CHAPTER 1

Talk 2: Suitable weak solutions: part 1

By Farid Mohamed

We introduce the spaces for $\Omega \subset \mathbb{R}^3$

$$\begin{split} \mathcal{V} &= \{ u \in C_0^{\infty}(\Omega), \text{div } u = 0 \}, \\ V &= \overline{\mathcal{V}}^{\|\cdot\|_{H_0^1(\Omega)}} \text{ and} \\ H &= \overline{\mathcal{V}}^{\|\cdot\|_{L^2(\Omega)}}. \end{split}$$

The space H is equipped with the norm $\|\cdot\|_{L^2(\Omega)}$ and we write

$$(u,v)_{L^2(\Omega)} \coloneqq \int_{\Omega} uv \, dx$$

for the generating scalar product. In the case of V we need to distinguish two cases. If Ω is bounded we set $||u||_V := ||\nabla u||_{L^2(\Omega)}$ and if Ω is unbounded we define $||u||_V := ||\nabla u||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}$. We observe that $V \hookrightarrow H \hookrightarrow V'$, where we identify H and H' in the sense that for every $u \in H$ we set

$$\langle u, f \rangle = T_u(f) = \int_{\Omega} u f dx$$

for $f \in H$. In this case we see that $\langle u, f \rangle = (u, f)_{L^2(\Omega)}$. We assume for this section that

$$\Omega = \mathbb{R}^3,$$

 $f \in L^2(0, T; H^{-1}(\mathbb{R}^3)) \text{ and } \nabla \cdot f = 0,$
 $u_0 \in H$

or

 Ω is a smooth, bounded, open and connected set in \mathbb{R}^3

$$f \in L^2(\Omega \times (0,T)) \text{ and } \nabla \cdot f = 0,$$

 $u_0 \in H \cap W^{2/5}_{5/4}(\Omega).$

It follows directly that the spaces $L^2(0,T;H)$ and $L^2(0,T;V)$ are reflexive and $L^{\infty}(0,T;H)$ and $L^{\infty}(0,T;V)$ are the duals of separable Banach spaces, see for example [4], Theorem 1.29.

DEFINITION 1.1. We call the pair (u, p) a suitable weak solution of the Navier-Stokes system on an open set $D = \Omega \times (0, T) \subset \mathbb{R}^3 \times \mathbb{R}$ with force f if:

- i) u, p and f are measurable functions on D,
- ii) $f \in L^q(D)$ for q > 5/2, $\nabla \cdot f = 0$ and $p \in L^{5/4}(D)$,

iii) the solution u is bounded in the following sense

$$E_0(u) := \underset{0 < t < T}{\operatorname{ess\,sup}} \int_{\Omega} |u(x,t)|^2 dx < \infty \text{ and } E_1(u) := \underset{D}{\iint} |\nabla u|^2 dx dt < \infty, \tag{1.1}$$

iv) u, p and f solve

$$\partial_t u(x,t) + (u \cdot \nabla)u(x,t) + \nabla p(x,t) - \Delta u(x,t) = f \text{ in } \Omega,$$

$$\operatorname{div} u(x,t) = 0 \text{ on } \partial\Omega \text{ for all } 0 < t < T$$

$$(1.2)$$

in the sense of distributions in D, i.e. $u \in L^2(0,T;V)$ and for all $v \in V$ we have

$$\frac{d}{dt} \int_{\Omega} u(x,t)v(x) \, dx + \int_{\Omega} (u \cdot \nabla)u(x,t)v(x) \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f(t,x)v(x) \, dx$$

in the distributional sense on $(0,T)$.

v) for all $\varphi \in C_0^{\infty}(D), \varphi \ge 0$ it holds

$$2 \iint_{D} |\nabla u|^2 \varphi dx dt \leq \iint_{D} (|u|^2 (\varphi_t + \Delta \varphi) + (|u|^2 + 2p)u \cdot \nabla \varphi + 2(u \cdot f)\varphi) dx dt.$$

The goal of this chapter is to show that for every $f \in L^q(D)$ there exists a suitable weak solution in the sense of Definiton 1.1.

The first step is to show that the equation

$$u_t + (w \cdot \nabla)u - \Delta u + \nabla p = f$$

has a solution for suitable f and w, where we use the following lemma.

LEMMA 1.2 (see [7], Lemma 1.2). Suppose $f \in L^2(0,T;V')$, $u \in L^2(0,T;V)$, p is a distribution and

$$u_t - \Delta u + \nabla p = f \tag{1.4}$$

in the sense of distributions on D. Then

$$u_t \in L^2(0,T;V'),$$
$$\frac{d}{dt} \int_{\Omega} |u|^2 = 2(u_t, u)_{L^2(\Omega)}$$

in the sense of distributions on (0,T) and

 $u \in C([0,T],H)$

after modification on a set of measure zero. Solutions of (1.4) are unique in the space $L^2(0,T;V)$ for given initial data $u_0 \in H$.

PROOF. Here we give the main ideas of the proof.

Let the function $\hat{u} : \mathbb{R} \to V$ be equal to u on [0,T] and to 0 outside this interval. We see by [3], Theorem 4.3 a sequence $(u_m)_{m \in \mathbb{N}}$ such that

 $\forall m, u_m \text{ is infinitly differentiable from } [0, T] \text{ onto } V, \text{ as } m \to \infty$

$$u_m \to u \text{ in } L^2_{loc}(0,T;V),$$

$$u'_m \rightarrow u'$$
 in $L^2_{loc}(0,T;V')$.

It follows directly

$$rac{d}{dt} \int_{\Omega} |u_m(t)|^2 = 2(u'_m(t), u_m(t))_{L^2(\Omega)}$$

and as $m \to \infty$ we get

$$\begin{aligned} \|u_m\|_{L^2(\Omega)}^2 &\to \|u\|_{L^2(\Omega)}^2 \text{ in } L^1_{loc}((0,T))\\ (u'_m, u_m)_{L^2(\Omega)} &\to (u', u)_{L^2(\Omega)} \text{ in } L^1_{loc}((0,T)). \end{aligned}$$

These convergences also hold in the distribution sense. So by passing to the limit we get

$$\frac{d}{dt} \int_{\Omega} |u|^2 = 2(u_t, u)_{L^2(\Omega)} \tag{1.5}$$

and by (1.5) we see that $u \in L^{\infty}(0,T;H)$. We conclude by [7], Lemma 1.4 that $u \in C([0,T];H)$. Uniqueness will follow by the next lemma.

LEMMA 1.3. Let $f \in L^2(0,T;V')$, $u_0 \in H$ and $w \in C^{\infty}(\overline{D},\mathbb{R}^3)$ with $\nabla \cdot w = 0$. Then there exists a unique function u and a distribution p such that

$$u \in C([0,T],H) \cap L^2(0,T;V),$$
$$u_t + (w \cdot \nabla)u - \Delta u + \nabla p = f$$

in the sense of distributions on D, with $u(0) = u_0$.

PROOF. We will follow [7], Theorem 1.1 by constructing the solution. Let $\{x_n\}_{n\in\mathbb{N}} \subset V$ be a sequence of linearly indepedent vectors such that $\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})} = V$, which exists as V is separable. We set $V_n \coloneqq \operatorname{span}(x_1, \ldots, x_n)$ and $u_n \coloneqq \sum_{i=1}^n g_{in}(t)x_i$, where $(g_{in})_{i=1}^n$ is a solution of the system

$$\sum_{i=1}^{n} g'_{in}(t)(x_i, x_j)_{L^2(\Omega)} + \sum_{i=1}^{n} g_{in}(t)(((w \cdot \nabla)x_i, x_j)_{L^2(\Omega)} + (\nabla x_i, \nabla x_j)_{L^2(\Omega)}) = \langle f, x_j \rangle$$
$$g_{jn}(0) = P_{V_n}(x_0)_j$$

for $j = 1, \ldots, n$. Then u_n solves the equation

$$(u'_n, v)_{L^2(\Omega)} + ((w \cdot \nabla)u_n, v) + (\nabla u_n, \nabla v)_{L^2(\Omega)} = \langle f, v \rangle$$

for all $v \in V_n$. Observe by partial integration that

$$((w \cdot \nabla)u_n, u_n)_{L^2(\Omega)} = -(u_n, (w \cdot \nabla)u_n)_{L^2(\Omega)} = 0$$

and one obtains

$$\frac{1}{2} \frac{d}{dt} \|u_n\|_{L^2(\Omega)}^2 = (u'_n, u_n)_{L^2(\Omega)} \\
= \langle f, u_n \rangle - (\nabla u_n, \nabla u_n)_{L^2(\Omega)} \\
\leq \frac{1}{2} \|f\|_{V'}^2 + \frac{1}{2} \|u_n\|_{L^2(\Omega)}^2 - \frac{1}{2} \|\nabla u\|_{L^2(\Omega)}^2 \\
\leq \frac{1}{2} \|f\|_{V'}^2 + \frac{1}{2} \|u_n\|_{L^2(\Omega)}^2,$$
(1.6)

whch follows by

$$\langle f, u_n \rangle \leq \frac{1}{2} \| f \|_{V'}^2 + \frac{1}{2} \| u_n \|_{V}^2 \leq \frac{1}{2} \| f \|_{V'}^2 + \frac{1}{2} \| u_n \|_{L^2(\Omega)}^2 + \frac{1}{2} \| \nabla u_n \|_{L^2(\Omega)}^2.$$

The continuity of the projection and Gronwall's inequality imply that

$$\|u_n(t)\|_{L^2(\Omega)}^2 \le \left(\|u_0\|_{L^2(\Omega)}^2 + \int_0^T \|f(s)\|_{V'}^2 ds\right) e^T < \infty,$$
(1.7)

which implies that $(u_n)_{n \in \mathbb{N}}$ is uniformly bounded in $L^{\infty}(0,T;H)$. Furthermore, we see by integrating (1.6)

$$\begin{aligned} &\|u_n(t)\|_{L^2(\Omega)}^2 + \int_0^t \|\nabla u_n(s)\|_{L^2(\Omega)}^2 ds \\ \leq &\|u_n(0)\|_{L^2(\Omega)}^2 + \int_0^t \|f(s)\|_{V'}^2 ds + \int_0^T \|u_n(s)\|_{L^2(\Omega)}^2 ds \\ \leq &\left(\|u(0)\|_{L^2(\Omega)}^2 + \|f\|_{L^2(0,T;V')}^2\right) (1 + Te^T) \end{aligned}$$

and we conclude that $(u_n)_{n\in\mathbb{N}}$ is uniformly bounded in $L^2(0,T;V)$. One infers that there exists a subsequence $(u_n)_{n\in\mathbb{N}} \subset L^2(0,T;V) \cap L^{\infty}(0,T;H)$ such that there exists an $u \in L^2(0,T;V) \cap L^{\infty}(0,T;H)$

$$u_n \to u \text{ for } n \to \infty \text{ in } L^2(0,T;V) \text{ and}$$
 (1.8)

$$u_n \stackrel{\star}{\rightharpoonup} u \text{ for } n \to \infty \text{ in } L^{\infty}(0,T;H).$$
 (1.9)

We conclude for every $\varphi \in C^1([0,T])$ with $\varphi(T) = 0$ that

$$\begin{aligned} 0 &= \int_{0}^{T} \left((u_{n}'(t),\varphi(t)x_{j})_{L^{2}(\Omega)} + ((w \cdot \nabla)u_{n}(t),\varphi(t)x_{j}) + (\nabla u_{n}(t),\nabla x_{j}\varphi(t))_{L^{2}(\Omega)} \right. \\ &- \left. \left\{ f(t),\varphi(t)x_{j} \right\} \right) dt \\ &= \int_{0}^{T} \left(-(u_{n}(t),\varphi'(t)x_{j})_{L^{2}(\Omega)} + ((w \cdot \nabla)u_{n}(t),\varphi(t)x_{j}) + (\nabla u_{n}(t),\nabla x_{j}\varphi(t))_{L^{2}(\Omega)} \right. \\ &- \left. \left\{ f(t),\varphi(t)x_{j} \right\} dt - (u_{n}(0),x_{j})_{L^{2}(\Omega)} \varphi(0) \right) \\ &\rightarrow \int_{0}^{T} \left(-(u(t),\varphi'(t)x_{j})_{L^{2}(\Omega)} + ((w \cdot \nabla)u(t),\varphi(t)x_{j}) + (\nabla u(t),\nabla x_{j}\varphi(t))_{L^{2}(\Omega)} \right. \\ &- \left. \left\{ f(t),\varphi(t)x_{j} \right\} dt - (u(0),x_{j})_{L^{2}(\Omega)} \varphi(0) \right) \end{aligned}$$

for $n \to \infty$ for every $j \in \mathbb{N}$. Moreover, the equality holds for every finite combination of the (x_j) and by continuity even for all $v \in V$. We obtain that

$$\frac{d}{dt}(u,v)_{L^2(\Omega)} + ((w \cdot \nabla)u,v) + (\nabla u, \nabla v)_{L^2(\Omega)} = \langle f, v \rangle$$
(1.10)

in the sense of distributions on (0,T). In order to see that $u(0) = u_0$ we use that

$$\int_0^T \frac{d}{dt} (u(t), v)_{L^2(\Omega)} \varphi(t) dt = -\int_0^T (u(t), v) \varphi'(t) dt + (u(0), v) \varphi(0),$$

which implies that

$$-\int_0^T (u(t),v)\varphi'(t)dt + \int_0^T (\nabla u,\nabla v)_{L^2(\Omega)}\varphi(t)dt + \int_0^T ((w\cdot\nabla)u,v)_{L^2(\Omega)}\varphi(t)dt$$
$$= (u(0),v)\varphi(0) + \int_0^T \langle f(t),v\rangle\varphi(t)dt$$

By comparison with the above equality we see that

$$(u_0 - u(0), v)\varphi(0) = 0.$$

As v was arbitrary we conclude that $u_0 = u(0)$.

To show uniqueness assume that we have two solutions u_1 and u_2 with some initial data

and force f. We know that $u_1 - u_2$ solves (1.10) with f = 0. We conclude by (1.6) that

$$\frac{1}{2}\frac{d}{dt}\|u_1-u_2\|_{L^2(\Omega)}^2 \leq -(\nabla(u_1-u_2),\nabla(u_1-u_2))_{L^2(\Omega)} \leq 0.$$

As $u_1(0) = u_2(0)$ we conclude that $u_1 = u_2$.

A solution of the Poisson equation $-\Delta u = f$ for $f \in L^q(\mathbb{R}^3)$ for some $1 < q < \infty$ can be written as

$$u(x) \coloneqq (-\Delta)^{-1} f(x) \coloneqq c_3 \int_{\mathbb{R}^3} \frac{1}{|x-y|} f(y) dy,$$

where $c_3 \in \mathbb{R}$ can be given explicitly. We use the following theorem, which can be shown by the Calderón-Zygmund theorem.

THEOREM 1.4 (see [4], Theorem B.7). The linear operator T_{jk} defined by

$$T_{jk}f \coloneqq \partial_j \partial_k (-\Delta)^{-1} f$$

is a bounded linear operator from $L^q(\mathbb{R}^3)$ into $L^q(\mathbb{R}^3)$ for all $1 < q < \infty$, i.e.

 $||T_{jk}f||_{L^q(\mathbb{R}^3)} \le C ||f||_{L^q(\mathbb{R}^3)}$

for some constant C > 0.

LEMMA 1.5. Let $\Omega = \mathbb{R}^3$, $f \in L^2(0,T; H^{-1}(\mathbb{R}^3))$, div f = 0 and $u_0 \in H$. Then it holds that

$$\Delta p = -\sum_{i,j} \partial_i \partial_j (w_i u_j), \tag{1.11}$$

in the sense of distribution. Hence, we obtain

$$\iint_{D} |p|^{5/3} dx dt \le C \iint_{D} |w|^{5/3} \cdot |u|^{5/3} dx dt.$$

REMARK 1.6. For general Ω (if Ω is bounded) it is also possible to show that $p \in L^{5/3}(D)$.

PROOF. We follow [4] to show that p is given by (1.11). At first, observe that

$$\{\varphi \in [\mathcal{S}(\mathbb{R}^3)]^3 : \operatorname{div} \varphi = 0\}$$

is a dense subset of V. Furthermore, for every $h \in [\mathcal{S}(\mathbb{R}^3)]^3$ there exists a $\varphi \in [\mathcal{S}(\mathbb{R}^3)]^3$ and $\psi \in \mathcal{S}(\mathbb{R}^3)$ such that $h = \varphi + \nabla \psi$ and $\nabla \cdot \varphi = 0$, see for example [4], Exercise 5.2. Now let $\xi \in C_0^{\infty}((0,T))$. As u is the solution of (1.10) we obtain by partial integration

$$-\int_{0}^{T} (u,h)_{L^{2}(\mathbb{R}^{3})} \xi'(t) dt - \int_{0}^{T} (u,\Delta h)_{L^{2}(\mathbb{R}^{3})} \xi(t) dt$$
(1.12)

$$-\int_{0}^{T} (u \otimes w, \nabla h)_{L^{2}(\mathbb{R}^{3})} \xi(t) dt - \int_{0}^{T} \langle f, h \rangle \xi(t) dt$$

$$(1.13)$$

$$= -\int_{0}^{T} (u,\varphi)_{L^{2}(\mathbb{R}^{3})} \xi'(t) dt + \int_{0}^{T} (\nabla u, \nabla \varphi)_{L^{2}(\mathbb{R}^{3})} \xi(t) dt + \int_{0}^{T} ((w \cdot \nabla)u,\varphi)_{L^{2}(\mathbb{R}^{3})} \xi(t) dt - \int_{0}^{T} \sum_{i,j} (u_{i}w_{j},\partial_{i}\partial_{j}\psi)_{L^{2}(\mathbb{R}^{3})} \xi(t) dt$$
(1.14)

$$-\int_{0}^{T} \langle f, \varphi \rangle \xi(t) dt \tag{1.15}$$

$$= -\int_0^T \sum_{i,j} (u_i w_j, \partial_i \partial_j \psi)_{L^2(\mathbb{R}^3)} \xi(t) dt.$$
(1.16)

As $u \in V$, we conclude that $\Delta p = -\sum_{i,j} \partial_i \partial_j (w_i u_j)$, where we used that $\nabla \cdot h = \Delta \psi$. By taking the Fourier transform we see that we can interchange the Laplace operator and $\partial_i \partial_j$ and we obtain

$$p = (-\Delta)^{-1} (-\Delta) p = \sum_{i,j} (-\Delta)^{-1} \partial_i \partial_j w_i u_j = \sum_{i,j} \partial_i \partial_j (-\Delta)^{-1} w_i u_j,$$

and one infers by Theorem 1.4 that $||p||_{L^{5/3}(\mathbb{R}^3)} \leq C|||w| \cdot |u||_{L^{5/3}}$.

Later on we want to estimate the pressure p by using following inequality

$$\int_{\mathbb{R}^{3}} |u|^{q} dx \le C \left(\int_{\mathbb{R}} |\nabla u|^{2} dx \right)^{\frac{3}{4}(q-2)} \left(\int_{\mathbb{R}} |u|^{2} dx \right)^{\frac{1}{4}(6-q)}$$
(1.17)

for $2 \le q \le 6$, which is a special case of the Gagliardo-Nirenberg interpolation inequality

$$\|D^{j}u\|_{L^{q}(\mathbb{R}^{3})} \leq C\|D^{m}u\|_{L^{r}(\mathbb{R}^{3})}^{\alpha}\|u\|_{L^{p}(\mathbb{R}^{3})}^{1-\alpha}$$

where $1 < q, p, r < \infty$ and $m, j \in \mathbb{N}$. α is chosen is such a way that $\frac{1}{q} = \frac{j}{3} + (\frac{1}{r} - \frac{m}{3})\alpha + \frac{1-\alpha}{p}$ and $\frac{j}{m} \le \alpha \le 1$. By choosing j = 0, m = 1, r = p = 2 and $\alpha = 3(\frac{1}{2} - \frac{1}{q})$ we obtain (1.17). We recall that we denote by

$$E_0(u) \coloneqq \operatorname{ess\,sup}_{0 < t < T} \int_{\Omega} |u(x,t)|^2 dx \text{ and } E_1(u) \coloneqq \iint_{D} |\nabla u|^2 dx dt.$$

LEMMA 1.7. For $u, w \in L^2(0, T; H^1(\mathbb{R}^3))$,

$$\|u\|_{L^{10/3}(0,T;L^{10/3}(\mathbb{R}^3))} \le CE_1^{3/10}(u)E_0^{1/5}(u), \tag{1.18}$$

$$\|w \cdot \nabla u\|_{L^{5/4}(0,T;L^{5/4}(\mathbb{R}^3))} \le C E_1^{1/2}(u) E_1^{3/10}(w) E_0^{1/5}(w), \tag{1.19}$$

$$\|u\|_{L^{5}(0,T;L^{5/2}(\mathbb{R}^{3}))} \leq CT^{1/20} E_{0}^{7/20}(u) E_{1}^{3/20}(u).$$
(1.20)

PROOF. For (1.18) we use (1.17) and obtain

$$\int_{\mathbb{R}^3} |u|^{10/3} \, dx \le C \left(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^3} |u|^2 \, dx \right)^{2/3} \le C \left(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \right) E_0(u)^{2/3}$$

for almost all $t \in (0,T)$. Integrating over (0,T) gives the result. For (1.19) we see by Hölder's inequality that

$$\begin{split} \int_0^T \int_{\mathbb{R}^3} |w \cdot \nabla u|^{5/4} dx dt &\leq \left(\int_0^T \int_{\mathbb{R}^3} |w|^{10/3} dx dt \right)^{3/8} E_1(u)^{\frac{5}{8}} \\ &= \|w\|_{L^{10/3}(0,T;L^{10/3}(\mathbb{R}^3))}^{5/4} E_1(u)^{\frac{5}{8}}. \end{split}$$

By applying (1.18) we obtain (1.19). Furthermore, we see by (1.17) and Hölder's inequality that

$$\begin{split} \int_{0}^{T} \left(\int_{\mathbb{R}^{3}} |u|^{5/2} \, dx \right)^{2} dt &\leq C \int_{0}^{T} \left(\int_{\mathbb{R}} |\nabla u|^{2} \, dx \right)^{3/4} \left(\int_{\mathbb{R}^{3}} |u|^{2} \, dx \right)^{7/4} dt \\ &\leq C E_{0}(u)^{7/4} \int_{0}^{T} \left(\int_{\mathbb{R}} |\nabla u|^{2} \, dx \right)^{3/4} dt \\ &\leq C E_{0}(u)^{7/4} T^{1/4} \left(\int_{0}^{T} \int_{\mathbb{R}} |\nabla u|^{2} \, dx dt \right)^{3/4}. \end{split}$$

We conclude that (1.20) holds true.

CHAPTER 2

Talk 3: Suitable weak solutions: part 2

By David Berger

LEMMA 2.1 (see [2], Theorem 2.8). Assume that Ω , f and u_0 satisfy the assumptions of Lemma 1.3. Let Ω be bounded, 4 = 3/q + 2/s and $w \cdot \nabla u$, $f \in L^s(0,T; L^q(\Omega))$ and $u_0 \in W_s^{2-2/s}(\Omega)$. Then the solution (u, p) constructed in Lemma 1.3 satisfies

$$\begin{aligned} \|\nabla p\|_{L^{s}(0,T;L^{q}(\Omega))}^{s} + \|u_{t}\|_{L^{s}(0,T;L^{q}(\Omega))}^{s} + \|\nabla^{2}u\|_{L^{s}((0,T;L^{q}(\Omega)))}^{s} \\ \leq C(\|u_{0}\|_{W_{s}^{2-2/s}(\Omega)}^{s} + \|w \cdot \nabla u\|_{L^{s}(0,T;L^{q}(\Omega))}^{s} + \|f\|_{L^{s}(0,T;L^{q}(\Omega))}^{s}). \end{aligned}$$

Furthermore, by normalizing p such that $\int_{\Omega} p = 0$ for all t we obtain

$$\|p\|_{L^{5/3}(0,T;L^{5/3}(\Omega))} < \infty.$$
(2.1)

LEMMA 2.2. Let Ω , u_0 and f satisfy the assumption of Chapter 1 and let $w \in C^{\infty}(\overline{D}, \mathbb{R}^3)$ with $\nabla \cdot w = 0$. Let (u, p) be the solution of Lemma 1.3. Then, for every $\varphi \in C^{\infty}(\overline{D})$ with $\varphi = 0$ near $\partial\Omega \times (0, T)$, and for every $t, 0 < t \leq T$,

$$\int_{\Omega} |u(x,t)|^2 \varphi(x,t) dx + 2 \iint_{D} |\nabla u|^2 \varphi = \int_{\Omega} |u_0|^2 \varphi(x,0) + \iint_{D} |u|^2 (\varphi_t + \Delta \varphi)$$
$$+ \iint_{D} (|u|^2 w + 2pu) \cdot \nabla \varphi + 2 \iint_{D} (u \cdot f) \varphi$$

PROOF. We assume that Ω is bounded. Suppose for the moment that φ vanishes near t = 0, choose Ω_1 , so that $\Omega_1 \subset \Omega$ and $\operatorname{supp} \varphi \subset \Omega_1 \times (0, T)$. Writing $F = f - w \cdot \nabla u$, we have

$$u_t - \Delta u + \nabla p = F$$
 on D .

Mollifying in \mathbb{R}^4 each term of the equation above, we obtain sequences of smooth functions u_m , p_m and F_m , $m = 1, 2, \ldots$, such that

$$\frac{du_m}{dt} - \Delta u_m + \nabla p_m = F_m \qquad \nabla \cdot u_m = 0 \tag{2.2}$$

in a neighborhood of ${\rm supp}\Phi,$ and such that

$$u_m \to u \qquad \text{in } L^5(0,T;L^{\frac{3}{2}}(\Omega) \cap L^2(D)),$$

$$\nabla u_m \to \nabla u \qquad \text{in } L^2(D),$$

$$p_m \to p \qquad \text{in } L^{\frac{5}{4}}(0,T;L^{\frac{5}{3}}(\Omega_1)),$$

$$F_m \to F \qquad \text{in } L^2(D).$$

Taking the inner product of 2.2 with $2u_m\Phi$ and integrating by parts yields

$$2\iint_{D} |\nabla u_{m}|^{2} \varphi = \iint_{D} |u_{m}|^{2} (\varphi_{t} + \Delta \varphi) + 2\iint_{D} p_{m} (u_{m} \cdot \nabla \varphi) + 2\iint_{D} (u_{m} \cdot F_{m}) \varphi.$$

We pass to the limit as $m \to \infty$, to conclude for u, p and F, with $F = f - w \cdot \nabla u$,

$$2\iint_{D} (u \cdot F)\varphi = 2\iint_{D} (u \cdot f)\varphi + \iint_{D} |u|^{2} w \cdot \nabla \varphi.$$

This gives the proof when $\varphi \in C_0^{\infty}(D)$ and t = T. For the more general case use a cutoff function in time and the continuity of u in H at 0.

The goal of this chapter is to use the results shown in Chapter 1 to prove the existence of the weak solution. Therefore, we will introduce the mollyfing operator

$$\Psi_{\delta}(u)(x,t) \coloneqq (\delta^{-4}\psi(\cdot/\delta)) * u(x,t) = \delta^{-4} \iint_{\mathbb{R}^4} \psi\left(\frac{y}{\delta}, \frac{\tau}{\delta}\right) \tilde{u}(x-y,t-\tau) dy d\tau,$$

where $\psi \in C^{\infty}(\mathbb{R}^4)$, $\psi \ge 0$, $\iint_{\mathbb{R}^4} \psi(x,t) dx dt = 1$ and supp $\psi \in \{(x,t) : |x|^2 < t, 1 < t < 2\}$ and \tilde{u} is the extension of u on \mathbb{R}^4 , i.e. $\tilde{u}(x,t) = u(x,t)$ on D and elsewhere 0. We see by [5], Theorem 1.2.19 that ψ_{δ} is an approximating identity on \mathbb{R}^4 .

LEMMA 2.3. For any $u \in L^{\infty}(0,T;H) \cap L^{2}(0,T;V)$ it holds

$$\nabla \cdot \psi_{\delta}(u) = 0, \tag{2.3}$$

$$\sup_{0 \le t \le T} \int_{\Omega} |\psi_{\delta}(u)|^2 dx \le C E_0(u), \tag{2.4}$$

$$\iint_{D} |\nabla \psi_{\delta}(u)|^2 dx dt \le C E_1(u), \tag{2.5}$$

for some C > 0 independent of u and δ .

PROOF. It is easy to see that

$$\nabla \cdot \Psi_{\delta}(u) = \delta^{-4} \iint_{\mathbb{R}^{4}} \nabla \psi \left(\frac{y}{\delta}, \frac{\tau}{\delta}\right) \cdot \tilde{u}(x - y, t - \tau) dy d\tau$$
$$= \delta^{-4} \iint_{\Omega} \nabla \psi \left(\frac{y}{\delta}, \frac{\tau}{\delta}\right) \cdot u(x - y, t - \tau) dy d\tau = 0.$$

Furthemore, we obtain (2.4) by Hölder's and Young's inequality

$$\begin{split} \int_{\Omega} |\psi_{\delta}(u)_{j}|^{2} dx &= \int_{\Omega} \left(\int_{\delta}^{2\delta} \int_{\mathbb{R}^{3}} \psi_{\delta}\left(y,\tau\right) \tilde{u}_{j}\left(x-y,t-\tau\right) dy d\tau \right)^{2} dx \\ &\leq \delta \int_{\delta}^{2\delta} \int_{\Omega} \left(\int_{\mathbb{R}^{3}} \psi_{\delta}\left(y,\tau\right) \tilde{u}_{j}\left(x-y,t-\tau\right) dy \right)^{2} dx d\tau \\ &\leq \int_{\mathbb{R}} \delta^{-1} \|\psi(\cdot,\tau/\delta)\|_{L^{1}(\mathbb{R}^{3})}^{2} \|u(\cdot,\tau)\|_{L^{2}(\mathbb{R}^{3})}^{2} d\tau \\ &\leq E_{0}(u) \int_{\mathbb{R}} \|\psi(\cdot,\tau)\|_{L^{2}(\mathbb{R}^{3})}^{2} d\tau. \end{split}$$

The inequality (2.5) is a direct consequence of Young's inequality

$$\iint_{D} |\nabla_{j}\psi_{\delta}(u)_{i}|^{2} dx dt \leq \iint_{\mathbb{R}^{4}} \left| \delta^{-4} \iint_{\mathbb{R}^{4}} \psi\left(\frac{y}{\delta}, \frac{\tau}{\delta}\right) \nabla_{j} \tilde{u}_{i}(x-y, t-\tau) dy d\tau \right|^{2} dx dt$$
$$\leq \|\psi\|_{L^{1}(\mathbb{R}^{4})}^{2} \|\nabla_{j}u_{i}\|_{L^{2}(\mathbb{R}^{3})}^{2}.$$

.2

In the proof of the main theorem we will use the following theorem, which gives a sufficient condition that a sequence $(x_n)_{n \in \mathbb{N}} \cap L^2(0,T;L^2(\Omega))$ is relatively compact.

THEOREM 2.4 (see [7], Theorem 1). Let $X_0 \subset X \subset X_1$ be three Banach spaces such that X_0 is compact in X, and X_0 and X_1 are reflexive. Then the space

$$Y = \left\{ v \in L^{\alpha_0}(0,T;X_0), \frac{d}{dt}v \in L^{\alpha_1}(0,T;X_1) \right\}$$

with $\alpha_0, \alpha_1 > 1$ is compact in $L^{\alpha_0}(0, T; X)$.

THEOREM 2.5. Assume that Ω, u_0 and f satisfy the assumptions from Chapter 1. Then there exists a weak solution (u, p) of the Navier-Stokes system such that

$$\begin{split} u \in L^{2}(0,T;V) \cap L^{\infty}(0,T;H), \\ u(t) \to u_{0} \text{ in } H \text{ as } t \to 0, \\ p \in L^{5/3}(D) \text{ if } \Omega = \mathbb{R}^{3}, \\ \nabla p \in L^{5/4}(D) \text{ if } \Omega \text{ is bounded and} \end{split}$$

for all $\varphi \in C_0^{\infty}(D)$, $\varphi \ge 0$ and $\varphi = 0$ near $\partial \Omega \times (0,T)$ it holds

$$\int_{\Omega} |u(x,t)|^2 \varphi(x,t) dx + 2 \int_0^t \int_{\Omega} |\nabla u|^2 \varphi dx dt$$

$$\leq \int_{\Omega} |u_0|^2 \varphi(x,0) dx + \int_0^t \int_{\Omega} (|u|^2 (\varphi_t + \Delta \varphi) + (|u|^2 + 2p) u \cdot \nabla \varphi + 2(u \cdot f) \varphi) dx dt$$

Let $N \in \mathbb{N}$ and $\delta = T/N$. $u_N \in L^2(0,T;V) \cap C([0,T];H)$ is the solution of the equation

$$\frac{d}{dt}u_N + (\psi_{\delta}(u_N) \cdot \nabla)u_N - \Delta u_N + \nabla p_N = f, u_N(0) = u_0,$$

which exists by applying Lemma 1.3 on each time interval $(\delta m, \delta(m+1))$ for each $m = 0, \ldots, N-1$ separately. By using (1.7), (1.8) and (1.9) we obtain

$$\int_{\Omega} |u_N(t,x)|^2 dx + \int_0^t \int_{\Omega} |\nabla u_N|^2 dx dt \le C \left(\int_{\Omega} |u_0|^2 dx + \int_0^t \|f(t)\|_{V'} dt \right)$$

for some constant C > 0 which implies that u_N is bounded in $L^{\infty}(0,T;H) \cap L^2(0,T;V)$. Morever, by [7], Lemma 4.2 we conclude that $\frac{d}{dt}u_n$ is bounded in $L^2(0,T;V'_2)$, hence $(u_N)_{N\in\mathbb{N}}$ is relatively compact in $L^2(D)$ by Theorem 2.4. We obtain a subsequence (u_n) such that $u_n \to u_*$ in $L^2(D)$, $u_n \to u_*$ in $L^2(0,T;V)$ and $u_n \stackrel{*}{\to} u_*$ in $L^{\infty}(0,T;H)$. Moreover, as (u_N) is bounded in $L^{10/3}(D)$ we see easily by an interpolation argument that $u_n \to u_*$ in $L^s(D)$ for every $2 \leq s < 10/3$. Using the above inequalities it is possible to show that u_* solves the Navier-Stokes equation. We will only prove the convergence of the term $\int_0^t \varphi(t)((\psi_{\delta}(u_N) \cdot \nabla) u_N, v)_{L^2(\Omega)} dt$, as the other parts are trivial. As $v \in H^1(\Omega)$, we see that $||u_i v_j||_{L^2(\mathbb{R}^3)} < \infty$, which follows by the Sobolev embedding theorem. We conclude that

$$\begin{split} & \left| \int_{0}^{t} \int_{\Omega} ((\psi_{\delta}(u_{N}) \cdot \nabla) u_{N}, v) \varphi(t) dx dt - \int_{0}^{t} \int_{\Omega} ((u \cdot \nabla) u, v) \varphi(t) dx dt \right| \\ \leq & \left| \int_{0}^{t} \int_{\Omega} ((\psi_{\delta}(u_{N}) \cdot \nabla) u_{N}, v) \varphi(t) dx dt - \int_{0}^{t} \int_{\Omega} ((u \cdot \nabla) u_{N}, v) \varphi(t) dx dt \right| \\ & + \left| \int_{0}^{t} \int_{\Omega} ((u \cdot \nabla) u_{N}, v) \varphi(t) dx dt - \int_{0}^{t} \int_{\Omega} ((u \cdot \nabla) u, v) \varphi(t) dx dt \right| \\ & \rightarrow 0 \text{ for } N \rightarrow \infty, \end{split}$$

where we use for the first term that $\psi_{\delta}(u_N) \to u$ in $L^3(\mathbb{R}^3)$ and in the second term that $u_n \to u$ in $L^2(0,T;V)$.

In the case that Ω is bounded, we use Lemma 2.1. Let $\{\Omega_j\}_{j\in\mathbb{N}}$ be a sequence of subdomains such that $\overline{\Omega}_j \subset \Omega_{j+1}$ and $\cup_{j\in\mathbb{N}}\Omega_j = \Omega$. We see that ∇p_N is bounded in $L^{5/4}(D)$ and p_n in $L^{5/4}(0,T;L^{5/3}(\Omega_j))$. We obtain for every j a subsequence $p_N \to p_*$ in $L^{5/4}(0,T;L^{5/3}(\Omega_j))$. Moreover, we see that $u_N \to u_*$ in $L^5(0,T;L^{5/2}(\Omega))$. The proof follows the same arguments as in the case of $\Omega = \mathbb{R}^3$.

Bibliography

- [1] L. Caffarelli, R. Kohn and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. *Communications on pure and applied mathematics*, 1982.
- [2] Y. Giga and H. Sohr. Abstract L^p Estimates for the Cauchy Problem with Applications to the Navier-Stokes Equations in Exterior Domains. *Journal of functional analysis*, 1991.
- [3] J.L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer-Verlag Berlin Heidelberg New York, 1972.
- [4] J. C. Robinson, J. L. Rodrigo, and W. Sadowski. The Three-Dimensional Navier-Stokes equations: Classical theory. Cambridge Studies in Advanced Mathematics, Vol. 157. *Cambridge University Press*, 2016.
- [5] L. Grafakos. Classical Fourier Analysis. Third edition. Springer, 2014.
- [6] V. A. Solonnikov. Estimates of the solution of a nonstationary linearized system of Navier-Stokes equations. Trudy Mat. Inst. Steklov, 1964
- [7] R. Temam. Navier-Stokes equations. Theory and numerical analysis. Revised edition. Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979.