CHAPTER 1
Talk 2: Suitable weak solutions: part 1

By Farid Mohamed

We introduce the spaces for Q c R3
V={ueC;(Q),div u =0},
v =vla@ and
H= VII-IILz(Q).

The space H is equipped with the norm |- |[12(q) and we write

(u,v) 2(0) :=/u1)dx

Q

for the generating scalar product. In the case of V we need to distinguish two cases. If €2
is bounded we set [lully := [|[Vullp2(qy and if Q is unbounded we define |lully := [Vul| 2oy +
|ullL2¢q)- We observe that V' — H < V', where we identify i/ and H' in the sense that for
every u € H we set

(u, ) = To(f) = / ufda
Q

for fe H. In this case we see that (u, f) = (u, f)12¢q)-
We assume for this section that

Q=R3,
feL*(0,T;H(R*)) and V- f =0,
’LLUEH

or

Q is a smooth, bounded, open and connected set in R?
feLl*(2x(0,T)) and V- f =0

uy € HnWoIH(9).

It follows directly that the spaces L?(0,T; H) and L?(0,T; V') are reflexive and L*°(0,7’; H)
and L*(0,T;V) are the duals of separable Banach spaces, see for example [4], Theorem
1.29.

DEFINITION 1.1. We call the pair (u,p) a suitable weak solution of the Navier-Stokes
system on an open set D = Q x (0,T) c R? x R with force f if:

i) u,p and f are measurable functions on D,
ii) feLi(D) for ¢>5/2, V- f=0and pe L*(D),
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iii) the solution u is bounded in the following sense

Eo(u) := esssup/|u(x,t)|2dx < oo and Ey(u) := ff |Vul|*dzdt < oo, (1.1)
0<t<T o D

iv) u,p and f solve
Ou(x,t) + (u-V)u(z,t) + Vp(zx,t) — Au(z,t) = f in Q, (1.2)
divu(z,t) =00on 90Q for all 0 <t < T (1.3)

in the sense of distributions in D, i.e. uwe L?(0,7;V) and for all v € V we have

%/Qu(xjt)v(g;)dgm/ﬂ(u-V)u(x,t)v(m)der/QVu-Vvdx=/Qf(t,x)v(:c)da:

in the distributional sense on (0,7).
v) for all ¢ € C5°(D), ¢ >0 it holds

ZII |Vu|2g0dxdt < jf(|u|2(g0t +Ap) + (|u|2 +2p)u- Vo +2(u- f)e)dxdt.
D D

The goal of this chapter is to show that for every f € LY(D) there exists a suitable
weak solution in the sense of Defintion 1.1.
The first step is to show that the equation

up+(w-V)u-—Au+Vp=f
has a solution for suitable f and w, where we use the following lemma.

LeMMA 1.2 (see [7], Lemma 1.2). Suppose f € L*(0,T;V"), uw € L*(0,T;V), p is a
distribution and

u—Au+Vp=f (1.4)
in the sense of distributions on D. Then

ug € L2(0,T; V'),

d
£/9|U|2 = 2(ug, u) r2()

in the sense of distributions on (0,T) and
ueC([0,T],H)

after modification on a set of measure zero. Solutions of (1.4) are unique in the space
L2(0,T;V) for given initial data ug € H.

PRrROOF. Here we give the main ideas of the proof.
Let the function @ : R - V be equal to w on [0,T] and to 0 outside this interval. We see
by [3], Theorem 4.3 a sequence (U, )men such that

VYm, uy, is infinitly differentiable from [0,7T'] onto V, as m — oo
Uy, = w in L (0,T;V),
up, —u' in L3, .(0,T;V").

It follows directly

d

G | OF =200, (), 0n(0) 200y
and as m — oo we get

il = 1l 20y 10 L ((0,7))

(u;n7um)L2(Q) e (ulau)LQ(Q) in Llloc((OaT))
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These convergences also hold in the distribution sense. So by passing to the limit we get

d
& Ll =2, 0) o (1.5)

and by (1.5) we see that w € L*(0,7;H). We conclude by [7], Lemma 1.4 that u e
C([0,T]; H). Uniqueness will follow by the next lemma. O

LeEMMA 1.3. Let f € L?(0,T;V"), uo € H and w € C*(D,R3) with V-w = 0. Then
there exists a unique function u and a distribution p such that

ue C([0,T], H) n L*(0, T3 V),
u+(w-V)u—-Au+Vp=f
in the sense of distributions on D, with u(0) = ug.

Proor. We will follow [7], Theorem 1.1 by constructing the solution. Let {xy, }neny ¢ V
be a sequence of linearly indepedent vectors such that span((zy)nen) =V, which exists as
n

V is separable. We set V), := span(z1,...,2,) and uy = Y, gin(t)x;, where (gin)i, is a
i=1

solution of the system

ng ) (i, x5) L2(Q)+ng (((w-V)xi,z5) 12y + (Vi VIj) 12(0)) = (f, 25)
=1
gjn(0) = Py, (20);

for j=1,...,n. Then u, solves the equation
(Un, V) r2(0) + (W V)un, v) + (Vn, VV) £2(0) = (f,)
for all v € V},. Observe by partial integration that
((w - V)un, un) 20y = =(tn, (w- V)un) p2(qy =0

and one obtains

1d ,
2dt”un”L2(Q) =(up, Un)L2(Q)
{

frun) - (Vun, vun)LQ(Q)

1

S§||f||%/' *3 ||un||L2(Q) ||VU||%2(Q) (1.6)

1., 1
SUA R SlunlZ26),

whch follows by

1 1 1 1 1
(f,un) < §||f||%/' + §||Un||%/ < §||f||%/' + §||Un||%2(9) + §||Vun||%2(g)‘

The continuity of the projection and Gronwall’s inequality imply that

i () 2oy < (ol agy + [ 175) s | < o, (1.7)
0
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which implies that (uy,)nen is uniformly bounded in L*(0,7T; H). Furthermore, we see by
integrating (1.6)

fun 2y + [ 1900 (5) s
0

t
T
s Ol ey + [ 1Rds = [ ()] s
0

< ()220 + 1£ 122071 ) (1 + T€T)

and we conclude that (uy)ney is uniformly bounded in L?(0,7;V). One infers that there
exists a subsequence (un)neny € L2(0,T;V) n L=(0,T; H) such that there exists an
we L2(0,T;V)nL>(0,T; H)

Uy — u for n — oo in L*(0,T;V) and (1.8)
Up —~ u for n — oo in L=(0,T; H). (1.9)
We conclude for every ¢ € C*([0,T]) with ¢(T) =0 that

T
=/0 ((un (1), p(t)5) L2y + ((w- V)un(t), p(t);) + (Vun(t), Vz;o(t)) 12 (o)
= (f(t), p(t)x;)) dt

T
=/ (=(un(t), ¢ (1)) L2y + ((w - V)un(t), o(t)z;) + (Vun(t), Vajo(t)) 20
(f(), p(t)zj)dt — (un(0), xJ)LQ(Q)SO(O))

—>/ "(O)z)r2(0) + ((w- V)u(t), o(t)z;) + (Vu(t), Vajo(t)) 12(a)
(f(2), o(t )%)dt—( u(0), %) 2(2)%(0))

for n — oo for every j € N. Moreover, the equality holds for every finite combination of the
(z;) and by continuity even for all v e V. We obtain that

d

E(u,v)m(m + ((w- V)u,v) + (Vu, Vu) 2(qy = (£, v) (1.10)

in the sense of distributions on (0,7T).
In order to see that u(0) = up we use that

T
[ w00 ed =~ [ @005 O 00,0000)

which implies that
T

T T
- /0 (u(t), )¢ (t)dt + /0 (V0. Vo) oy (1) i + /0 (w- V)u.v) p2gayelt) dt
T
~(u(0), v)(0) + /0 (F(0) 0o (t)d
By comparison with the above equality we see that

(uo —u(0),v)p(0) = 0.

As v was arbitrary we conclude that ug = u(0).
To show uniqueness assume that we have two solutions u; and ue with some initial data



1. TALK 2: SUITABLE WEAK SOLUTIONS: PART 1 5

and force f. We know that uj — ua solves (1.10) with f =0. We conclude by (1.6) that
1d

7L 72y < =(V(wr —ug), V(u1 - u2)) 20y < 0.

As u1(0) = uz(0) we conclude that u; = us. O

A solution of the Poisson equation —Awu = f for f € LI(R3) for some 1 < ¢ < oo can be
written as

u(z) = (-A) " f(x —c3/ f(y

where c3 € R can be given exphc1t1y. We use the following theorem, which can be shown
by the Calderén-Zygmund theorem.

THEOREM 1.4 (see [4], Theorem B.7). The linear operator T}, defined by
Tjif = 0;00(-A)"f
is a bounded linear operator from LI(R3) into LI(R3) for all 1 < q< oo, i.e.

1Tk fll aqrsy € Clfll Lars)

for some constant C > 0.

LEMMA 1.5. Let Q =R3, f e L*(0,T; H*(R?)), div f =0 and up € H. Then it holds
that

—Z@iaj(wiuj), (1.11)
i?j
in the sense of distribution. Hence, we obtain

Wl Pdwdt < C ([ [wP’? - [u’?dadt.
D D

REMARK 1.6. For general  (if © is bounded) it is also possible to show that p €
L*3(D).
Proor. We follow [4] to show that p is given by (1.11). At first, observe that
{0 e [SRYP :div o =0}
is a dense subset of V. Furthermore, for every h € [S(R3)]? there exists a ¢ € [S(R?)]?

and 1 € S(R3) such that h = ¢+ Ve and V- = 0, see for example [4], Exercise 5.2. Now
let £ e C§°((0,T)). As u is the solution of (1.10) we obtain by partial integration

T T
-/ (1, 1) 2 € (¢ )dt—/o (11, AB) 12 sy (1) (1.12)
T T
/ w®w, Vh) L2 E(t) di / (FB)E(t)dt (1.13)
0 0
T T
- [ e O dis [ (Va0 d
0 0
T
+/ w - V)u, p) r2r3)§(t) dt - / Z uwy, 0;05%) r2w3y€ () dt (1.14)
0
T
/ (1.15)
0
_/0 > (uiw;, 0051 12 (re)§ (t) dt. (1.16)
2¥)
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As u eV, we conclude that Ap = - Z 0;0;(wjuj), where we used that V-h = Ai). By taking

the Fourier transform we see that we can interchange the Laplace operator and 9;0; and
we obtain

p=(-A)"(-A)p= Z(—A)-laiajwiuj Zaa “lwiug,
i.j
and one infers by Theorem 1.4 that || 153 g3y < C|l|w]- [ulll 55- O

Later on we want to estimate the pressure p by using following inequality

E

12 1(6-9)
/|u|quSC /qulex (/|u|2 dx) (1.17)
R3 R *

for 2 < ¢ <6, which is a special case of the Gagliardo-Nirenberg interpolation inequality

| D7l pagsy < CID™ G sy lual sy

Where 1<q,p,r <00 and m,j € N. « is chosen is such a way that 1 = g,) +(1 %)a+1_70‘
and £ <a <1. By choosing j=0, m=1,r=p=2and a = 3(— - %) we obtain (1.17). We
recall that we denote by
Eo(u) == e(s).stsgp/w z,t)|*dx and E;(u ff|Vu|2dxdt
<<
LEMMA 1.7. For u,w e L*(0,T; H*(R3)),
3/10 1/5
lull ross o s rors sy < CEY ' (w) Ey® (w), (1.18)
1/2 3/10 1/5
- Full s o 7008 roy) < CEY? () BY () By (w). (1.19)
7/20 3/20
||u||L5(0,T;L5/2(R3)) < CT1/20E0/ (U)El/ (U) (1.20)

PRrROOF. For (1.18) we use (1.17) and obtain

2/3
/|u|m/3 dx < C (/ |Vu|2dx) (/ |u|2d:6) <C (/ |Vu|2dx) Eo(u)??
R3 R3 R3

R3

for almost all ¢ € (0,7). Integrating over (0,7") gives the result. For (1.19) we see by
Holder’s inequality that

3/8

T T
/ lw - vu!*dzdt < ( / |w|'03 da:dt) El(u)g
0 R3 0 R3

5/4
=||w||L/10/3(0 T;L10/3(R3)) Eqy(u)s.

oojot
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By applying (1.18) we obtain (1.19). Furthermore, we see by (1.17) and Hoélder’s inequality

that
3/4
T 2 T 7/4
/ (/ |u|5/2d:v) dt SC'/ (/|Vu|2d:1:) (/ |u|2dx) dt
0 \Jmrs o \{ R3

. 3/4
sCEO(u)7/4/ /|Vu|2dx) dt
0
R

3/4
T
<CEo(u)"A1/4 / /qu|2dxdt) .
0
R

We conclude that (1.20) holds true. O




CHAPTER 2
Talk 3: Suitable weak solutions: part 2

By David Berger

LEMMA 2.1 (see |2], Theorem 2.8). Assume that Q, f and ugy satisfy the assumptions
of Lemma 1.3. Let Q be bounded, 4 = 3/q + 2[s and w - Vu, f € L*(0,T;L9(Q)) and

Uy € WSQ_Q/S(Q), Then the solution (u,p) constructed in Lemma 1.3 satisfies
2
||Vp||sLs(o,T;Lq(Q)) + ||Ut||SLs(o,T;Lq(Q)) +|v U||5Ls((o,T;Lq(Q))
SC(”UO”;Vg—wS(m +[w- vU”SLs(o,T;Lq(Q)) + ”f”SLS(O,T;LQ(Q)))'
Furthermore, by normalizing p such that pr =0 for all t we obtain
Ipll £s/3 0,753 (2y) < o°- (2.1)

LEMMA 2.2. Let Q,ug and f satisfy the assumption of Chapter 1 and let w e C* (_B,Rg)
with V-w =0. Let (u,p) be the solution of Lemma 1.3. Then, for every @ € C*(D) with
© =0 near 0 x (0,T), and for everyt, 0<t<T,

[t 0P ety +2 [ [vae = [luoPow0)+ [ (o Ag)
Q D Q D

+ jf(|u|2w +2pu) - Vo + 2]}(“ -fe
D D

PrOOF. We assume that €2 is bounded. Suppose for the moment that ¢ vanishes near
t =0, choose 1, so that Q; c Q and suppy ¢ ;1 x (0,7). Writing F' = f —w - Vu, we have

ur—Au+Vp=F on D.

Mollifying in R* each term of the equation above, we obtain sequences of smooth functions
Um, pm and Fy,, m=1,2,..., such that

dim,

5~ At + Vpm = P, V- Uy =0 (2.2)
in a neighborhood of supp®, and such that
U = U in L5(0,T; L3 (Q) n L%(D)),
Vi, = Vu in L*(D),
P =D in L3(0,T; L3 (1)),
Fp—~F in L?(D).

Taking the inner product of 2.2 with 2u,,® and integrating by parts yields
2 [ IVunle = [[ luml (o0 + 20) +2 [{ Dt - V) +2 [ [ (- Fun) o
D D D D
We pass to the limit as m — oo, to conclude for u,p and F, with F' = f —w - Vu,

2 [[w-Fyp=2 [ (- Ho+ [[Tulw-ve.
D D D

8
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This gives the proof when ¢ € C§°(D) and ¢ = T. For the more general case use a cutoff
function in time and the continuity of w in H at 0. (|

The goal of this chapter is to use the results shown in Chapter 1 to prove the existence
of the weak solution. Therefore, we will introduce the mollyfing operator

Ws(u)(at) = (57 0(18) x ulat) =57 [[ 0 (.5 )ito - ot - r)dyar,
R4

where ¢ € C(R?), 1 >0, [[a (2, t)dzdt =1 and supp ¥ ¢ {(z,t) : [z]* <t,1 <t <2} and
@ is the extension of u on R*, i.e. @(x,t) = u(z,t) on D and elsewhere 0. We see by [5],
Theorem 1.2.19 that )5 is an approximating identity on R*.

LeEMMA 2.3. For any ue L*®(0,T; H) n L?(0,T;V) it holds

V- Q/J(;(U) =0, (23)
sup / 1 (u)|Pda < CEo(u), (2.4)
0<t<T JQ
([ 195 () Pdadt < CE (u), (2.5)
D

for some C >0 independent of u and 0.

PRroOOF. It is easy to see that

V- Us(u) = 54 ff v (%, g) cu(x —y,t —7)dydr
R4

=54 ff Vi (%, %) ~u(x —y,t —7)dydr = 0.
Q

Furthemore, we obtain (2.4) by Holder’s and Young’s inequality
2

20
|2 - T _ _
[wssac= [ ([ vstumisteo-t-nyavar) ao
25 2
S(S/é /Q(/Rd U5 (y,7) ﬂj(x—y,t—T)dy) dxdr
< /R 57U 18) 12 gy e ™) [y

<Eo(u) [ 1) fEaganydr

The inequality (2.5) is a direct consequence of Young’s inequality
2

dxdt

H |V b5 ()i >dxdt < j

D R4

-4 y T i _
) ilw(g,g)vjuz(x y,t —7)dydr

<17y 1V il 2 sy
0

In the proof of the main theorem we will use the following theorem, which gives a
sufficient condition that a sequence (2, )ney N L2(0,T; L?(Q)) is relatively compact.

THEOREM 2.4 (see [7], Theorem 1). Let Xo c¢ X c Xy be threee Banach spaces such
that Xg 4s compact in X, and Xo and X1 are reflexive. Then the space

d
Y = {v € L*(0,T: Xo), v e L"‘l(O,T;Xl)}
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with o, a1 > 1 is compact in L*°(0,T; X).

THEOREM 2.5. Assume that Q,ug and f satisfy the assumptions from Chapter 1. Then
there exists a weak solution (u,p) of the Navier-Stokes system such that

we L*(0,T;V)nL®(0,T; H),
u(t) ~up in H ast— 0,

pe LPB(D) if =R,

vp € L4(D) if Q is bounded and

for all p e C°(D), ¢ >0 and ¢ =0 near OQ x (0,T) it holds

t
[ 0P etendrsz [ [ 1vuppds
Q 0 JQ

t
< [ fuoPotw0)dos [ [ (uP ot Bp) s (uf + 2p)u- Vi + 2u- £)p)dadr.
Q 0Jo
Let NeNand § =T/N. uy € L*>(0,T7;V)nC([0,T]; H) is the solution of the equation
d
EUN + (wg(’u,N) . V)UN - A’U,N +VpN = f, UN(O) = Uug,

which exists by applying Lemma 1.3 on each time interval (ém,d(m + 1)) for each m =
0,...,N —1 separately. By using (1.7), (1.8) and (1.9) we obtain

t t
/ lun (t, z)|*dx +/ / |Vuy|*dzdt < C (/ |uo|*da +/ ||f(t)||V/dt) ,
Q 0 JQ Q 0

for some constant C' > 0 which implies that uy is bounded in L*(0,T; H) n L*(0,T;V).
Morever, by [7], Lemma 4.2 we conclude that %un is bounded in L2(0,T;Vy), hence
(un) Nen is relatively compact in L?(D) by Theorem 2.4. We obtain a subsequence (uy,)
such that u, = uy in L2(D), un = uy in L2(0,T;V) and u, — uy in L= (0,T; H). More-
over, as (uy) is bounded in L'%3(D) we see easily by an interpolation argument that
up = uy in L¥(D) for every 2 < s < 10/3. Using the above inequalities it is possible to
show that wu, solves the Navier-Stokes equation. We will only prove the convergence of the
term fot (t)((Ys(un) - V)un,v)2(q)dt, as the other parts are trivial. As v e H'(£), we
see that [lu;v;]| f2(rsy < 00, which follows by the Sobolev embedding theorem. We conclude
that

/Ot/g((%(uN)'v)“N’”)‘P(t)d:Udt‘/ot/Q((U-V)u,v)gp(t)dq;dt

<

/Ot/g((%(“N)'V)“NW)SO(t)th‘/()t/Q((U-V)uN,v)w(t)dxdt

+

/Ot/ﬂ((u.v)uN’v)SO(t)d‘rdt_/Ot/Q((U'V)u,'U)go(t)dxdt

— (0 for N — oo,

where we use for the first term that vs(uy) — v in L3(R3) and in the second term that
u, =~ u in L?(0,T;V).

In the case that €2 is bounded, we use Lemma 2.1. Let {Q;}jen be a sequence of subdomains
such that ﬁj c Q41 and Ujen); = Q. We see that Vpy is bounded in L5/4(D) and p, in
L2140, T; L213(£2;)). We obtain for every j a subsequence py — p. in L4(0, T; L3(Q;)).
Moreover, we see that uy — u, in L5(0, T’ L5/2(Q)). The proof follows the same arguments
as in the case of Q = R3.
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