (2.13)

then u us necessarily C
m�2,β in space on compact subsets of Ω, provided f is Cm,β in space

with m C 0 and 0 @ β @ 1. In particular if f is Cª in space and (2.13) is satisfied, then u is
C
ª in space. Regularity in time is more difficult. If u > Lª�0, T ;L3�U��, then u is Hölder

continuous in time. From this, if u > Lªloc�U� in a neighborhood U of �x, t�, then (2.13)
clearly holds, so u is smooth in space, provided f is smooth in space.

2.3. Recurrent Themes

The following three observations will be used frequently.

2.3.1. Interpolation inequalities for u and p. If Br ` R3 be a ball of radius r A 0
and let u >H1�Br�. Then, the Gagliardo-Nirenberg-Sobolev inequality yields

�
Br

SuSq dx B C ��
Br

S©uS2 dx�a ��
Br

SuS2 dx�q~2�a � C

r2a
��

Br

SuS2 dx�q~2 , (2.14)

where C A 0, 2 B q B 6 and a �
3
4�q � 2�. If Br is replaced by R3 the second term on

the right in (2.14) can be omitted. Inequality (2.14) follows from the classical Gagliardo-
Nirenberg-Sobolev inequality [3] by applying an extension operator to u > H1�Br�. The
term 1

r2a
makes (2.14) scaling invariant with respect to r A 0.

We will now use (2.14) to interpolate between (2.11) and (2.12). Take q � 10
3 so a � 1

in (2.14) and integrate in time. Then� T

0

�
Br

SuS10~3 dx dt B C �E2~3
0 E1 � r

�2E
5~3
0 T� . (2.15)

A particular consequence is that u > L3�Ω � �0, T ��, hence
W� T

0

�
Ω
SuS2 u � ©φ dx dtW B Y©φYLª�Ω��0,T �� YuYL3�Ω��0,T �� @ª,

so the corresponding term in (2.10) is in fact finite if u is a suitable weak solution and
φ > C

ª�Ω � �0, T ��. Moreover, if q � 5
2 , so a �

3
8 we get

� T

0
��

Br

SuS5~2 dx�8~3

dt B C�E7~3
0 E1 � r

�2E
10~3
0 T �. (2.16)

If we take the (distributional) divergence of (1.1), we get

0 � ∆p � ∂i �uj∂jui� � ∆p � ∂i∂j�ujui�,
hence

∆p � �∂i∂j�uiuj� on Ω � �0, T � in the sense of distributions. (2.17)
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In addition, any solution u > C1�0, T ;C2�Ω�� of (1.1) on Ω� �0, T � for f � 0 satisfying (1.2)
has to fulfill

ν � ©p � ν �∆u on ∂Ω � �0, T �,
by simply restricting (1.1) to ∂Ω and multiplying with ν.
Recall that in R3, the unique solution to �∆v � f , with f > Lq�R3� is given by

v�x� � 1

4π

�
R3

1Sx � ySf�y� dy.

We may thus rewrite (2.17) as p � ��∆��1∂i∂j�uiuj�.
First, we consider the case Ω � R3. For u smooth enough, we have

p�x� � 1

4π

�
R3

1Sx � yS∂yi∂yj�uiuj� dy � αiju
i�x�uj�x� � 1

4π

�
R3

∂yi∂yj � 1Sx � yS�uiuj dy,

where the latter has to be understood as a singular integral, i.e. a principal value limε�0

�
Sx�ySAε.

Also note that αij � 0 if i x j.
We now use standard Calderón-Zygmund theory, see for instance [5]. To that end, fix

i, j > �1, . . . ,3� and consider the convolution operator

Sijf �
1

4π

�
R3

∂yj∂yi � 1Sx � yS� f dy.

A computation yields ∂yj∂yi � 1
Sx�yS� � � δij

Sx�yS3
� 3

�xi�yi��xj�yj�

Sx�yS5
. We may write

Sijf�x� � �
R3

Ω�x � y�Sx � yS3 f�y� dy,

with Ω�y� � �δij �3
yiyj

SyS2
. Note that Ω is homogeneous of degree 0 and a computation shows�

S2 Ω�y� dS�y� � 0 for all i, j. Clearly, Ω is Lipschitz on S2. Thus, by Calderón-Zygmund
theory [5, §4.3, Theorem 3],

Sij �L
q�R3�� Lq�R3� is bounded for any 1 @ q @ª, i, j � 1, . . . ,3. (2.18)

As a consequence

YpYLq�R3� � Z��∆��1∂i∂j�uiuj�ZLq�R3�
B CQ

i,j

ZuiujZ
Lq�R3�

,

for some C � C�q� A 0 and

ZuiujZq
Lq�R3�

�

�
R3

Tuiuj Tq dx B

�
R3

SuS2q dx.

This yields�
R3

SpSq dx B C

�
R3

SuS2q dx.

In particular, if �u, p� is a suitable weak solution of (1.1) on R3
� �0, T � we have

� T

0

�
R3

SpS5~3 dx dt B C

� T

0

�
R3

SuS10~3 dx dt B CE
2~3
0 E1

by (2.15) using that we don’t need the second term in (2.14) since we are in the whole
space R3.
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For general Ω ` R3 bounded, let Ω1 ` Ω and φ > C
ª

0 �Ω� with φ � 1 in a neighborhood
U of Ω1. Then for t fixed we have using

φ�x�p�x, t� � � 1

4π

�
R3

1Sx � yS∆y�φp� dy (2.19)

� �
1

4π

�
R3

1Sx � yS �p∆φ � 2`©φ,©pe � φ∆p� dy.

We plug in (2.17) for ∆p in (2.19) and obtain using summation convention

φp � �
1

4π

�
R3

1Sx � yS �p∆φ � 2`©φ,©pe � φ∂i∂j�uiuj�� dy. (2.20)

Now, we integrate by parts to remove all derivatives on p and u. Note that in order to do
this in a precise way, you have to cut out a ball Bε of radius ε and do integration by parts
there. However, since ∂yi � 1

Sx�yS� is L1
loc�R3�, the boundary terms will vanish as ε� 0. We

have �
R3

1Sx � yS `©φ,©pe dy � �

�
R3

∂yi � 1Sx � yS�∂iφp dy �

�
R3

1Sx � yS∆φp dy. (2.21)

For the last term in (2.20) we have
�
R3

1Sx � ySφ∂i∂j�uiuj� dy � �

�
R3

∂yi � 1Sx � yS�φ∂j�uiuj� dy (2.22)

�

�
R3

1Sx � yS∂iφ∂j�uiuj� dy

�

�
R3

∂yj∂yi � 1Sx � yS�φuiuj dy �

�
R3

∂yi � 1Sx � yS�∂jφuiuj dy

�

�
R3

∂yj � 1Sx � yS�∂iφuiuj dy �

�
R3

1Sx � yS∂i∂jφuiuj dy

�

�
R3

∂yj∂yi � 1Sx � yS�φuiuj dy �

�
R3

xi � yiSx � yS3∂jφuiuj dy

�

�
R3

xj � yjSx � yS3∂iφuiuj dy �

�
R3

1Sx � yS∂i∂jφuiuj dy

�

�
R3

∂yj∂yi � 1Sx � yS�φuiuj dy � 2

�
R3

xi � yiSx � yS3∂jφuiuj dy

�

�
R3

1Sx � yS∂i∂jφuiuj dy

Therefore, combining (2.19), (2.20), (2.21) and (2.22) we get

pφ � p̃ � p3 � p4 (2.23)

with

p̃ � αiju
i�x�uj�x� � 1

4π

�
R3

∂yj∂yi � 1Sx � yS�φuiuj dy

p3 �
1

2π

�
R3

xi � yiSx � yS3∂jφuiuj dy �
1

4π

�
R3

1Sx � yS∂i∂jφuiuj dy

p4 � �� 1

4π
�

2

4π
��

R3

1Sx � ySp∆φ dy �
1

2π

�
R3

xi � yiSx � yS3∂iφp dy.
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Note that we have for x > Ω1, using φ � 1 on U and φ � 0 on R3
�Ω

Sp3S �x, t� B W 1

2π

�
R3

xi � yiSx � yS3∂jφuiuj dyW � W 1

4π

�
R3

1Sx � yS∂i∂jφuiuj dyW
B

1

2π

�
Ω�U

1Sx � yS2 S∂jφS SuS2 dy �
1

4π

�
Ω�U

1Sx � yS S∂i∂jφS SuS2 dy

B
YφY

C1

2πδ2

�
Ω
SuS2 dy �

YφY
C2

4πδ

�
Ω
SuS2 dy,

where δ �� d�Ω1, ∂U� A 0 gives lower bounds on Sx � yS. Similarly for p4, we have for x > Ω1

Sp4S �x, t� B 1

4π

�
Ω�U

1Sx � yS SpS S∆φS dy �
1

2π

�
Ω�U

1Sx � yS2 S∂iφS SpS dy

B
YφY

C2

4πδ

�
Ω
SpS dy �

YφY
C1

2πδ2

�
Ω
SpS dy.

Consequently,

Sp3S �x, t� � Sp4S �x, t� B C �
Ω

�SpS � SuS2� dy, for x > Ω1. (2.24)

Since the operators Sij are bounded by (2.18), there exists C A 0 such that�
R3

Sp̃S5~3 dx BQ
i,j

�
R3

TSij�φuiuj�T5~3 dx B CQ
i,j

�
R3

Tφuiuj T5~3 dx,

and consequently�
Ω1

Sp̃S5~3 dx B CQ
i,j

�
R3

Tφuiuj T5~3 dx B C YφYLª
�

Ω
SuS10~3 dx. (2.25)

From (2.24) and (2.25), we may deduce p > L5~4�0, T ;L
5~3�Ω1���.

We have using (2.15) and (2.25)
� T

0
��

Ω1

Sp̃S5~3 dx�3~5�5~4

dt B C

� T

0
��

Ω
SuS10~3 dx � 1�3~4

dt (2.26)

B C �� T

0

�
Ω
SuS10~3 dx dt � T� B C�E2~3

0 E1 �E
5~3
0 T � T �,

where the constant C A 0 changes from line to line. For the remaining terms in (2.23), we
have using (2.24) and Jensen’s inequality

� T

0
��

Ω1

�Sp3S � Sp4S�5~3 dx�3~4

dt B C SΩ1S� T

0
��

Ω
�SpS � SuS2� dx�5~3�3~4

dt (2.27)

B C

� T

0
���

Ω
SpS dx�5~4

� ��
Ω
SuS2 dx�5~4� dt

B C

� T

0

�
Ω
SpS5~4 dx dt �CTE

5~4
0

� C YpYL5~4�Ω��0,T �� �CTE
5~4
0 .

Therefore, combining (2.26) and (2.27) we get using p � φp for a.e. t and x > Ω1

YpYL5~4�0,T ;L5~3�Ω1��
B Yp̃YL5~4�0,T ;L5~3�Ω1��

� YSp3S � Sp4SYL5~4�0,T ;L5~3�Ω1��
@ª, (2.28)

if �u, p� is a suitable weak solution. Thus, we have proven the following
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Lemma 2.2. If �u, p� is a suitable weak solution of (1.1) on Ω� �0, T � and Br � �a, b� `
Ω � �0, T �, then p > L5~4�a, b;L5~3�Br�� and u > L5�a, b;L5~2�Br��.

Proof. This follows from (2.28) and (2.16). �

In particular, the term
� �

p�u �©φ� in (2.10) is integrable, since if suppφ ` Ω1 we have

� T

0

�
Ω
Spu � ©φS dx dt B C

�
0T

Yu�t�YL5~2�Ω1�
Yp�t�YL5~3�Ω1�

dt

B C �� T

0
Yu�t�Y5

L5~2�Ω1�
dt�1~5 �� T

0
Yp�t�Y5~4

L5~3�Ω1�
dt�4~5

� C YuYL5�0,T ;L5~2�Ω1��
YpYL5~4�0,T ;L5~3�Ω1��

,

by Hölder’s inequality and since 3
5 �

2
5 �

4
5 �

1
5 � 1. Thus, we have shown that for any

suitable weak solution of (1.1), the right hand side of (2.9) exists.

2.3.2. Weak continuity. It can be shown, that any suitable weak solution u of (1.1)
is weakly continuous in time with values in L2�Ω�, i.e. for any w > L2�Ω� we have

�
Ω
u�x, t�w�x� dx�

�
Ω
u�x, t0�w�x� dx as t� t0.

For a proof of this property we refer to [6, p. 281-282]. This has some important conse-
quences.

(i) We can evaluate u at times t and it makes sense to impose the initial condition
u�0� � u0 in the sense that u�t� @ u0 in L2�Ω� as t � 0, i.e. u extends weakly
continously to �0, T �.

(ii) The integrability condition (2.11) holds for every t > �0, T �. If t0 > �0, T �, then
there exist tn � t0 with

�
Ω Su�tn�S2 dx B E0, otherwise (2.11) would not hold almost

everywhere. But since the L2�Ω�-norm is weakly lower semicontinuous and as u�tn��
u�t0� as n�ª, we conclude

�
Ω Su�t0�S2 dx B E0.

(iii) If �u, p� is a suitable weak solution of (1.1) on Ω � �a, b�, then for each a @ t0 @ b and
φ > C

ª

0 �Ω � �a, b�� with φ C 0 we have

�
Ω
Su�t0�S2 φ�t0� dx � 2

� t0

a

�
Ω
S©uS2 φ dx dt (2.29)

B

� t0

a

�
Ω

�SuS2 �∂tφ �∆φ� � �SuS2 � 2p�u � ©φ � 2u � fφ� dx dt.

This follows from (2.10), by choosing the positive test function φ�x, t�χ ��t0�t�~ε�,
where ε A 0 and χ is a smooth function with 0 B χ B 1, χ�s� � 0 for s B 0 and χ�s� � 1
for s C 1. Then (2.10) yields

2

� t0

a

�
Ω
S©uS2 φχ ��t0�t�~ε� dx dt B

� t0

a

�
Ω
� SuS2 �∂t �φχ ��t0�t�~ε�� (2.30)

�∆φχ ��t0�t�~ε�� � �SuS2 � 2p�u � ©φχ ��t0�t�~ε�
� 2u � fφχ ��t0�t�~ε� � dx dt.
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Note that for t B t0, χ ��t0�t�~ε� � 1 as ε � 0. Since 0 B χ B 1, the dominated
convergence theorem yields that as ε� 0 in (2.30)

2

� t0

a

�
Ω
S©uS2 φ dx dt B

� t0

a

�
Ω
� SuS2 �∂tφ �∆φ � �SuS2 � 2p�u � ©φ � 2u � fφ� dx dt

(2.31)

� lim
ε�0

� t0

a

�
Ω
SuS2 φ∂t �χ ��t0�t�~ε�� dx dt,

since all terms in u and p are integrable. Taking a closer look at the last term, we
observe that for u smooth enough

� t0

a

�
Ω
SuS2 φ∂t �χ ��t0�t�~ε�� dx dt �

�
Ω

� t0

a
SuS2 φ∂t �χ ��t0�t�~ε�� dt dx

�

�
Ω
Su�t0�S2 φ�t0�χ�0� dx �

�
Ω
Su�a�S2 φ�a�χ ��t0�a�~ε� dx

�

� t0

a

�
Ω
∂t SuS2 φχ ��t0�t�~ε� dx d �

� t0

a

�
Ω
SuS2 ∂tφχ ��t0�t�~ε� dx dt.

If we let ε� 0 we obtain

lim
ε�0

� t0

a

�
Ω
SuS2 φ∂t �χ ��t0�t�~ε�� dx dt

� �

�
Ω
Su�a�S2 φ�a� dx �

� t0

a

�
Ω
∂t SuS2 φ dx dt �

� t0

a

�
Ω
SuS2 ∂tφ dx dt

� �

�
Ω
Su�a�S2 φ�a� dx �

� t0

a

�
Ω
∂t �SuS2 φ� dx dt � �

�
Ω
Su�t0�S2 φ�t0� dx,

which together with (2.31) proves (2.29). If u is not smooth in time, we can approx-
imate, so (2.29) holds for a.e. t0 and any suitable weak solution �u, p�. But by weak
continuity this implies that (2.29) has to hold for all t0. Like in (ii), for any t0 > �a, b�
we may find tn such that (2.29) holds along tn. By dominated convergence, all double
integrals in (2.29) will then converge in the correct way as tn � t0 since the involved
functions are integrable on Ω � �a, b� as �u, p� is a suitable weak solution. More-
over, for the single integral, we have using weak continuity and the Cauchy-Schwarz
inequality

�
Ω
Su�t0�S2 φ�t0� dx � lim

n�ª

�
Ω
u�tn�»φ�tn� � u�t0�»φ�t0� dx

B lim inf
n�ª

��
Ω
Su�tn�S2 φ�tn� dx�1~2 ��

Ω
Su�t0�S2 φ�t0� dx�1~2

,

hence
�

Ω Su�t0�S2 φ�t0� dx B lim infn�ª
�

Ω Su�tn�S2 φ�tn� dx. Here we used that for
any v > L2�Ω�

�
Ω
�u�tn�»φ�tn� � u�t0�»φ�t0�� v dx

�

�
Ω
u�tn� �»φ�tn� �»

φ�t0�� v dx �

�
Ω
�u�tn� � u�t0��»φ�t0�v dx� 0,

as n�ª since Yu�tn�YL2�Ω� is bounded. This proves (2.29) for all t0 > �a, b�.
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2.3.3. The measures H k and Pk. Recall that the k-dimensional Hausdorff mea-
sure in Rd of a set X ` Rd is given by

H k�X� �� lim
δ�0�

H k
δ �X� � sup

δA0
H k
δ �X�,

where

H k
δ �X� �� inf � ª

Q
`�1

α�k��diamU`�kWU` ` Rd closed, X `

ª

�
`�1

U`,diamU` @ δ¡ ,
where α�k� is chosen such that H k��0,1�k � �0�d�k� � 1. In a completely analogous
manner, we define a “parabolic” Hausdorff meausre via

Pk�X� �� lim
δ�0�

Pk
δ �X� � sup

δA0
Pk
δ �X�,

with

Pk
δ �X� �� inf � ª

Q
`�1

rk` WQr` ` R3
�R,X `

ª

�
`�1

Qr` , r` @ δ¡ ,
where the supremum is taken over any parabolic cylinders, i.e. any sets

Qr,x0,t �� ��y, τ� > R3
�R S Sy � x0S B r, t � r2

B τ B t�.
Like for H k, one can show that Pk is an outer measure for which all Borel sets are
measurable and a Borel regular measure on the σ-algebra of measurable sets.

Lemma 2.3. There exists C�k� A 0 such that H k
B C�k�Pk.

Proof. Let 0 @ δ @ 1 and let Q` � Qr`,x`,t` be parabolic cylinders with r` @ δ. Let
d` �� diamQ`. Then, clearly r` B d`. Moreover, by the Pythagorean theorem d` B

¼
r` � r

2
` Bº

2r`, since r` @ δ @ 1. Thus, for X ` R3
�R, we have

H k
δ �X� B inf � ª

Q
`�1

α�k��d`�kWQ` ` R3
�R parabolic cylinders ,X `

ª

�
`�1

Q`, d` @ δ¡

B α�k�º2
k

inf � ª

Q
`�1

�r`�kWQ` ` R3
�R parabolic cylinders ,X `

ª

�
`�1

Q`, r` @
δº
2
¡

� α�k�º2
k
Pk

δ~
º

2
�X�.

Taking δ � 0 finishes the proof. �
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