
Navier-Stokes Seminar:

Ca�arelli-Kohn-Nirenberg Theory

Marius Müller

Universität Ulm, Summer 2019



Preface

These are lecture notes geberated by the seminar course on the Ca�arelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universität Ulm in the summer term of 2019.
We mainly follow the [CKN82] in a modern fashion. This work is aimed at enthusiastic
Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.
Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 8: The Blow-Up Estimate, Part 2

1.1. Introduction

In this talk, �u, p� will always denote a suitable weak solution in the sense of [CKN82],
cf. Talk 1 and Talk 2.

Our goal is to �nish up the proof of Proposition 2 of [CKN82] (cf. Talk 7). Proposition
2 roughly states that a certain L2-control of the gradient S©uS in a neighborhood of a point�x, t� is su�cient for the regularity of �x, t�. For the precise statement we refer to Talk 7.

In our computations, we will assume without loss of generality that �x, t� � �0,0�.
Another assumption that we make for the sake of simiplicity is that the force vanishes, i.e.
f � 0. This is less general than the situation in [CKN82], but it makes computations less
lengthy and important concepts more obvious.

For the entire talk we set Q�

r �� Br�0� � ��7
8r

2, 1
8r

2�, where the ball Br �� Br�0� ` R3

denotes a ball formed only in the x�variables. We leave out the integration measures in
each integral as the integration set will always indicate clearly, whether the integral is over
x or over t or even in both.

In Talk 7, Proposition 2 is shown once we accept Proposition 3, which will be proved in
this talk as Proposition 1.7. We �rst recall some important quantities from Talk 7, which
also have analogues in Section 3, cf. Talk 5.

Definition 1.1 (Some quantities, cf. Talk 7). Let u be a suitable weak solution of the
Navier Stokes equations with f � 0. With our �xed notation from above, we can de�ne
the following quantities

G��r� �� 1

r2

�
Q�

r

SuS3,

H��r� �� 1

r2

�
Q�

r

SuS VSuS2 � a
Br

SuS2V ,
J��r� �� 1

r2

�
Q�

r

SuSSpS,
K��r� �� 1

r
13
4

� r2

8

�
7r2

8

�
�
Br

SpS�
5
4

,

M��r� �� G 2
3
�
�r� �H��r� � J��r� �K 8

5
�
�r�,

δ��r� �� 1

r

�
Qr�

S©uS2
A��r� �� sup

t>�� 7r2

8
, r

2

8
�

�
Br

SuS2.
Remark 1.2. Proposition 2 in [CKN82] states that there is some ε3 A 0 such that the

condition that lim supr�0 δ��r� B ε3 is su�cient for regularity of �0,0�. If we imagine the
condition to be satis�ed we can think of δ� as a small quantity. The estimates to come
seem more natural once one keeps this in mind.
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1.1. INTRODUCTION 5

Remark 1.3. To begin with, it may be unclear whether these quantities are �nite. We
refer to Remark 1 in Talk 7, where arguments for the �niteness of all quantities except
for J� and M� are given. Finiteness of J� will follow from Lemma 1.19, which will be
proved in the sequel. Given this, one can easily infer that M� is �nite as a sum of �nite
quantities. One has to say that another method to deduce the �niteness of J� is to use
the integrability results on the top of page 783 in [CKN82] and Hölder's inequality. This
computation is recommended as an exercise but not very insightful for our talk, since we
cannot obtain appropriate control of J� this way.

Remark 1.4. Smallness of M��r� implies regularity of u in Q�
r
2
by Proposition 1

of [CKN82], cf. Talk 6. The strategy in the proof of Proposition 2 is therefore to show
smallness of M��r� for some su�ciently small r A 0 and apply Proposition 1.

Proposition 1 however requires actually a little bit less than the smallness of M��r�:
It is enough if G��r�, J��r� and K��r� are small, so no condition on H��r� needs to be
imposed.

This raises the question, whether H� is actually needed in the de�nition of M�, as no
control of it is required for the regularity of �0,0�. We will justify its appearance during
the proof.

Remark 1.5. The quantity A��r� seems to be unimportant for the proof of Proposition
2, since M��r� does not contain it explicitly. It will however turn out to be of paramount
importance since it behaves comparably to M�. We can pro�t from this comparision since
A� is a quantity which is easier to handle than M�.

We have seen part of this comparision result already in Talk 7, where Lukas prensented
the inequality

H��r� B C�G��r� 2
3 �A��r�δ��r��.

In a similar way, more quantities will be controllable by A� and δ�. We have already
discussed in Remark 1.2 that control by δ� is desirable. That control of quantities by A�

is also desirable will become clear when we observe an "interaction" between A� and M�

in Lemma 1.9 and afterwards.

Remark 1.6. The inequality we intend to prove is useful because it enables us to
compare the values of M� for di�erent radii r and ρ. During this comparision process we
will often use some obvious estimates for r B ρ, for example

δ��r� B ρ
r
δ��ρ�. (1.1)

Indeed, this is easy to prove:

rδ��r� �
�
Q�

r

S©uS2 B
�
Q�

ρ

S©uS2 B ρδ��ρ�. (1.2)

Later, the comparision with the half radius will be of particular importance, i.e. δ��ρ2� B
2δ��ρ�, which follows immediately from (1.1). Similar inequalities can be proved following
the lines of (1.2) for other quantities. Let us point out one more such estimate:

K��r� B �ρ
r
� 13

4

K��ρ�,
i.e. K��ρ2� B 2

13
4 K��ρ�. Deriving such inqualities for all given quantities we can infer that

M��ρ2� B CM��ρ� for some C A 0 independent of ρ. This will become important later.



6 1. TALK 8: THE BLOW-UP ESTIMATE, PART 2

1.2. Statement of Proposition 3

Just like in Talk 7, we state the version of Proposition 3 that we are going to prove:

Main Proposition 1.7 (Proposition 3 in [CKN82] with vanishing force). Let ρ A 0
and let �u, p� be a suitable weak solution of the Navier Stokes System on Q�

ρ with vanishing
force f � 0. If δ��ρ� B 1 then there exists a constant C A 0 such that

M��r� B C <@@@>�
r

ρ
� 1

5

M��ρ� � �ρ
r
�2 �M 1

2
�
�ρ�δ 1

2
�
�ρ� �M��ρ�δ��ρ� � δ��ρ��=AAA? , (1.3)

for all r > �0, ρ4� .
The strategy of the proof will be the following: The structure of the equation can be

used to relate the growth of the quantity M� to the quantity A�, which controls again all
the quantities that contribute to M�, possibly for a di�erent radius.

Remark 1.8. In the case of f � 0 (which is the only case we consider), we can acutally
show an easier inequality, namely

M��r� B C <@@@>�
r

ρ
� 1

5

M��ρ� � �ρ
r
�2 �M 1

2
�
�ρ�δ 1

2
�
�ρ� �M��ρ�δ��ρ��=AAA? , ¦r > �0, ρ4� .

1.3. M� and A� interact because of the energy inequality

The energy inequality gives us an important relation between A� and M�, which we
will prove now:

Lemma 1.9 (cf. Lemma 5.5 in [CKN82]). There exists a constant C1 A 0 such that
for all r > �0, 1

2ρ� one has

A��r� B C1 �ρ
r
��G 2

3
�
�ρ� �H��ρ� � J��ρ�� .

In particular,

A��r� B C1 �ρ
r
�M��ρ� ¦r > �0, 1

2ρ�. (1.4)

Proof. In this proof, C denotes a generic constant that can be chosen such that all
the estimates are true. We use equation �2.17� in [CKN82] substantially, which is a slight
improvment on the energy inequality. The equation reads as follows: If �u, p� is a suitable
weak solution on a domain Ω � �a, b� then each nonnegative φ > Cª

0 �Ω � �a, b�� satis�es�
Ω��t�

SuS2φ�2

�
Ω��a,t�

S©uS2φ B

�
Ω��a,t�

SuS2�φt�∆φ���SuS2�2p�u�©φ ¦t > �a, b�.
In our case we will choose Ω � Bρ�0� as well as a � �

7
8ρ

2 and b � 1
8ρ

2. Note that Ω��a, b� �
Q�

ρ. Choose as well φ > Cª

0 �Q�

ρ� such that 0 B φ B 1 and φ � 1 on Q�

r . Moreover we can

require that S©φS B C
ρ and SφtS� S∆φS B C

ρ2
, see �3.8� in [CKN82]. Now observe for arbitrary

but �xed t > ��7
8r

2, 1
8r

2� that�
Br��t�

SuS2 B
�
Bρ��t�

SuS2φ B

�
Bρ��t�

SuS2φ � 2

�
Bρ���

7
8
ρ2,t�

S©uS2φ
B

�
Bρ���

7
8
ρ2,t�

SuS2�φt �∆φ� �
�
Bρ���

7
8
ρ2,t�

�SuS2 � 2p�u � ©φ.
Now note that by (weak) divergence-freeness of u one has�

Bρ���
7
8
ρ2,t�

�a
Bρ

SuS2�u � ©φ �

� t

�
7
8
ρ2

�
Bρ

�a
Bρ

SuS2�u � ©φ (1.5)
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�

� t

�
7
8
ρ2
�a

Bρ
SuS2�

�
Bρ

u � ©φ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�0 a.e.

� 0.

Hence we can insert this term into the equation above to �nd

�
Br��t�

SuS2 B
�
Bρ���

7
8
ρ2,t�

SuS2�φt �∆φ� �
�
Bρ���

7
8
ρ2,t�

�SuS2 � a
Bρ

SuS2�u � ©φ
� 2

�
Bρ���

7
8
ρ2,t�

pu � ©φ

B

�
Bρ���

7
8
ρ2,t�

SuS2�SφtS � S∆φS� �
�
Bρ���

7
8
ρ2,t�

WSuS2 � a
Bρ

SuS2W SuS S©φS
� 2

�
Bρ���

7
8
ρ2,t�

SpS SuS S©φS
B

�
Q�

ρ

SuS2�SφtS � S∆φS� �
�
Q�

ρ

WSuS2 � a
Bρ

SuS2W SuS S©φS � 2

�
Q�

ρ

SpS SuS S©φS.
Using the estimates for φ and its derivatives we obtain�

Br��t�
SuS2 B C

ρ2

�
Q�

ρ

SuS2 � C
ρ

�
Q�

ρ

�SuS2 � a
Bρ

SuS2� SuS � 2
C

ρ

�
Qρ

SpS SuS
�
C

ρ2

�
Q�

ρ

SuS2 � ρH��ρ� � ρJ��ρ�. (1.6)

Using Hölder's inequality with q � 3
2 , q

�
� 3 in the �rst term, we can estimate

1

ρ2

�
Q�

ρ

SuS2 B C 1

ρ2
ρ

5
3
�
�
�
Q�

ρ

SuS3��
2
3

� C
1

ρ
1
3

�
�
�
Q�

ρ

SuS3��
2
3

� C
1

ρ
1
3

ρ
4
3
�
�

1

ρ2

�
Q�

ρ

SuS3��
2
3

� CρG
2
3
�
�ρ�.

Plugging this into (1.6) we �nd�
Br��t�

SuS2 B Cρ�G 2
3
�
�ρ� � J��ρ� �H��ρ�� ¦t > ��7

8r
2, 1

8r
2�.

Dividing by r and taking the supremum over all t > ��7
8r

2, 1
8r

2� we obtain the claim. �

Remark 1.10. The above computation reveals the reason why a summand in M� is

G
2~3
�

and not G� to any other power. This di�ers from section 3. Moreover the power of
2
3 is really needed, since higher powers of G� in this estimate would lead to higher powers
of M��ρ� in the right hand side of (1.3) - at least if we can only use (1.8) to estimate G�.

Remark 1.11. Without the trick in (1.5) we would not be able to bring H� into play

and therefore there would be no hope to control the third-power-of-u term with G
2~3
�

or
with J� (look at the scaling properties!). Hence H� is really needed for the inequality we
just proved.

Remark 1.12. An important special case is again r � ρ
2 for which one can deduce that

there exists C A 0 such that

A��ρ2� B CM��ρ�. (1.7)
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The main task for the rest of this section is to bound the quantities G�, J�,H� and
K� in terms of M� so that we get a converse inequality that bounds M��r� in terms of
A��ρ�, δ��ρ�. H� has already been bounded in Talk 7, see Remark 1.5. Before we bound
the other quantities we state a general and recurrent proposition, which is a re�nement
of Sobolev's inequality, stating that for one certain exponent, the constant in the Sobolev
inequality does not depend on the domain.

Proposition 1.13 (Essentially Section 5.6.1. in [EG92]). Let Ω ` Rn be a C1-smooth
domain or Ω � Rn. Then there exists a constant D � D�n� A 0 such that for each f >

W 1,1�Ω� one has

�
�
Br�x�

Vf � a
Br�x�

f V n
n�1�

n�1
n

BD

�
Br�x�

S©f S ¦x > Ω, r A 0 � Br�x� ` Ω.

Remark 1.14. The fact that the constant D in the previous Proposition does not
depend on Ω becomes clear once one proves the inequality for f > W 1,1�Rn� and argues
with the extension operator.

Lemma 1.15 (Bounding G�, cf. Lemma 5.2 in [CKN82]). Suppose that r B ρ. Then
we have

G��r� B C2 ��r
ρ
�3

A
3
2
�
�ρ� � �ρ

r
�3

A
3
4
�
�ρ�δ 3

4
�
�ρ�¡ . (1.8)

Proof. In this proof, C will again be used as a generic constant that can be determined
such that all estimates below are true. First of all recall equation �2.9� of [CKN82], which
is a Sobolev inequality with explicit embeding constants in three dimensions. It reads:

�
Br

SuSq B C �
�
Br

S©uS2�a �
�
Br

SuS2�
q
2
�a

�
C

r2a
�
�
Br

SuS2�
q
2

, (1.9)

for each q > �2,6� and a �
3
4�q � 2�. This connects for example the L3-norms of u (which

are relevant for G�) to δ� and the L2-norms of u (which are crucial to compute A�). This
explains why G��r� can be bounded by A��r� and δ��r� and gives the desired inequality
in the special case r � ρ. We however want to make a transition between di�erent radii.
For this we can use the following insightful estimate, employing the average integral and
the Sobolev inequality in Proposition 1.13. For a �xed time t we can compute�

Br

SuS2 �
�
Br

�SuS2 � a
Bρ

SuS2� �
�
Br
a
Bρ

SuS2 B
�
Br

WSuS2 � a
Bρ

SuS2W �C �r
ρ
�3 �

Bρ

SuS2

B

�
Bρ

WSuS2 � a
Bρ

SuS2W �C �r
ρ
�3 �

Bρ

SuS2

B
Hölder

C�ρ3� 1
3
�
�
�
Bρ

WSuS2 � a
Bρ

SuS2W
3
2�
�

2
3

�C �r
ρ
�3 �

Bρ

SuS2

B
Prop.1.13

Cρ

�
Bρ

S©SuS2S �C �r
ρ
�3 �

Bρ

SuS2

B Cρ

�
Bρ

SuSS©uS �C �r
ρ
�3 �

Bρ

SuS2

B Cρ�
�
Bρ

SuS2�
1
2 �

�
Bρ

S©uS2�
1
2

�C �r
ρ
�3 �

Bρ

SuS2.
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Further, we estimate some terms with A� to obtain

�
Br

SuS2 B Cρ 3
2A��ρ� 1

2 �
�
Bρ

S©uS2�
1
2

�C
r3

ρ2
A��ρ�. (1.10)

This gives us an estimate for the L2-norm of u on Br. Using (1.9) with q � 3 (which implies
a � 3

4) we �nd�
Br

SuS3 B C �
�
Br

S©uS2�
3
4 �

�
Br

SuS2�
3
4

�
C

r
3
2

�
�
Br

SuS2�
3
2

B C �
�
Br

S©uS2�
3
4 �

�
Bρ

SuS2�
3
4

�
C

r
3
2

�
�
Br

SuS2�
3
2

B Cρ
3
4A��ρ� 3

4 �
�
Br

S©uS2�
3
4

�
C

r
3
2

�
�
Br

SuS2�
3
2

B Cρ
3
4A��ρ� 3

4 �
�
Bρ

S©uS2�
3
4

�
C

r
3
2

�
�
Bρ

SuS2�
3
2

We can use (1.10) and the fact that for nonnegative a, b the expression �a� b� 3
2 is bounded

by a constant multiple of a
3
2 � b

3
2 to estimate

�
Br

SuS3 B Cρ 3
4A��ρ� 3

4 �
�
Br

S©uS2�
3
4

�
C

r
3
2

�
�Cρ

3
2A��ρ� 1

2 �
�
Bρ

S©uS2�
1
2

�C
r3

ρ2
A��ρ���

3
2

B Cρ
3
4A��ρ� 3

4 �
�
Bρ

S©uS2�
3
4

�C
ρ

9
4

r
3
2

A��ρ� 3
4 �

�
Bρ

S©uS2�
3
4

�C �r
ρ
�3

A��ρ� 3
2 .

Integrating over t > ��7
8r

2, 1
8r

2� and using Hölder's inequality with q �
3
4 , q

�
�

1
4 we �nd

that �
Q�

r

SuS3 B C �
�ρ

3
4 �

ρ
9
4

r
3
2

�
�A��ρ� 3

4

� 1
8
r2

�
7
8
r2
�
�
Bρ

S©uS2�
3
4

�Cr2 �r
ρ
�3

A��ρ� 3
2

B C
�
�ρ

3
4 �

ρ
9
4

r
3
2

�
�A��ρ� 3

4 �r2� 1
4
�
�
� 1

8
r2

�
7
8
r2

�
Bρ

S©uS2��
3
4

�Cr2 �r
ρ
�3

A��ρ� 3
2

B C
�
�ρ

3
4 �

ρ
9
4

r
3
2

�
�A��ρ� 3

4 r
1
2
�
�
� 1

8
ρ2

�
7
8
ρ2

�
Bρ

S©uS2��
3
4

�Cr2 �r
ρ
�3

A��ρ� 3
2

B C
�
�ρ

3
4 �

ρ
9
4

r
3
2

�
�A��ρ� 3

4 r
1
2
�
�
�
Q�

ρ

S©uS2��
3
4

�Cr2 �r
ρ
�3

A��ρ� 3
2

B C �ρ 3
2 �

ρ3

r
3
2

� r 1
2A��ρ� 3

4 δ��ρ� 3
4 �Cr2 �r

ρ
�3

A��ρ� 3
2 .

Dividing by r2 we �nally obtain

G��r� B C �
��
ρ

r
� 3

2

� �ρ
r
�3�
�A��ρ� 3

4 δ��ρ� 3
4 �C �r

ρ
�3

A��ρ� 3
2 .

Due to the fact that r B ρ we can estimate �ρr � 3
2
B �ρ

r
�3

and conclude the claim. �
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Before we can bound J� we prove some useful estimates on the pressure, which can be
deduced with the following splitting technique.

Proposition 1.16 (Splitting Technique for the pressure, cf. p. 801 in [CKN82]).
Suppose that ρ A 0 and φ > Cª

0 �Bρ� is such that 0 B φ B 1 and φ � 1 in B 3
4
ρ as well as

S©φS B C
ρ and S∆φS B C

ρ2
for some C A 0. Then for all x > B 3

4
ρ and t > �0, T � one has

p�x, t� � p4�x, t� � p5�x, t�
where

p4�x, t� � 3

4π

�
R3

1

Sx � ySp�y, t�∆φ�y� dy �
3

2π

�
R3

3

Q
i�1

xi � yiSx � yS3∂iφ�y�p�y, t� dy

and

p5�x, t� � 3

4π

�
R3

1

Sx � ySφ�y�
3

Q
i,j�1

∂yiu
j�y, t�∂yjui�y, t� dy.

Moreover there exists a constant C3 A 0 such that

Sp4�x, t�S B C3a
Bρ

SpS ¦x > B ρ
2

(1.11)

and �
Br

Sp5S2 B C3ρ�
�
Bρ

S©uS2�2

¦r > �0, ρ2�. (1.12)

Proof. Let φ be as in the statement. Recall that the fundamental solution of the
Poisson equation is given by k�z� �� �

3
4π

1
SzS . In the following we will leave out the t-

argument. Moreover, integrals without a speci�ed set are always over R3. In the following
we will make extensive use of equation (2.12) in [CKN82] which reads

∆p � �

3

Q
i,j�1

∂iu
j∂ju

i, (1.13)

in the sense of distributions. For the �rst we will assume, that p is a smooth function on Bρ
and (1.13) holds pointwise. We have to get rid of this assumption later. This assumption
is restrictive but can be gotten rid of, as wee shall discuss in Proposition 1.17. With the
fundamental solution property we infer for x > B ρ

2

p�x�φ�x� � �
3

4π

�
1

Sx � yS∆y�φp� dy

� �
3

4π

�
1

Sx � yS �p∆φ � 2�©φ,©p� � φ∆p� dy. (1.14)

Now we split the integral into three summands and integrate by parts in the second one,
more precisely we compute

�
6

4π

�
1

Sx � yS �©φ,©p� dy � �

3

Q
i�1

6

4π

�
1

Sx � yS∂yiφ∂yip dy

�

3

Q
i�1

6

4π

�
∂yi � 1

Sx � yS∂yiφ�p dy

�
3

2π

�
p

3

Q
i�1

xi � yiSx � yS3∂yiφ dy �
3

2π

�
p

3

Q
i�1

1

Sx � yS∂2
yiyiφ dy

�
3

2π

�
p

3

Q
i�1

xi � yiSx � yS3∂yiφ dy �
3

2π

�
1

Sx � ySp∆φ dy.
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Plugging this back into (1.14) and using �2.12� in [CKN82] we obtain

p�x�φ�x� � �� 3

4π
�

3

2π
�
�

1

Sx � ySp∆φ dy �
3

2π

�
p

3

Q
i�1

xi � yiSx � yS3∂yiφ dy

�
3

4π

�
1

Sx � ySφ∆pdy

�
3

4π

�
1

Sx � ySp∆φ dy �
3

2π

�
p

3

Q
i�1

xi � yiSx � yS3∂yiφ dy

�
3

4π

�
1

Sx � ySφ
3

Q
i,j�1

∂iu
j∂ju

i dy.

If x > B 3
4
ρ then φ�x� � 1 and therefore we can infer the �rst sentence of the claim. For the

pointwise estimate on p4 in B ρ
2
let x > B ρ

2
be arbitrary but �xed. We can estimate with

the triangle inequality

Sp4�x�S B W 3

4π

�
1

Sx � ySp�y�∆φ�y� dyW � W 3

2π

�
xi � yiSx � yS3 p�y�∂iφ�y� dyW . (1.15)

Notice that ©φ � 0,∆φ � 0 on B 3
4
ρ since φ � 1 on B 3

4
ρ. For the �rst summand we can

estimate, using the properties of φmentioned in the statement as well as the inverse triangle
inequality

W 3

4π

�
1

Sx � ySp�y�∆φ�y� dyW B
RRRRRRRRRRRRR

3

4π

�
Bρ�B 3

4 ρ

1

Sx � ySp�y�∆φ�y� dy

RRRRRRRRRRRRR
B

�
Bρ�B 3

4 ρ

1

Sx � yS Sp�y�SS∆φ�y�S dy
B
C

ρ2

3

4π

�
Bρ�B 3

4 ρ

1

Sx � yS Sp�y�S dy
B
C

ρ2

3

4π

�
Bρ�B 3

4 ρ

1

SyS � SxS Sp�y�S dy
B
C

ρ2

3

4π

�
Bρ�B 3

4 ρ

1
3
4ρ �

1
2ρ

Sp�y�S dy
B

3C

πρ3

�
Bρ

Sp�y�S dy B C3

2
a
Bρ

Sp�y�S dy,
for an appropriate choice of C3. To estimate the second summand we use that Sxi�yiS B Sx�yS
and otherwise the same techniques as above.

W 3

4π

�
xi � yiSx � yS3 p�y�∂iφ�y� dyW B 3

4π

�
Bρ�B 3

4 ρ

Sxi � yiSSx � yS3 Sp�y�SS∂iφ�y�S dy
B

3C

4πρ

�
Bρ�B 3

4 ρ

1

Sx � yS2 Sp�y�S dy
B

3C

4πρ

�
Bρ�B 3

4 ρ

1

Sx � yS2 Sp�y�S dy
B

3C

4πρ

�
Bρ�B 3

4 ρ

1

�SyS � SxS�2
Sp�y�S dy
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B
3C

4πρ

�
Bρ�B 3

4 ρ

1

�3
4ρ �

1
2ρ�2

Sp�y�S dy
B

12C

πρ3

�
Bρ�B 3

4 ρ

Sp�y�S dy
B
C3

2
a
Bρ

Sp�y�S dy,
by possibly increasing C3. The two previous computations imply the pointwise estimate
of p4 together with (1.15). For the L2-estimate on p5 �x r B ρ

2 . Estimating all derivatives
of u by S©uS we get

�
Br

Sp5S2 �
�
Br

RRRRRRRRRRR
3

4π

�
1

Sx � ySφ�y�
3

Q
i,j�1

∂iu
j∂ju

i dy
RRRRRRRRRRR
2

dx

B
3

4π

�
Br

�
�
�

1

Sx � yS Sφ�y�S
3

Q
i,j�1

S∂iuj SS∂juiS dy��
2

dx

B
243

4π

�
Br

�
�

1

Sx � yS Sφ�y�SS©u�y�S2 dy�2

dx

�
243

4π

�
Br

�
�

1

Sx � yS
»Sφ�y�SS©u�y�S»Sφ�y�SS©u�y�S dy�2

dx

B
Hölder

243

4π

�
Br

�
�

1

Sx � yS2 Sφ�y�SS©u�y�S2 dy��
�

Sφ�z�SS©u�z�S2 dz� dx

B
243

4π
�
�

Sφ�z�SS©u�z�S2 dz�
�
Br�0�

�
Bρ�0�

1

Sx � yS2 Sφ�y�SS©u�y�S2 dy dx

B
Fubini

243

4π
�
�

Sφ�z�SS©u�z�S2 dz�
�
Bρ�0�

�
�
Br�0�

1

Sx � yS2 dx� Sφ�y�SS©u�y�S2 dy.

Now note that for y > Bρ one has Br�0� ` Br�ρ�y� ` B2ρ�y� and therefore
�
Br

Sp5S2 B 243

4π
�
�

Sφ�z�SS©u�z�S2 dz�
�
Bρ�0�

�
�
B2ρ�y�

1

Sx � yS2 dx� Sφ�y�SS©u�y�S2 dy

B
Subst.w�x�y

243

4π
�
�

Sφ�z�SS©u�z�S2 dz�
�
Bρ�0�

�
�
B2ρ�0�

1

SwS2 dw� Sφ�y�SS©u�y�S2 dy

B
243

4π
�
�

Sφ�z�SS©u�z�S2 dz�2 �
B2ρ�0�

1

SwS2 dw.

By radial integration one has
�
B2ρ�0�

1

SwS2 dw �

� 2ρ

0
�4πs2� 1

s2
ds � 8πρ

and hence we can conclude�
Br

Sp5S2 B Cρ�
�

Sφ�z�SS©u�z�S2 dz�2

B Cρ�
�
Bρ

S©u�z�S2 dz�2

.

Remark 1.17. In the fundamental solution argument in (1.14) we have used the ad-
ditional assumption that p is smooth in Bρ, which is not satis�ed in general. If p is not
smooth on Bρ we follow the lines of the proof after (1.14), replacing p with p�φε for �xed
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ε A 0, where �φε�εA0 denotes the standard molli�er family. Note that by (1.13)

∆�p � φε� � p �∆φε � �

3

Q
i,j�1

�∂iuj∂jui� � φε.
Using this and the fact that p � φε � p almost everywhere by [EG92, Theorem 1 (iv),
Section 4.2] one can possibly repeat the above computations and pass to the limit as ε� 0.

Remark 1.18. Possibly one can circumvent adjustments in the previous Remark with
a maximal regularity argument for (1.13). For this however, more a-priori regularity of p
and higher integrability of derivatives of u have to be shown �rst (in case that these are
actually true).

Lemma 1.19 (Bounds for J�, cf. Lemma 5.3 in [CKN82]). For each r B ρ
2 one has

J��r� B C4

¢̈̈¦̈̈¤�
r

ρ
� 1

5

A
1
5
�
�ρ�G 1

5
�
�r�K 4

5
�
�ρ� � �ρ

r
�2

A
1
2
�
�ρ�δ��ρ�

£̈̈§̈̈¥ .
Proof. We start using the splitting of p to get

J��r� � 1

r2

�
Q�

r

SuSSpS B 1

r2

�
Q�

r

SuSSp4S � 1

r2

�
Br

SuSSp5S. (1.16)

We estimate both summands seperately, starting with the �rst one. As usual, we compute
for a �xed time t > ��7

8r
2, 1

8r
2� using (1.11)

�
Br

SuSSp4S B C �
�
Br

SuS� �a
Bρ

SpS� B C �
�
Br

SuS�
2
5 �

�
Br

SuS�
3
5 �a

Bρ
SpS�

B
Hölder

Cr
3
5 �

�
Br

SuS2�
1
5 �

�
Br

SuS�
3
5 �a

Bρ
SpS�

B
Hölder

Cr
3
5 �

�
Br

SuS2�
1
5

r
6
5 �

�
Br

SuS3�
1
5 �a

Bρ
SpS�

B Cr
9
5 �

�
Br

SuS2�
1
5 �

�
Br

SuS3�
1
5 �a

Bρ
SpS�

B Cr
9
5 �

�
Bρ

SuS2�
1
5 �

�
Br

SuS3�
1
5 �a

Bρ
SpS�

B Cr
9
5 �ρA��ρ�� 1

5 �
�
Br

SuS3�
1
5 �a

Bρ
SpS� .

Integrating in time we obtain
�
Q�

r

SuSSp4S B Cr 9
5 ρ

1
5A

1
5
�
�ρ�

� 1
8
r2

�
7
8
r2
�
�
Br

SuS3�
1
5 �a

Bρ
SpS�

B Cr
9
5 ρ

1
5A

1
5
�
�ρ���

� 1
8
r2

�
7
8
r2

�
Br

SuS3��
1
5 �
�
� 1

8
r2

�
7
8
r2
�a

Bρ
SpS�

5
4�
�

4
5

B Cr
9
5 ρ

1
5A

1
5
�
�ρ��

�
Q�

r

SuS3�
1
5 1

ρ3

�
�
� 1

8
r2

�
7
8
r2
�
�
Bρ

SpS�
5
4�
�

4
5

B Cr
9
5 ρ

1
5A

1
5
�
�ρ��

�
Q�

r

SuS3�
1
5 1

ρ3

�
�
� 1

8
ρ2

�
7
8
ρ2
�
�
Bρ

SpS�
5
4�
�

4
5
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B Cr
9
5 ρ

1
5A

1
5
�
�ρ��

�
Q�

r

SuS3�
1
5 1

ρ3
�ρ 13

4 K��ρ�� 4
5

B Cr
9
5 ρ

1
5A

1
5
�
�ρ��

�
Q�

r

SuS3�
1
5 1

ρ
2
5

K��ρ� 4
5

B Cr
9
5A

1
5
�
�ρ� 1

ρ
1
5

�r2G��r�� 1
5K��ρ� 4

5 � Cr
11
5

1

ρ
1
5

A
1
5
�
�ρ�G��r� 1

5K��ρ� 4
5 .

Dividing by r2 we conclude

1

r2

�
Q�

r

SuSSp4S B C �r
ρ
� 1

5

A
1
5
�
�ρ�G 1

5
�
�ρ�K 4

5
�
�ρ�. (1.17)

To estimate the second summand in (1.16) we compute with (1.12)

�
Br

SuSSp5S B �
�
Br

SuS2�
1
2 �

�
Br

Sp5S2�
1
2

B �
�
Bρ

SuS2�
1
2

ρ
1
2

�
Bρ

S©uS2
B C�ρA��ρ�� 1

2 ρ
1
2

�
Bρ

S©uS2 � CρA��ρ� 1
2

�
Bρ

S©uS2.
Integrating with respect to t we obtain�

Q�

r

SuSSp5S B CρA��ρ� 1
2

�
Q�

ρ

S©uS2 � Cρ2A��ρ� 1
2 δ��ρ�.

Dividing by r2 we obtain

1

r2

�
Q�

r

SuSSp5S B C �ρ
r
�2

A��ρ� 1
2 δ��ρ�.

This and (1.17) yield the claim. �

The proof of the following lemma will most likely be omitted in the talk, since it is
somewhat technical. Nevertheless it is highly recommendable to read, since it presents
useful re�nements of the pressure estimate.

Lemma 1.20. [An estimate for K�, see Lemma 5.4 in [CKN82]] If r B 1
2ρ then

K��r� B C
¢̈̈¦̈̈¤�
r

ρ
� 1

2

K��ρ� � �ρ
r
� 5

4

A
5
8
�
�ρ�δ 5

8
�
�ρ�£̈̈§̈̈¥ .

Before we can prove this lemma we have to prove another splitting property of the
pressure

Proposition 1.21 (Re�nement of the pressure splitting and L1-control of p5, cf. p.
803 in [CKN82]). Let ρ,φ, p4, p5 be as in Proposition 1.16. Then p5 can be split as follows

p5�x, t� � p6�x, t� � p7�x, t�,
where

p6�x, t� � �
3

4π

� 3

Q
i�1

xi � yiSx � yS3φ�y��u � ©ui��y, t� dy,

p7�x, t� � �
3

4π

�
1

Sx � yS
3

Q
i�1

∂yiφ�y��u � ©ui��y�.
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Moreover, for each r B ρ
2 one has

�
Br

Sp5S B Crρ 1
2A��ρ� 1

2 �
�
Bρ

S©uS2�
1
2

. (1.18)

Proof. Just like in the proof of Proposition 1.16, we leave out the t-argument. To
simplify the following computation, we assume �rst that u is smooth in Br, an assumption
which is not at all justi�ed but can be gotten rid of, as we will discuss after the computation.
We integrate by parts in the expression for p5 that we obtained in Proposition 1.16 to obtain

p5�x� � 3

4π

� 3

Q
i,j�1

1

Sx � ySφ∂yjui∂yiuj dy

� �

3

Q
i,j�1

3

4π

�
∂yi � 1

Sx � ySφ∂yjui�uj dy.

� �

3

Q
i,j�1

3

4π

�
∂yi � 1

Sx � ySφ∂yjui�uj dy

� �

3

Q
i,j�1

3

4π
�
�

xi � yiSx � yS3φ∂yjuiuj dy �

�
1

Sx � yS∂yiφuj∂yjui dy

�

�
1

Sx � ySφ∂2
yiyju

iuj�
� p6�x� � p7�x� � 3

Q
j�1

�
1

Sx � ySuj
3

Q
i�1

∂2
yjyiu

i,

where we have rewritten the j�sums as with the dot product in the last step. Now observe
that by Schwarz's Lemma (or Clairaut's Theorem)

3

Q
i�1

∂2
yiyju

i
� ∂yj

3

Q
i�1

∂yiu
i
� ∂yjdiv�u� � 0,

as u was assumed to be divergence-free. This implies that p5 � p6 � p7 as claimed. The
point where we apply Schwarz's Lemma is however exactly the point where the additional
regularity assumption kicks in. We will now brie�y comment on how we can overcome the
unjusti�ed regularity assumption. In the �rst step we rewrite

3

4π

� 3

Q
i,j�1

1

Sx � ySφ∂yjui∂yiuj dy � lim
ε�0

3

4π

� 3

Q
i,j�1

1

Sx � ySφ�∂jui � φε��y�∂yiuj dy,

where �φε�εA0 is the standard molli�er family. Following the lines of the proof and using
that u�t, �� >W 1,2�Ω� (which is true at least for almost every t) we obtain

p5�x� � p6�x� � p7�x� � lim
ε�0

�3

4π

3

Q
j�1

�
1

Sx � ySφuj
3

Q
i�1

∂yi�∂jui � φε��y� dy.

Now observe that

∂yi�∂jui � φε� � ∂yi
�
∂zju

i�z�φε�y � z�dz � �∂yi

�
ui�z�∂zjφε�y � z�dz

� �

�
ui�z�∂yi∂zj �φε�y � z��dz �

Chain Rule

�
ui�z�∂2

zizj �φε�y � z��dz

�
Schwarz's Lemma

�
ui�z�∂zi�∂zjφε�y � z��dz.
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Summing over i and use the de�nition of the dot product we obtain

3

Q
i�1

∂yi�∂jui � φε��y� �
�
u�z� � ©∂zjφε�y � z�dz � 0 ¦ε A 0,

since u is weakly divergence-free and hence L2-orthogonal to ©∂jφε�y � �� for each ε A 0.
We have shown the desired decomposition. To show (1.18) we show

�
Br

Sp6S B Crρ 1
2A��ρ� 1

2 �
�
Bρ

S©uS2�
1
2

and
�
Br

Sp7S B Crρ 1
2A��ρ� 1

2 �
�
Bρ

S©uS2�
1
2

.

Given the two previous inequalities, the desired estimate follows easily with the triangle
inequality. First we obtain the L1-control for p6:�

Br

Sp6S �
�
Br

W
�
Bρ

3

4π

3

Q
i�1

xi � yiSx � yS3φ�y��u � ©ui��y� dyW dx

B C

�
Br

�
Bρ

1

Sx � yS2 Sφ�y�S Su�y�S S©u�y�S dy dx

�
Fubini

C

�
Bρ

�
�
Br

1

Sx � yS2 dx� SφS SuS S©uS
� C

�
B2r

�
�
Br

1

Sx � yS2 dx� SφS SuS S©uS
�C

�
Bρ�B2r

�
�
Br

1

Sx � yS2 dx� SφS SuS S©uS.
We estimate both summands seperately. For the �rst summand we use that y > B2r�0�
implies Br�0� ` B3r�y� and hence�

B2r

�
�
Br

1

Sx � yS2 dx� SφS SuS S©uS B
�
B2r

�
�
B3r�y�

1

Sx � yS2 dx� SφS SuS S©uS
�

z��x�y
�
�
B2r

SφS SuS S©uS� �
�
B3r�0�

1

SzS2 dz�
�

Radial integration
�
�
B2r

SφS SuS S©uS� �
� 3r

0
�4πs2� 1

s2
ds�

B 12πr �
�
B2r

SφS SuS S©uS� . (1.19)

For the other integral we use the inverse triangle inequality to estimate for x > Br�0� andSyS C 2r

1

Sx � yS2 B
1

�SyS � SxS�2
B

1

�2r � r�2
B .

1

r2

Therefore�
Bρ�B2r

�
�
Br

1

Sx � yS2 dx� SφS SuS S©uS B
�
Bρ�B2r

1

r2
SBr�0�S SφS SuS S©uS

�
4π

3
r

�
Bρ�B2r

SφS SuS S©uS,
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where we have used that SBr�0�S � 4
3πr

3 is the volume of Br�0�. Plugging both considera-
tions back into (1.19) we obtain

�
Br

Sp6S B Cr
�
Bρ

SφS SuS S©uS B Cr
�
Bρ

SuS S©uS B Cr �
�
Bρ

SuS2�
1
2 �

�
Bρ

S©uS2�
1
2

B Crρ
1
2A

1
2
�
�ρ��

�
Bρ

S©uS2�
1
2

, (1.20)

which is the desired estimate for p6. Now for the estimation of p7 �x r B ρ
2 and x > Br�0�

to estimate with the properties of φ (cf. statement of Proposition 1.16)

Sp7�x�S B 3

4π

�
1

Sx � yS S©φ�y�S Su�y�S S©u�y�S dy
�

Choice of φ

3

4π

�
Bρ�B 3

4 ρ

1

Sx � yS S©φ�y�S Su�y�S S©u�y�S dy
B

Choice of φ

C

ρ

�
Bρ�B 3

4 ρ

1

Sx � yS Su�y�S S©u�y�S dy
B

Inv. triangle inequality

C

ρ

�
Bρ�B 3

4 ρ

1

SyS � SxS Su�y�S S©u�y�S dy
B

x>B ρ
2

C

ρ

�
Bρ�B 3

4 ρ

1
3
4ρ �

1
2ρ

Su�y�S S©u�y�S dy
B
C

ρ2

�
Bρ�B 3

4 ρ

Su�y�S S©u�y�S dy B C

ρ2

�
Bρ

Su�y�S S©u�y�S dy.
Integrating over x > Br�0� we obtain

�
Br

Sp7S B C

ρ2
r3

�
Bρ

Su�y�S S©u�y�S dy B C �r
ρ
�2

r �
�
Bρ

SuS2�
1
2 �

�
Bρ

S©uS2�
1
2

B Crρ
1
2A��ρ� 1

2 �
�
Bρ

S©uS2�
1
2

, (1.21)

where we used that r
ρ @ 1 in the last step. As we discussed before, the claim follows from

(1.20) and (1.21). �

Proof of Lemma 1.20. Let r, ρ be as in the statement. By (1.11) we conclude that�
Br

Sp4S B C �r
ρ
�3 �

Bρ

SpS,
in particular

�
�
Br

Sp4S�
5
4

B C �r
ρ
� 15

4 �
�
Bρ

SpS�
5
4

.

Integrating over t > ��7
8r

2, 1
8r

2� we obtain
� r2

8

�
7
8
r2
�
�
Br

Sp4S�
5
4

B C �r
ρ
� 15

4
� r2

8

�
7
8
r2
�
�
Bρ

SpS�
5
4

B C �r
ρ
� 15

4
� ρ2

8

�
7
8
ρ2
�
�
Bρ

SpS�
5
4

� C �r
ρ
� 15

4

ρ
13
4 A��ρ� � Cr 13

4 �r
ρ
� 1

2

K��ρ�.
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Dividing by r
13
4 yields

1

r
13
4

� r2

8

�
7
8
r2
�
�
Br

Sp4S�
5
4

B C �r
ρ
� 1

2

K��ρ�. (1.22)

Furthermore, using (1.18) we �nd

� r2

8

�
7
8
r2
�
�
Br

Sp5S�
5
4

B C

� r2

8

�
7
8
r2
r

5
4 ρ

5
8A

5
8
�
�ρ��

�
Bρ

S©uS2�
5
8

B Cr
5
4 ρ

5
8A

5
8
�
�ρ�

� r2

8

�
7
8
r2
�
�
Bρ

S©uS2�
5
8

B

Hölder p� 8
5
,q� 8

3

Cr
5
4 ρ

5
8A

5
8
�
�ρ��r2� 3

8

���
� r2

8

�
7
8
r2

�
Bρ
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�
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Dividing by r
13
4 we infer
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Given (1.22) and (1.23) we conclude
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�

1.4. Proof of the main proposition

Proof. Let r B 1
4ρ. Recall that the statement imposes the condition δ��ρ� B 1. We

bound G
2
3
�
�r�,H��r�, J��r� and K��r� seperately in terms of M� and δ�. Again, we use C

to denote a generic constant which we possibly have to increase after each estimate.
Step 1: Estimating G�. First we can use (1.8) with input parameters Çr �� r and Çρ �� ρ

2
to obtain

G
2
3
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�r� B
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Step 2: Estimating H�.
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3
�
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We can merge the estimates in Step 1 and Step 2 to get
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where we used in the last estimate that r
ρ B 1.

Step 3: Estimating J�. By Lemma 1.19 and similar techniques as in the �rst three
estimates of Step 1 we obtain
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We can now use the generalized Young inequality abc B C�ap1 � bp2 � cp3� whenever 1
p1

�

1
p2
�

1
p3

� 1 to estimate A��ρ2� 1
5G��r� 1

5K��ρ2� 4
5 . Here the choice p1 � 5, p2 �

10
3 , p3 � 2 yields
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where we have used (1.4) and Remark 1.6 in the last step. Notice that one can also estimate

K
8
5
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�ρ� BM��ρ� to simplify
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Plugging this into (1.26) we obtain
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Using that r @ ρ we can determine which power of rρ or ρ

r respectively dominates and infer
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Step 4: Estimating K
8
5
�
. By Lemma 1.20 and �a � b� 8

5 B C�a 8
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8
5 � we obtain that
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We can use that by de�nition of M� one has K
8
5
�
�ρ� BM��ρ� as well as (1.7) to obtain
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where the last step uses again that r @ ρ.
Step 5: The claim follows now by adding up (1.25), (1.27) and (1.28), all of which

consist only of terms that appear on the right hand side of the desired inequality. �
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