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Preface

These are lecture notes generated by the graduate seminar course on the Ca�arelli-
Kohn-Nirenberg Theory for the Navier-Stokes equations at the Universität of Ulm in the
summer term of 2019. We mainly follow [CKN82] in a modern fashion. This work is
aimed for enthusiastic Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes. At
the beginning of each chapter the according author will be named.

Corrections and suggestions should be sent to jack.skipper@uni-ulm.de or the asso-
ciated author.

All typographical corrections should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 1: Introduction

By Dr. Jack Skipper

For this introduction we will use the original paper of [CKN82] and the excellent
book [RRS16].

The Navier-Stokes equations are

∂tu�x, t� � �u � ©�u�x, t� �©p�x, t� �∆u�x, t� � f
divu�x, t� � 0.

Here, �x, t� > Ω � �0, T �, where Ω ` R3 or T3 or R3 some domain. Initial data u�x,0� � u0

and u � 0 on ∂Ω � �0,ª�. With compatibility conditions for u0 and f we see that

�∆p � ∂i∂j�uiuj� for a.e t.

1.1. Outline: The Navier-Stokes Equations

1.1.1. Weak and Strong. Here we will give an overview of the important results
currently known about the Navier-Stokes equations(NSE). The results here were taken
from the book by Robinson, Rodrigo,

Y (Leray 1934, R3) in [Ler34] and (Hopf 1951, Ω or T3) in [Hop51] showed that
Leray-Hopf (LH) weak solutions exist globally in time. Here we assume that the
initial data u0 > L2

σ (in L2 and weakly incompressible) and u > Lª�0, T ;L2
σ� 9

L2�0, T ;H1� and satisfy the weak energy inequality, namely,
�

Ω
u2�t� dx �

� t

s

�
Ω
S©uS2 dx dt B

�
Ω
u�s� dx

for almost every t, s. We do not know about uniqueness here.
Y (Leray 1934, R3) in [Ler34] and (Kiseler-Ladyzhenskaya 1857) in [KL57] showed
that strong solutions (LH weak solutions with u0 > L

2
σ9H

1 and u > Lª�0, T ;H1�9
L2�0, T ;H2�) exist and are unique locally in time. They showed a lover bound on
the potential "blow up" time T � cY©u0Y�4

L2 . Further, strong solutions are imme-
diately smooth, even real analytic according to (Foias-Temam 1989) in [FT89].

Y We have global existence of strong solutions for small data on Ω or T3 where we
have an absolute constant C�Ω� or C̃�Ω� such that, for example,

Y©u0YL2 @ C Yu0YL2 @ CY©u0YL2 @ C̃.

For R3 we have a scaling uλ�x, t� � λu�λx,λ2t� is a solution. Thus if we want to
talk about small data we need the norm to be invariant under this map, we say
these spaces are critical spaces. Ḣ1~2, L3, BMO�1 are invariant spaces where for
small data we have strong solutions and for any data have local in time strong
solutions.

Y (Sather-Serrin 1963) see [Ser63] showed weak-strong uniqueness, that is, strong
solutions are unique in the class of LH weak solutions. (Need the energy inequal-
ity) This suggests 2 possibilities u is strong always Y©u�t�YL2 @ª for all s A 0 or

4



1.1. OUTLINE: THE NAVIER-STOKES EQUATIONS 5

there exists T � the "blow-up" time where

Y©u��t�Y2
C

C�Ω�»�T � � t� .
Can use similar techniques to show robustness of solutions "if initial data is close
to a strong solution initial data then the solutions is strong for a while".

Y Leary noticed that any global in time LH weak solution is eventually strong and
for large time Yu�t�YL2 � 0 as t�ª.

Figure 1. The H1 norm of a potential solution to the Navier-Stokes equations.

1.1.2. Regularity. We can now look at the regularity of solutions and either we �nd
conditions on how bad could the space of solutions be, or we �nd conditions on solutions
that guarantee they are strong and smooth.

Y (Sche�er 1976) in [Sch76] gave an upper bound on the size of the set of singular
times. We say a time is regular and in the set R if Y©u�t�YL2 is essentially
bounded. The singular times T a the rest. Here we see that the 1

2 dimensional
Hausdor� measure of the set T is zero. (Box counting measure is the same.)

Y (Kato 1984) in [Kat84] showed that if� T

0
Y©u�s�YLª ds @ª

then u is strong on �0, T �.
Y (Beal-Kato-Majda 1984) in [BKM84] showed that if� T

0
Y curlu�s�YLª ds @ª

then u is strong on �0, T � and further if we have "blow-up" at T then

lim
t�T

� t

0
Y curlu�s�YLª ds �ª.

Y Serrin see [Ser63] condition that

u > Lr�0, T ;Ls�Ω�� 2

r
�

3

s
� 1



6 1. TALK 1: INTRODUCTION

gives a smooth solution on �0, T �. We note that we only unfortunately know that
for a LH weak solution that
2

r
�

3

s
�

3

2
.

Further, we have other Serrin type conditions, by (Beirão da Veiga 1995) in
[Bei95]

©u > Lr�0, T ;Ls�Ω�� 2

r
�

3

s
� 2

3

2
@ s @ª

and by (Berselli-Galdi 2002) in [BG02] in

p > Lr�0, T ;Ls�Ω�� 2

r
�

3

s
� 2

3

2
@ s.

Y (Serrin 1962) in [Ser62], for the (@) case, showed a local version of the Serrin
condition that, on a sub-domain U � �t1, t2�, if
u > Lr�t1, t2;Ls�U�� 2

r
�

3

s
� 1

then u is smooth in space on U � �t1, t2� and α-Hölder continuous with α @
1
2

(Don't get smoothness in time as have problems with ©p and ∂tu interacting
locally.) The equality was worked out by (Fabes-Jones-Riviere 1972) see [FJR72],
(Struwe 1988) see [Str88] and (Takahashi 1990) in [Tak90].

Leary thought that his solutions were turbulent solutions and that a self-similar con-
struction would give a solution that would "blow-up", however, (Ne£as-R 
uºi£ka-�verák
1996) in [NRS96] essentially disproved this. Further, for Euler equations non-uniqueness
of weak solutions has been shown starting with the work of (Sche�er 1993) in [Sch93] then
(De Lellis-Székelyhidi 2010) in [DS10] and �nally with (Wiedemann 2011) in [Wie11].

We have a picture of how LH weak solutions are behaving and the interplay with strong
solutions. Regularity results go down two lines where either we ask for extra conditions,
we can't guarantee, from LH weak solutions so that then they are strong solutions an thus
unique. Here, for the CKN result we want to keep with the regularity we know LH weak
solutions can have and �nd upper bounds on how bad the set of "bad singular points" of
the weak solutions can be. We will show that we get a bound of on the 1 dimensional
Hausdor� measure and show that the size of the set in this measure is 0.

1.2. "Suitable" Weak Solutions

The CKN partial regularity result for suitable week solutions of the NSE. (How bad is
the space-time set of blow-ups)

We know that for any u0 > L2
σ there us a LH weak solution of the NSE that satis�es

the local energy inequality. (This modern result needs maximal regularity theory for the
pressure p). (Sohr-von Wahl 1986) in [SvW86] showed that for any ε A 0

p > Lr�ε, T ;Ls� for
2

r
�

3

s
� 3 �s A 1�

or for the gradient of the pressure

©p > Lr�ε, T ;Ls� for
2

r
�

3

s
� 4 �s A 1�

and thus we obtain that p > L
5
3 �Ω � �0, T ���. CKN only knew that p > L

5
4 �Ω � �0, T ���

which adds extra technical di�culties.

Definition 1.1. The pair �u, p� is a suitable weak solution of the NSE on Ω� �0, T �
with force f if the following are satis�ed.

(1) Integrability:



1.3. PARTIAL REGULARITY 7

(a) f > Lq�Ω � �0, T �� for q A 5
2 ,

(b) p > L
5
4 �Ω � �0, T �� [Modern times can get as high as L

5
3 �Ω � �0, T ��],

(c) u > Lª�0, T ;L2� 9L2�0, T ;H1�.
(2) Local energy inequality: For all φ C 0, φ > Cªc , then,

2
x S©uS2φ dx ds B

x SuS2�φt �∆φ� � �SuS2 � 2p�u � ©φ � 2�u � f�φ dx ds

(3) Weak solution: We need u > Lª�0, T ;L2
σ� 9 L2�0, T ;H1

σ�, © � f � 0, �∆p �

∂i∂j�uiuj� and for a.e.t > �a, b� and for all φ > Cªσ,c�
Ω��0�

u0 � φ�0� dx �

� T

0

�
Ω
©u � ©φ � �u � ©�uφ � u � ∂tφ � f � φ dx dt.

For the CKN theory we do not need point 3 above, that is, the pair �u, p� does not
actually need to be a LH weak solution of the NSE. The proof just deals with local energy
inequality and interpolation inequalities as so points 1 and 2 are su�cient, the �suitable�
bit.

As an interesting aside, it is important to note that in (Sche�er 1987) in [Sch87] he
showed that the end result, that the one dimensional Hausedro� measure of the singular
set of space-time points is zero, cannot be improved using the �suitable� criteria and the
method would have to use (the equation) part 3 above. He showed that if you just pick a
�suitable� pair �u, p� then for any γ @ 1 there will exist at least one �u, p� pair where the
γ- dimensional Hausdrof measure of the singular set is in�nite.

1.3. Partial Regularity

We want to study �how bad� the set of �singular points� for u a suitable solution.
We denote R the set of regular points �x, t� > R if there exists an open set U `

Ω � �0, T � with �x, t� > U and u > Lª�U�. Let S be the set of singular points de�ned by
S �� Ω � �0, T � �R, so the points where u is not Lªloc in any neighbourhood of �x, t�. (Can
also be de�ned similarly but with curlu or ©u.) By �bad� we want an upper-bound on the
dimension of S here using the Hausdro� measure.

Theorem 1.2 (Main Theorem (B) in [CKN82]). For any suitable weak solution of
the NSE on an open set in space-time the asscoiated singular set S satis�es

P
1�S� � 0.

This condition is equivalent to H1�S� � 0 which denotes that the one dimensional
Hausdro� measure of the singular set is 0.

Importantly this shows that there are no curves in space-time where the solution u is
singular along the curve. If we have �blow-up� then this occurs at distinct points in space
time and not on a continuum.

CKN also impose extra conditions to prove two other theorems. These results are more
in the spirit of previous partial regularity results like Serrin conditions as discussed earlier.

Let E denote the initial �kinetic energy�, the L2 norm of for the initial data, that is,

E ��
1

2

�
R3

Su0S2 dx

and let G, be a weighted form of E where we want extra decay at in�nity, that is,

G ��
1

2

�
R3

Su0S2SxS dx @ª.
For initial data satisfying this condition one can show that a suitable weak solution of the
NSE from this data satis�es

1

2

�
R3
��t�

SuS2SxS dx �
� t

0

�
R3

S©uS2SxS dx ds @ª
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for every t, so obtain the following theorem showing that the solution is regular for large
enough x.

Theorem 1.3 (Theorem C in [CKN82]). Suppose u0 > L
2�R3� © � u0 � 0 and G @ª.

Then there exists a weak solution of the NSE with f � 0 which is regular on the set

��x, t�� SxS2t AK1�
where K1 �K1�E,G� is a constant only depending on u0 via E and G.

Here we see that G is a restriction that the initial data u0 should decay su�ciently
rapidly at in�nity.

If instead we have a di�erent condition where we ask for decay approaching zero, that
is, �

R3

Su0S2SxS�1 dx � L B L0

then we obtain

sup
τ

�
R3
��τ�

SuS2SxS�1 dx @ª,

� t

0

�
R3

S©uS2SxS�1 dx dτ @ª

for each t. From this we obtain the following theorem where we see that u is regular in a
parabola above the origin and the line x � 0 is regular for all t.

Theorem 1.4 (Theorem D in [CKN82]). There exists an absolute constant L0 A 0
with the following properties. If u0 > L

2�R3� © � u0 � 0 and L @ L0 then there exists a weak
solution of the NSE with f � 0 which is regular on the set

��x, t�� SxS2 @ t�L0 �L��.
1.4. Scale-invariant Quantities (Dimensionless Quantities)

On R3 if we have a solution to the NSE then by rescaling by λ, in the following way,

u�x, t�( λu�λx,λ2t�
p�x, t�( λ2p�λx,λ2t�
f�x, t�( λ3f�λx,λ2t�

we have another solution. Here we see that time scales quadratically and space linearly.
For local estimates it will be best to use, rather than balls, parabolic cylinders, that is,

Qr�x, t� �� ��y, τ�� Sy � xS B r, t � r2
@ τ @ t�

or Q�r�x, t� � Qr�x, t � 1
8r

2� (here �x, t� is the geometric centre of Q r
2
�x, t � 1

8r
2�). The

scaling that works on R3 also works on the parabolic cylinders where if �u, p� is a solution
on Qr�x, t� then �uλ, pλ� will be a solution on Q r

λ
�x, t�.

We want to study �quantities� being �small� over parabolic cylinders and thus to have a
sensible de�nition of a �smallness� assumption we should study scale invariant �quantities�,
that is, �quantities� whose value will not change after rescaling space and time as above. If
the �quantities� we study did not have this property then under rescaling we could shrink
or blow-up the values and could not compare the values. We will use factors of 1

r to make
the scale invariant quantities we need.

For example,

1

� r
λ
�2

�
Q r
λ
�0,0�

SuλS3 dx dt �
λ2

r2

�
Q r
λ
�0,0�

λ3Su�λx,λ2t�S3 dx dt

�
1

r2

�
Qr�0,0�

Su�y, s�S3 dy ds
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where we have a change of variable y � λx, s � λ2t.
Some of the scale-invariant quantities we will use are

1

r
sup

�r2@t@0

�
Br

Su�t�S2 dx,
1

r

x

Qr

S©uS2 dx dt,
1

r2

x

Qr

SuS3 dx dt,
1

r2

x

Qr

SpS 32 dx dt.

1.5. The Main Ideas

We need to show two main propositions that concern bounds on u for large radii giving
properties for u on smaller radii.

Proposition 1.5. There are absolute constants ε,C1 A 0 and constant ε2�q� A 0 with
the following properties. If �u, p� is a suitable weak solution of the NSE on Q1�0,0� with
force f > Lq, for some q A 5

2 and

x

Q1�0,0�

�SuS3 � SuSSpS� dx dt �

� 0

�1
�
�
B1

SpS dx�
5
4

dt B ε1 and
x

Q1�0,0�

Sf Sq dx dt B ε2

then u > Lª�Q 1
2
�0,0�� with YuYLª�Q 1

2
�0,0�� B C1. (u is regular on Q 1

2
�0,0�).

With no force and modern p > L
5
3 we can just assume thatx

Q1�0,0�

�SuS3 � SpS 32 � dx dt B ε1

and the proof is simpli�ed.
We can shift and rescale this proposition to apply it to di�erent Qr�x, t�.
Proposition 1.6. There exists an absolute constant ε3 such that if �u, p� is a suitable

weak solution to the NSE on QR�a, s� for some R A 0 and if

lim sup
r�0

1

r

�
Qr�as�

S©uS2 dx dt B ε3

then u > Lª�Qρ�a, s�� for some ρ with 0 @ ρ @ R. �a, s� is a regular point.

We will now discuss a rough outline of the proof and the tools used.
Y We have the local energy inequality,

2
x S©uS2φ dx ds B

x SuS2�φt �∆φ� � �SuS2 � 2p�u � ©φ � 2�u � f�φ dx ds.

We use an approximation to the backwards heat equation for φ on a parabolic
cylinder so it approximately solves φt � ∆φ � 0 and get appropriate bounds on
φ and ©φ as powers of 1

r . This gives an inequality over parabolic cylinders with
weighting in front of the remaining terms that means they are scaling invariant.

Y We can use di�erent interpolation inequalities over parabolic cylinders, for exam-
ple,

1

r2

x

Qr�a,s�

SuS3 dx dt B C0

<@@@@@>
1

r
sup

s�r2@t@s

�
Br�a�

Su�t�S2 � 1

r

x

Qr�a,s�

S©uS2 dx dt

=AAAAA?

3
2

.

Y We can use these two inequalities. We see that the term on the RHS of the local
energy inequality is quadratic in u and on the LHS they are all act cubic in u
(with the assumed regularity on p and f) however this is the opposite for the
interpolation inequality. We can thus iterate between these two inequalities to
obtain inductive bounds on a solution u from the larger cylinder to a smaller
cylinder that are shrinking and so can use Lebesgue di�erentiation theorem to get
that the points �a, s� are regular on the smaller cylinder.
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