
CHAPTER 1

Talk 2: Suitable weak solutions: part 1

By Farid Mohamed

We introduce the spaces for Ω ` R3

V � �u > Cª

0 �Ω�,div u � 0�,
V � V

Y�Y
H1

0
�Ω� and

H � V
Y�YL2�Ω� .

The space H is equipped with the norm Y � YL2�Ω� and we write

�u, v�L2�Ω� ��

�

Ω

uv dx

for the generating scalar product. In the case of V we need to distinguish two cases. If Ω
is bounded we set YuYV �� Y©uYL2�Ω� and if Ω is unbounded we de�ne YuYV �� Y©uYL2�Ω� �YuYL2�Ω�. We observe that V 0H 0 V �, where we identify H and H � in the sense that for
every u >H we set

`u, fe � Tu�f� �
�

Ω

ufdx

for f >H. In this case we see that `u, fe � �u, f�L2�Ω�.
We assume for this section that

Ω � R3,

f > L2�0, T ;H�1�R3�� and © � f � 0,

u0 >H

or

Ω is a smooth, bounded, open and connected set in R3

f > L2�Ω � �0, T �� and © � f � 0,

u0 >H 9W
2~5
5~4

�Ω�.
It follows directly that the spaces L2�0, T ;H� and L2�0, T ;V � are re�exive and Lª�0, T ;H�
and Lª�0, T ;V � are the duals of separable Banach spaces, see for example [4], Theorem
1.29.

Definition 1.1. We call the pair �u, p� a suitable weak solution of the Navier-Stokes
system on an open set D � Ω � �0, T � ` R3

�R with force f if:

i) u, p and f are measurable functions on D,

ii) f > Lq�D� for q A 5~2, © � f � 0 and p > L5~4�D�,
1
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iii) the solution u is bounded in the following sense

E0�u� �� ess sup
0@t@T

�

Ω

Su�x, t�S2dx @ª and E1�u� ��x
D

S©uS2dxdt @ª, (1.1)

iv) u, p and f solve

∂tu�x, t� � �u � ©�u�x, t� �©p�x, t� �∆u�x, t� � f in Ω, (1.2)

divu�x, t� � 0 on ∂Ω for all 0 @ t @ T (1.3)

in the sense of distributions in D, i.e. u > L2�0, T ;V � and for all v > V we have

d

dt

�
Ω
u�x, t�v�x�dx �

�
Ω
�u � ©�u�x, t�v�x�dx �

�
Ω
©u � ©v dx �

�
Ω
f�t, x�v�x�dx

in the distributional sense on �0, T �.
v) for all ϕ > Cª

0 �D�, ϕ C 0 it holds

2
x

D

S©uS2ϕdxdt Bx
D

�SuS2�ϕt �∆ϕ� � �SuS2 � 2p�u � ©ϕ � 2�u � f�ϕ�dxdt.
The goal of this chapter is to show that for every f > Lq�D� there exists a suitable

weak solution in the sense of De�ntion 1.1.
The �rst step is to show that the equation

ut � �w � ©�u �∆u �©p � f

has a solution for suitable f and w, where we use the following lemma.

Lemma 1.2 (see [7], Lemma 1.2). Suppose f > L2�0, T ;V ��, u > L2�0, T ;V �, p is a

distribution and

ut �∆u �©p � f (1.4)

in the sense of distributions on D. Then

ut > L
2�0, T ;V ��,

d

dt

�
Ω
SuS2 � 2�ut, u�L2�Ω�

in the sense of distributions on �0, T � and

u > C��0, T �,H�
after modi�cation on a set of measure zero. Solutions of (1.4) are unique in the space

L2�0, T ;V � for given initial data u0 >H.

Proof. Here we give the main ideas of the proof.
Let the function û � R � V be equal to u on �0, T � and to 0 outside this interval. We see
by [3], Theorem 4.3 a sequence �um�m>N such that

¦m,um is in�nitly di�erentiable from �0, T � onto V , as m�ª

um � u in L2
loc�0, T ;V �,

u�m � u� in L2
loc�0, T ;V ��.

It follows directly

d

dt

�
Ω
Sum�t�S2 � 2�u�m�t�, um�t��L2�Ω�

and as m�ª we get

YumY2
L2�Ω� � YuY2

L2�Ω� in L
1
loc��0, T ��

�u�m, um�L2�Ω� � �u�, u�L2�Ω� in L
1
loc��0, T ��.
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These convergences also hold in the distribution sense. So by passing to the limit we get

d

dt

�
Ω
SuS2 � 2�ut, u�L2�Ω� (1.5)

and by (1.5) we see that u > Lª�0, T ;H�. We conclude by [7], Lemma 1.4 that u >

C��0, T �;H�. Uniqueness will follow by the next lemma. �

Lemma 1.3. Let f > L2�0, T ;V ��, u0 > H and w > Cª�D,R3� with © � w � 0. Then

there exists a unique function u and a distribution p such that

u > C��0, T �,H� 9L2�0, T ;V �,
ut � �w � ©�u �∆u �©p � f

in the sense of distributions on D, with u�0� � u0.

Proof. We will follow [7], Theorem 1.1 by constructing the solution. Let �xn�n>N ` V

be a sequence of linearly indepedent vectors such that span��xn�n>N� � V , which exists as

V is separable. We set Vn �� span�x1, . . . , xn� and un ��
n

P
i�1
gin�t�xi, where �gin�ni�1 is a

solution of the system

n

Q
i�1

g�in�t��xi, xj�L2�Ω� �

n

Q
i�1

gin�t����w � ©�xi, xj�L2�Ω� � �©xi,©xj�L2�Ω�� � `f, xje
gjn�0� � PVn�x0�j

for j � 1, . . . , n. Then un solves the equation

�u�n, v�L2�Ω� � ��w � ©�un, v� � �©un,©v�L2�Ω� � `f, ve
for all v > Vn. Observe by partial integration that

��w � ©�un, un�L2�Ω� � ��un, �w � ©�un�L2�Ω� � 0

and one obtains

1

2

d

dt
YunY2

L2�Ω� ��u�n, un�L2�Ω�

�`f, une � �©un,©un�L2�Ω�

B
1

2
YfY2

V � �
1

2
YunY2

L2�Ω� �
1

2
Y©uY2

L2�Ω� (1.6)

B
1

2
YfY2

V � �
1

2
YunY2

L2�Ω�,

whch follows by

`f, une B 1

2
YfY2

V � �
1

2
YunY2

V B
1

2
YfY2

V � �
1

2
YunY2

L2�Ω� �
1

2
Y©unY2

L2�Ω�.

The continuity of the projection and Gronwall's inequality imply that

Yun�t�Y2
L2�Ω� B

���Yu0Y2
L2�Ω� �

T�

0

Yf�s�Y2
V � ds

��� e
T
@ª, (1.7)
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which implies that �un�n>N is uniformly bounded in Lª�0, T ;H�. Furthermore, we see by
integrating (1.6)

Yun�t�Y2
L2�Ω� �

t�

0

Y©un�s�Y2
L2�Ω�ds

BYun�0�Y2
L2�Ω� �

t�

0

Yf�s�Y2
V �ds �

� T

0
Yun�s�Y2

L2�Ω� ds

B �Yu�0�Y2
L2�Ω� � YfY2

L2�0,T ;V ��� �1 � TeT �
and we conclude that �un�n>N is uniformly bounded in L2�0, T ;V �. One infers that there
exists a subsequence �un�n>N ` L2�0, T ;V � 9Lª�0, T ;H� such that there exists an
u > L2�0, T ;V � 9Lª�0, T ;H�

un @ u for n�ª in L2�0, T ;V � and (1.8)

un
�

@ u for n�ª in Lª�0, T ;H�. (1.9)

We conclude for every ϕ > C1��0, T �� with ϕ�T � � 0 that

0 �

� T

0
��u�n�t�, ϕ�t�xj�L2�Ω� � ��w � ©�un�t�, ϕ�t�xj� � �©un�t�,©xjϕ�t��L2�Ω�

� `f�t�, ϕ�t�xje�dt
�

� T

0
���un�t�, ϕ��t�xj�L2�Ω� � ��w � ©�un�t�, ϕ�t�xj� � �©un�t�,©xjϕ�t��L2�Ω�

� `f�t�, ϕ�t�xjedt � �un�0�, xj�L2�Ω�ϕ�0��
�

� T

0
���u�t�, ϕ��t�xj�L2�Ω� � ��w � ©�u�t�, ϕ�t�xj� � �©u�t�,©xjϕ�t��L2�Ω�

� `f�t�, ϕ�t�xjedt � �u�0�, xj�L2�Ω�ϕ�0��
for n�ª for every j > N. Moreover, the equality holds for every �nite combination of the�xj� and by continuity even for all v > V . We obtain that

d

dt
�u, v�L2�Ω� � ��w � ©�u, v� � �©u,©v�L2�Ω� � `f, ve (1.10)

in the sense of distributions on �0, T �.
In order to see that u�0� � u0 we use that

� T

0

d

dt
�u�t�, v�L2�Ω�ϕ�t�dt � �

� T

0
�u�t�, v�ϕ��t�dt � �u�0�, v�ϕ�0�,

which implies that

�

� T

0
�u�t�, v�ϕ��t�dt �

� T

0
�©u,©v�L2�Ω�ϕ�t�dt �

� T

0
��w � ©�u, v�L2�Ω�ϕ�t�dt

��u�0�, v�ϕ�0� �
� T

0
`f�t�, veϕ�t�dt

By comparison with the above equality we see that

�u0 � u�0�, v�ϕ�0� � 0.

As v was arbitrary we conclude that u0 � u�0�.
To show uniqueness assume that we have two solutions u1 and u2 with some initial data
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and force f . We know that u1 � u2 solves (1.10) with f � 0. We conclude by (1.6) that

1

2

d

dt
Yu1 � u2Y2

L2�Ω� B ��©�u1 � u2�,©�u1 � u2��L2�Ω� B 0.

As u1�0� � u2�0� we conclude that u1 � u2. �

A solution of the Poisson equation �∆u � f for f > Lq�R3� for some 1 @ q @ª can be
written as

u�x� �� ��∆��1f�x� �� c3

�

R3

1

Sx � ySf�y�dy,
where c3 > R can be given explicitly. We use the following theorem, which can be shown
by the Calderón-Zygmund theorem.

Theorem 1.4 (see [4], Theorem B.7). The linear operator Tjk de�ned by

Tjkf �� ∂j∂k��∆��1f

is a bounded linear operator from Lq�R3� into Lq�R3� for all 1 @ q @ª, i.e.

YTjkfYLq�R3� B CYfYLq�R3�

for some constant C A 0.

Lemma 1.5. Let Ω � R3, f > L2�0, T ;H�1�R3��, div f � 0 and u0 > H. Then it holds

that

∆p � �Q
i,j

∂i∂j�wiuj�, (1.11)

in the sense of distribution. Hence, we obtainx

D

SpS5~3dxdt B Cx
D

SwS5~3 � SuS5~3dxdt.
Remark 1.6. For general Ω (if Ω is bounded) it is also possible to show that p >

L5~3�D�.
Proof. We follow [4] to show that p is given by (1.11). At �rst, observe that

�ϕ > �S�R3��3 � div ϕ � 0�
is a dense subset of V . Furthermore, for every h > �S�R3��3 there exists a ϕ > �S�R3��3
and ψ > S�R3� such that h � ϕ � ©ψ and © � ϕ � 0, see for example [4], Exercise 5.2. Now
let ξ > Cª

0 ��0, T ��. As u is the solution of (1.10) we obtain by partial integration

�

� T

0
�u,h�L2�R3�ξ

��t�dt �
� T

0
�u,∆h�L2�R3�ξ�t�dt (1.12)

�

� T

0
�uaw,©h�L2�R3�ξ�t�dt �

� T

0
`f, heξ�t�dt (1.13)

� �

� T

0
�u,ϕ�L2�R3�ξ

��t�dt �
� T

0
�©u,©ϕ�L2�R3�ξ�t�dt

�

� T

0
��w � ©�u,ϕ�L2�R3�ξ�t�dt �

� T

0
Q
i,j

�uiwj , ∂i∂jψ�L2�R3�ξ�t�dt (1.14)

�

� T

0
`f,ϕeξ�t�dt (1.15)

� �

� T

0
Q
i,j

�uiwj , ∂i∂jψ�L2�R3�ξ�t�dt. (1.16)
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As u > V , we conclude that ∆p � �P
i,j
∂i∂j�wiuj�, where we used that ©�h � ∆ψ. By taking

the Fourier transform we see that we can interchange the Laplace operator and ∂i∂j and
we obtain

p � ��∆��1��∆�p �Q
i,j

��∆��1∂i∂jwiuj �Q
i,j

∂i∂j��∆��1wiuj ,

and one infers by Theorem 1.4 that YpYL5~3�R3� B CYSwS � SuSYL5~3 . �

Later on we want to estimate the pressure p by using following inequality

�

R3

SuSqdx B C ���
�

R

S©uS2 dx���
3
4
�q�2�

�
�
R
SuS2 dx�

1
4
�6�q�

(1.17)

for 2 B q B 6, which is a special case of the Gagliardo-Nirenberg interpolation inequality

YDjuYLq�R3� B CYDmuYαLr�R3�YuY1�α
Lp�R3�

where 1 @ q, p, r @ª and m,j > N. α is chosen is such a way that 1
q �

j
3 �

�1
r �

m
3
�α � 1�α

p

and j
m B α B 1. By choosing j � 0, m � 1, r � p � 2 and α � 3�1

2 �
1
q � we obtain (1.17). We

recall that we denote by

E0�u� �� ess sup
0@t@T

�

Ω

Su�x, t�S2dx and E1�u� ��x
D

S©uS2dxdt.

Lemma 1.7. For u,w > L2�0, T ;H1�R3��,
YuYL10~3�0,T ;L10~3�R3�� B CE

3~10
1 �u�E1~5

0 �u�, (1.18)

Yw � ©uYL5~4�0,T ;L5~4�R3�� B CE
1~2
1 �u�E3~10

1 �w�E1~5
0 �w�, (1.19)

YuYL5�0,T ;L5~2�R3�� B CT
1~20E

7~20
0 �u�E3~20

1 �u�. (1.20)

Proof. For (1.18) we use (1.17) and obtain

�

R3

SuS10~3 dx B C �
�
R3

S©uS2dx��
�
R3

SuS2dx�2~3

B C �
�
R3

S©uS2dx�E0�u�2~3

for almost all t > �0, T �. Integrating over �0, T � gives the result. For (1.19) we see by
Hölder's inequality that

� T

0

�
R3

Sw � ©uS5~4dxdt B�
� T

0

�
R3

SwS10~3 dxdt�
3~8

E1�u� 5
8

�YwY5~4

L10~3�0,T ;L10~3�R3��
E1�u� 5

8 .
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By applying (1.18) we obtain (1.19). Furthermore, we see by (1.17) and Hölder's inequality
that

� T

0
�
�
R3

SuS5~2 dx�2

dt BC

� T

0

���
�

R

S©uS2 dx���
3~4

�
�
R3

SuS2 dx�7~4

dt

BCE0�u�7~4

� T

0

���
�

R

S©uS2 dx���
3~4

dt

BCE0�u�7~4T 1~4
���
� T

0

�

R

S©uS2 dxdt���
3~4

.

We conclude that �1.20� holds true. �



CHAPTER 2

Talk 3: Suitable weak solutions: part 2

By David Berger

Lemma 2.1 (see [2], Theorem 2.8). Assume that Ω, f and u0 satisfy the assumptions

of Lemma 1.3. Let Ω be bounded, 4 � 3~q � 2~s and w � ©u, f > Ls�0, T ;Lq�Ω�� and

u0 >W
2�2~s
s �Ω�. Then the solution �u, p� constructed in Lemma 1.3 satis�es

Y©pYsLs�0,T ;Lq�Ω�� � YutYsLs�0,T ;Lq�Ω�� � Y©2uYsLs��0,T ;Lq�Ω��

BC�Yu0Ys
W

2�2~s
s �Ω�

� Yw � ©uYsLs�0,T ;Lq�Ω�� � YfYsLs�0,T ;Lq�Ω���.
Furthermore, by normalizing p such that

�
Ω p � 0 for all t we obtain

YpYL5~3�0,T ;L5~3�Ω�� @ª. (2.1)

Lemma 2.2. Let Ω, u0 and f satisfy the assumption of Chapter 1 and let w > Cª�D̄,R3�
with © �w � 0. Let �u, p� be the solution of Lemma 1.3. Then, for every ϕ > Cª�D̄� with

ϕ � 0 near ∂Ω � �0, T �, and for every t, 0 @ t B T ,�

Ω

Su�x, t�S2ϕ�x, t�dx � 2
x

D

S©uS2ϕ �

�

Ω

Su0S2ϕ�x,0� �x
D

SuS2�ϕt �∆ϕ�
�

x

D

�SuS2w � 2pu� � ©ϕ � 2
x

D

�u � f�ϕ
Proof. We assume that Ω is bounded. Suppose for the moment that ϕ vanishes near

t � 0, choose Ω1, so that Ω1 ` Ω and suppϕ ` Ω1 � �0, T �. Writing F � f �w � ©u, we have

ut �∆u �©p � F on D.

Mollifying in R4 each term of the equation above, we obtain sequences of smooth functions
um, pm and Fm, m � 1,2, . . . , such that

dum
dt

�∆um �©pm � Fm © � um � 0 (2.2)

in a neighborhood of suppΦ, and such that

um � u in L5�0, T ;L
5
2 �Ω� 9L2�D��,

©um � ©u in L2�D�,
pm � p in L

5
4 �0, T ;L

5
3 �Ω1��,

Fm � F in L2�D�.
Taking the inner product of 2.2 with 2umΦ and integrating by parts yields

2
x

D

S©umS2ϕ �

x

D

SumS2�ϕt �∆ϕ� � 2
x

D

pm�um � ©ϕ� � 2
x

D

�um � Fm�ϕ.
We pass to the limit as m�ª, to conclude for u, p and F , with F � f �w � ©u,

2
x

D

�u � F �ϕ � 2
x

D

�u � f�ϕ �x
D

SuS2w � ©ϕ.

8
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This gives the proof when ϕ > Cª

0 �D� and t � T . For the more general case use a cuto�
function in time and the continuity of u in H at 0. �

The goal of this chapter is to use the results shown in Chapter 1 to prove the existence
of the weak solution. Therefore, we will introduce the molly�ng operator

Ψδ�u��x, t� �� �δ�4ψ��~δ�� � u�x, t� � δ�4
x

R4

ψ �y
δ
,
τ

δ
� ũ�x � y, t � τ�dydτ,

where ψ > Cª�R4�, ψ C 0,
s

R4 ψ�x, t�dxdt � 1 and supp ψ ` ��x, t� � SxS2 @ t,1 @ t @ 2� and

ũ is the extension of u on R4, i.e. ũ�x, t� � u�x, t� on D and elsewhere 0. We see by [5],
Theorem 1.2.19 that ψδ is an approximating identity on R4.

Lemma 2.3. For any u > Lª�0, T ;H� 9L2�0, T ;V � it holds

© � ψδ�u� � 0, (2.3)

sup
0BtBT

�
Ω
Sψδ�u�S2dx B CE0�u�, (2.4)

x

D

S©ψδ�u�S2dxdt B CE1�u�, (2.5)

for some C A 0 independent of u and δ.

Proof. It is easy to see that

© �Ψδ�u� � δ�4
x

R4

©ψ �y
δ
,
τ

δ
� � ũ�x � y, t � τ�dydτ

� δ�4
x

Ω

©ψ �y
δ
,
τ

δ
� � u�x � y, t � τ�dydτ � 0.

Furthemore, we obtain (2.4) by Hölder's and Young's inequality
�

Ω
Sψδ�u�j S2dx �

�
Ω
�
� 2δ

δ

�
R3

ψδ �y, τ� ũj�x � y, t � τ�dydτ�
2

dx

Bδ

� 2δ

δ

�
Ω
�
�
R3

ψδ �y, τ� ũj�x � y, t � τ�dy�2

dxdτ

B

�
R
δ�1Yψ��, τ~δ�Y2

L1�R3�Yu��, τ�Y2
L2�R3�dτ

BE0�u�
�
R
Yψ��, τ�Y2

L2�R3�dτ.

The inequality (2.5) is a direct consequence of Young's inequality

x

D

S©jψδ�u�iS2dxdt Bx
R4

RRRRRRRRRRRR
δ�4
x

R4

ψ �y
δ
,
τ

δ
�©j ũi�x � y, t � τ�dydτ

RRRRRRRRRRRR
2

dxdt

B YψY2
L1�R4�Y©juiY2

L2�R3�.

�

In the proof of the main theorem we will use the following theorem, which gives a
su�cient condition that a sequence �xn�n>N 9L2�0, T ;L2�Ω�� is relatively compact.

Theorem 2.4 (see [7], Theorem 1). Let X0 ` X ` X1 be threee Banach spaces such

that X0 is compact in X, and X0 and X1 are re�exive. Then the space

Y � �v > Lα0�0, T ;X0�, d
dt
v > Lα1�0, T ;X1� 
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with α0, α1 A 1 is compact in Lα0�0, T ;X�.
Theorem 2.5. Assume that Ω, u0 and f satisfy the assumptions from Chapter 1. Then

there exists a weak solution �u, p� of the Navier-Stokes system such that

u > L2�0, T ;V � 9Lª�0, T ;H�,
u�t�@ u0 in H as t� 0,

p > L5~3�D� if Ω � R3,

©p > L5~4�D� if Ω is bounded and

for all ϕ > Cª

0 �D�, ϕ C 0 and ϕ � 0 near ∂Ω � �0, T � it holds�
Ω
Su�x, t�S2ϕ�x, t�dx � 2

� t

0

�
Ω
S©uS2ϕdxdt

B

�
Ω
Su0S2ϕ�x,0�dx �

� t

0

�
Ω
�SuS2�ϕt �∆ϕ� � �SuS2 � 2p�u � ©ϕ � 2�u � f�ϕ�dxdt.

Let N > N and δ � T ~N . uN > L2�0, T ;V �9C��0, T �;H� is the solution of the equation

d

dt
uN � �ψδ�uN� � ©�uN �∆uN �©pN � f, uN�0� � u0,

which exists by applying Lemma 1.3 on each time interval �δm, δ�m � 1�� for each m �

0, . . . ,N � 1 separately. By using (1.7), (1.8) and (1.9) we obtain�
Ω
SuN�t, x�S2dx �

� t

0

�
Ω
S©uN S2dxdt B C �

�
Ω
Su0S2dx �

� t

0
Yf�t�YV �dt� ,

for some constant C A 0 which implies that uN is bounded in Lª�0, T ;H� 9 L2�0, T ;V �.
Morever, by [7], Lemma 4.2 we conclude that d

dtun is bounded in L2�0, T ;V �

2�, hence�uN�N>N is relatively compact in L2�D� by Theorem 2.4. We obtain a subsequence �un�
such that un � u� in L2�D�, un @ u� in L2�0, T ;V � and un �

@ u� in Lª�0, T ;H�. More-

over, as �uN� is bounded in L10~3�D� we see easily by an interpolation argument that
un � u� in Ls�D� for every 2 B s @ 10~3. Using the above inequalities it is possible to
show that u� solves the Navier-Stokes equation. We will only prove the convergence of the

term
� t

0 ϕ�t���ψδ�uN� � ©�uN , v�L2�Ω�dt, as the other parts are trivial. As v > H
1�Ω�, we

see that YuivjYL2�R3� @ª, which follows by the Sobolev embedding theorem. We conclude
that

W
� t

0

�
Ω
��ψδ�uN� � ©�uN , v�ϕ�t�dxdt �

� t

0

�
Ω
��u � ©�u, v�ϕ�t�dxdtW

B W
� t

0

�
Ω
��ψδ�uN� � ©�uN , v�ϕ�t�dxdt �

� t

0

�
Ω
��u � ©�uN , v�ϕ�t�dxdtW

� W
� t

0

�
Ω
��u � ©�uN , v�ϕ�t�dxdt �

� t

0

�
Ω
��u � ©�u, v�ϕ�t�dxdtW

� 0 for N �ª,

where we use for the �rst term that ψδ�uN� � u in L3�R3� and in the second term that
un @ u in L2�0, T ;V �.
In the case that Ω is bounded, we use Lemma 2.1. Let �Ωj�j>N be a sequence of subdomains

such that Ωj ` Ωj�1 and 8j>NΩj � Ω. We see that ©pN is bounded in L5~4�D� and pn in

L5~4�0, T ;L5~3�Ωj��. We obtain for every j a subsequence pN @ p� in L
5~4�0, T ;L5~3�Ωj��.

Moreover, we see that uN � u� in L
5�0, T ;L5~2�Ω��. The proof follows the same arguments

as in the case of Ω � R3.
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