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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universität Ulm in the summer term of 2019.
We mainly follow the [CKN82] in a modern fashion. This work is aimed at enthusiastic
Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.
Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 1: Introduction

By Dr. Jack Skipper

For this introduction we will use the original paper of [CKN82] and the excellent
book [RRS16].

The three-dimensional Navier-Stokes equations are

∂tu(x, t) + (u ⋅ ∇)u(x, t) + ∇p(x, t) −∆u(x, t) = f(x, t)
divu(x, t) = 0.

(1.1)

Here, (x, t) ∈ Ω × [0, T ], where Ω ⊂ R3 or T3 or R3 some domain, and we have the
unknown velocity field

u∶Ω × [0, T ] → R3;

the unknown pressure field

p∶Ω × [0, T ] → R;

and the given force f ∶Ω × [0, T ] → R3 with div f = 0 in Ω × [0, T ]. Together with initial
data and boundary data, (1.1) turns into an initial boundary value problem

u(x,0) = u0(x), x ∈ Ω, (1.2)
u(x, t) = 0, x ∈ ∂Ω for 0 < t < T.

With compatibility conditions for u0 and f we see that

−∆p = ∂i∂j(uiuj) for a.e t.

1.1. Outline: The Navier-Stokes Equations

1.1.1. Weak and Strong. Here we will give an overview of the important results
currently known about the Navier-Stokes equations(NSE). The results here were taken
from the book by Robinson, Rodrigo,

● (Leray 1934, R3) in [Ler34] and (Hopf 1951, Ω or T3) in [Hop51] showed that
Leray-Hopf (LH) weak solutions exist globally in time. Here we assume that the
initial data u0 ∈ L2

σ (in L2 and weakly incompressible) and u ∈ L∞(0, T ;L2
σ) ∩

L2(0, T ;H1) and satisfy the weak energy inequality, namely,
ˆ

Ω
u2(t) dx +

ˆ t

s

ˆ
Ω
∣∇u∣2 dx dt ≤

ˆ
Ω
u(s) dx

for almost every t, s. We do not know about uniqueness here.
● (Leray 1934, R3) in [Ler34] and (Kiseler-Ladyzhenskaya 1857) in [KL57] showed
that strong solutions (LH weak solutions with u0 ∈ L2

σ∩H1 and u ∈ L∞(0, T ;H1)∩
L2(0, T ;H2)) exist and are unique locally in time. They showed a lover bound on
the potential "blow up" time T = c∥∇u0∥−4

L2 . Further, strong solutions are imme-
diately smooth, even real analytic according to (Foias-Temam 1989) in [FT89].
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1.1. OUTLINE: THE NAVIER-STOKES EQUATIONS 5

● We have global existence of strong solutions for small data on Ω or T3 where we
have an absolute constant C(Ω) or C̃(Ω) such that, for example,

∥∇u0∥L2 < C ∥u0∥L2 < C∥∇u0∥L2 < C̃.
For R3 we have a scaling uλ(x, t) = λu(λx,λ2t) is a solution. Thus if we want to
talk about small data we need the norm to be invariant under this map, we say
these spaces are critical spaces. Ḣ1/2, L3, BMO−1 are invariant spaces where for
small data we have strong solutions and for any data have local in time strong
solutions.

● (Sather-Serrin 1963) see [Ser63] showed weak-strong uniqueness, that is, strong
solutions are unique in the class of LH weak solutions. (Need the energy inequal-
ity) This suggests 2 possibilities u is strong always ∥∇u(t)∥L2 < ∞ for all s > 0 or
there exists T ∗ the "blow-up" time where

∥∇u)(t)∥2 ≥ C(Ω)√
(T ∗ − t)

.

Can use similar techniques to show robustness of solutions "if initial data is close
to a strong solution initial data then the solutions is strong for a while".

● Leary noticed that any global in time LH weak solution is eventually strong and
for large time ∥u(t)∥L2 → 0 as t→∞.

Figure 1. The H1 norm of a potential solution to the Navier-Stokes equations.

1.1.2. Regularity. We can now look at the regularity of solutions and either we find
conditions on how bad could the space of solutions be, or we find conditions on solutions
that guarantee they are strong and smooth.

● (Scheffer 1976) in [Sch76] gave an upper bound on the size of the set of singular
times. We say a time is regular and in the set R if ∥∇u(t)∥L2 is essentially
bounded. The singular times T a the rest. Here we see that the 1

2 dimensional
Hausdorff measure of the set T is zero. (Box counting measure is the same.)

● (Kato 1984) in [Kat84] showed that ifˆ T

0
∥∇u(s)∥L∞ ds < ∞
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then u is strong on (0, T ].
● (Beal-Kato-Majda 1984) in [BKM84] showed that if

ˆ T

0
∥ curlu(s)∥L∞ ds < ∞

then u is strong on (0, T ] and further if we have "blow-up" at T then

lim
t→T

ˆ t

0
∥ curlu(s)∥L∞ ds = ∞.

● Serrin see [Ser63] condition that

u ∈ Lr(0, T ;Ls(Ω)) 2

r
+ 3

s
= 1

gives a smooth solution on (0, T ]. We note that we only unfortunately know that
for a LH weak solution that

2

r
+ 3

s
= 3

2
.

Further, we have other Serrin type conditions, by (Beirão da Veiga 1995) in
[Bei95]

∇u ∈ Lr(0, T ;Ls(Ω)) 2

r
+ 3

s
= 2

3

2
< s < ∞

and by (Berselli-Galdi 2002) in [BG02] in

p ∈ Lr(0, T ;Ls(Ω)) 2

r
+ 3

s
= 2

3

2
< s.

● (Serrin 1962) in [Ser62], for the (<) case, showed a local version of the Serrin
condition that, on a sub-domain U × (t1, t2), if

u ∈ Lr(t1, t2;Ls(U)) 2

r
+ 3

s
= 1

then u is smooth in space on U × (t1, t2) and α-Hölder continuous with α < 1
2

(Don’t get smoothness in time as have problems with ∇p and ∂tu interacting
locally.) The equality was worked out by (Fabes-Jones-Riviere 1972) see [FJR72],
(Struwe 1988) see [Str88] and (Takahashi 1990) in [Tak90].

Leary thought that his solutions were turbulent solutions and that a self-similar con-
struction would give a solution that would "blow-up", however, (Nečas-Ru̇žička-Šverák
1996) in [NRS96] essentially disproved this. Further, for Euler equations non-uniqueness
of weak solutions has been shown starting with the work of (Scheffer 1993) in [Sch93] then
(De Lellis-Székelyhidi 2010) in [DS10] and finally with (Wiedemann 2011) in [Wie11].

We have a picture of how LH weak solutions are behaving and the interplay with strong
solutions. Regularity results go down two lines where either we ask for extra conditions,
we can’t guarantee, from LH weak solutions so that then they are strong solutions an thus
unique. Here, for the CKN result we want to keep with the regularity we know LH weak
solutions can have and find upper bounds on how bad the set of "bad singular points" of
the weak solutions can be. We will show that we get a bound of on the 1 dimensional
Hausdorff measure and show that the size of the set in this measure is 0.
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1.2. "Suitable" Weak Solutions

The CKN partial regularity result for suitable week solutions of the NSE. (How bad is
the space-time set of blow-ups)

We know that for any u0 ∈ L2
σ there us a LH weak solution of the NSE that satisfies

the local energy inequality. (This modern result needs maximal regularity theory for the
pressure p). (Sohr-von Wahl 1986) in [SvW86] showed that for any ε > 0

p ∈ Lr(ε, T ;Ls) for
2

r
+ 3

s
= 3 (s > 1)

or for the gradient of the pressure

∇p ∈ Lr(ε, T ;Ls) for
2

r
+ 3

s
= 4 (s > 1)

and thus we obtain that p ∈ L 5
3 (Ω × (0, T ])). CKN only knew that p ∈ L 5

4 (Ω × (0, T ]))
which adds extra technical difficulties.

Definition 1.1. The pair (u, p) is a suitable weak solution of the NSE on Ω× [0, T ]
with force f if the following are satisfied.

(1) Integrability:
(a) f ∈ Lq(Ω × [0, T ]) for q > 5

2 ,
(b) p ∈ L 5

4 (Ω × [0, T ]) [Modern times can get as high as L
5
3 (Ω × [0, T ])],

(c) u ∈ L∞(0, T ;L2) ∩L2(0, T ;H1).
(2) Local energy inequality: For all φ ≥ 0, φ ∈ C∞

c , then,

2
x

∣∇u∣2φ dx ds ≤
x

∣u∣2(φt +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2(u ⋅ f)φ dx ds

(3) Weak solution: We need u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ;H1

σ), ∇ ⋅ f = 0, −∆p =
∂i∂j(uiuj) and for a.e.t ∈ (a, b) and for all φ ∈ C∞

σ,cˆ
Ω×{0}

u0 ⋅ φ(0) dx =
ˆ T

0

ˆ
Ω
∇u ∶ ∇φ + (u ⋅ ∇)uφ − u ⋅ ∂tφ − f ⋅ φ dx dt.

For the CKN theory we do not need point 3 above, that is, the pair (u, p) does not
actually need to be a LH weak solution of the NSE. The proof just deals with local energy
inequality and interpolation inequalities as so points 1 and 2 are sufficient, the “suitable”
bit.

As an interesting aside, it is important to note that in (Scheffer 1987) in [Sch87] he
showed that the end result, that the one dimensional Hausedroff measure of the singular
set of space-time points is zero, cannot be improved using the “suitable” criteria and the
method would have to use (the equation) part 3 above. He showed that if you just pick a
“suitable” pair (u, p) then for any γ < 1 there will exist at least one (u, p) pair where the
γ- dimensional Hausdrof measure of the singular set is infinite.

1.3. Partial Regularity

We want to study “how bad” the set of “singular points” for u a suitable solution.
We denote R the set of regular points (x, t) ∈ R if there exists an open set U ⊂

Ω × [0, T ] with (x, t) ∈ U and u ∈ L∞(U). Let S be the set of singular points defined by
S ∶= Ω × [0, T ] ∖R, so the points where u is not L∞loc in any neighbourhood of (x, t). (Can
also be defined similarly but with curlu or ∇u.) By “bad” we want an upper-bound on the
dimension of S here using the Hausdroff measure.

Theorem 1.2 (Main Theorem (B) in [CKN82]). For any suitable weak solution of
the NSE on an open set in space-time the asscoiated singular set S satisfies

P1(S) = 0.
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This condition is equivalent to H1(S) = 0 which denotes that the one dimensional
Hausdroff measure of the singular set is 0.

Importantly this shows that there are no curves in space-time where the solution u is
singular along the curve. If we have “blow-up” then this occurs at distinct points in space
time and not on a continuum.

CKN also impose extra conditions to prove two other theorems. These results are more
in the spirit of previous partial regularity results like Serrin conditions as discussed earlier.

Let E denote the initial “kinetic energy”, the L2 norm of for the initial data, that is,

E ∶= 1

2

ˆ
R3

∣u0∣2 dx

and let G, be a weighted form of E where we want extra decay at infinity, that is,

G ∶= 1

2

ˆ
R3

∣u0∣2∣x∣ dx < ∞.

For initial data satisfying this condition one can show that a suitable weak solution of the
NSE from this data satisfies

1

2

ˆ
R3×{t}

∣u∣2∣x∣ dx +
ˆ t

0

ˆ
R3

∣∇u∣2∣x∣ dx ds < ∞

for every t, so obtain the following theorem showing that the solution is regular for large
enough x.

Theorem 1.3 (Theorem C in [CKN82]). Suppose u0 ∈ L2(R3) ∇ ⋅ u0 = 0 and G < ∞.
Then there exists a weak solution of the NSE with f = 0 which is regular on the set

{(x, t)∶ ∣x∣2t >K1}
where K1 =K1(E,G) is a constant only depending on u0 via E and G.

Here we see that G is a restriction that the initial data u0 should decay sufficiently
rapidly at infinity.

If instead we have a different condition where we ask for decay approaching zero, that
is, ˆ

R3

∣u0∣2∣x∣−1 dx = L ≤ L0

then we obtain

sup
τ

ˆ
R3×{τ}

∣u∣2∣x∣−1 dx < ∞,
ˆ t

0

ˆ
R3

∣∇u∣2∣x∣−1 dx dτ < ∞

for each t. From this we obtain the following theorem where we see that u is regular in a
parabola above the origin and the line x = 0 is regular for all t.

Theorem 1.4 (Theorem D in [CKN82]). There exists an absolute constant L0 > 0
with the following properties. If u0 ∈ L2(R3) ∇ ⋅ u0 = 0 and L < L0 then there exists a weak
solution of the NSE with f = 0 which is regular on the set

{(x, t)∶ ∣x∣2 < t(L0 −L)}.

1.4. Scale-invariant Quantities (Dimensionless Quantities)

On R3 if we have a solution to the NSE then by rescaling by λ, in the following way,

u(x, t) ↦ λu(λx,λ2t)
p(x, t) ↦ λ2p(λx,λ2t)
f(x, t) ↦ λ3f(λx,λ2t)

we have another solution. Here we see that time scales quadratically and space linearly.
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For local estimates it will be best to use, rather than balls, parabolic cylinders, that is,

Qr(x, t) ∶= {(y, τ)∶ ∣y − x∣ ≤ r, t − r2 < τ < t}
or Q∗

r(x, t) = Qr(x, t − 1
8r

2) (here (x, t) is the geometric centre of Q r
2
(x, t + 1

8r
2)). The

scaling that works on R3 also works on the parabolic cylinders where if (u, p) is a solution
on Qr(x, t) then (uλ, pλ) will be a solution on Q r

λ
(x, t).

We want to study “quantities” being “small” over parabolic cylinders and thus to have a
sensible definition of a “smallness” assumption we should study scale invariant “quantities”,
that is, “quantities” whose value will not change after rescaling space and time as above. If
the “quantities” we study did not have this property then under rescaling we could shrink
or blow-up the values and could not compare the values. We will use factors of 1

r to make
the scale invariant quantities we need.

For example,

1

( r
λ
)2

ˆ
Q r
λ
(0,0)

∣uλ∣3 dx dt = λ
2

r2

ˆ
Q r
λ
(0,0)

λ3∣u(λx,λ2t)∣3 dx dt

= 1

r2

ˆ
Qr(0,0)

∣u(y, s)∣3 dy ds

where we have a change of variable y = λx, s = λ2t.
Some of the scale-invariant quantities we will use are

1

r
sup

−r2<t<0

ˆ
Br

∣u(t)∣2 dx,
1

r

x

Qr

∣∇u∣2 dx dt,
1

r2

x

Qr

∣u∣3 dx dt,
1

r2

x

Qr

∣p∣
3
2 dx dt.

1.5. The Main Ideas

We need to show two main propositions that concern bounds on u for large radii giving
properties for u on smaller radii.

Proposition 1.5. There are absolute constants ε,C1 > 0 and constant ε2(q) > 0 with
the following properties. If (u, p) is a suitable weak solution of the NSE on Q1(0,0) with
force f ∈ Lq, for some q > 5

2 and

x

Q1(0,0)

(∣u∣3 + ∣u∣∣p∣) dx dt +
ˆ 0

−1
(
ˆ
B1

∣p∣ dx)
5
4

dt ≤ ε1 and
x

Q1(0,0)

∣f ∣q dx dt ≤ ε2

then u ∈ L∞(Q 1
2
(0,0)) with ∥u∥L∞(Q 1

2
(0,0)) ≤ C1. (u is regular on Q 1

2
(0,0)).

With no force and modern p ∈ L 5
3 we can just assume that

x

Q1(0,0)

(∣u∣3 + ∣p∣
3
2 ) dx dt ≤ ε1

and the proof is simplified.
We can shift and rescale this proposition to apply it to different Qr(x, t).

Proposition 1.6. There exists an absolute constant ε3 such that if (u, p) is a suitable
weak solution to the NSE on QR(a, s) for some R > 0 and if

lim sup
r→0

1

r

ˆ
Qr(as)

∣∇u∣2 dx dt ≤ ε3

then u ∈ L∞(Qρ(a, s)) for some ρ with 0 < ρ < R. (a, s) is a regular point.

We will now discuss a rough outline of the proof and the tools used.
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● We have the local energy inequality,

2
x

∣∇u∣2φ dx ds ≤
x

∣u∣2(φt +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2(u ⋅ f)φ dx ds.

We use an approximation to the backwards heat equation for φ on a parabolic
cylinder so it approximately solves φt + ∆φ = 0 and get appropriate bounds on
φ and ∇φ as powers of 1

r . This gives an inequality over parabolic cylinders with
weighting in front of the remaining terms that means they are scaling invariant.

● We can use different interpolation inequalities over parabolic cylinders, for exam-
ple,

1

r2

x

Qr(a,s)

∣u∣3 dx dt ≤ C0

⎡⎢⎢⎢⎢⎢⎣

1

r
sup

s−r2<t<s

ˆ
Br(a)

∣u(t)∣2 + 1

r

x

Qr(a,s)

∣∇u∣2 dx dt

⎤⎥⎥⎥⎥⎥⎦

3
2

.

● We can use these two inequalities. We see that the term on the RHS of the local
energy inequality is quadratic in u and on the LHS they are all act cubic in u
(with the assumed regularity on p and f) however this is the opposite for the
interpolation inequality. We can thus iterate between these two inequalities to
obtain inductive bounds on a solution u from the larger cylinder to a smaller
cylinder that are shrinking and so can use Lebesgue differentiation theorem to get
that the points (a, s) are regular on the smaller cylinder.



CHAPTER 2

Talk 2: Suitable weak solutions: part 1

By Farid Mohamed

We introduce the spaces for Ω ⊂ R3

V = {u ∈ C∞
0 (Ω),div u = 0},

V = V∥⋅∥
H1

0
(Ω) and

H = V∥⋅∥L2(Ω) .

The space H is equipped with the norm ∥ ⋅ ∥L2(Ω) and we write

(u, v)L2(Ω) ∶=
ˆ

Ω

uv dx

for the generating scalar product. In the case of V we need to distinguish two cases. If Ω
is bounded we set ∥u∥V ∶= ∥∇u∥L2(Ω) and if Ω is unbounded we define ∥u∥V ∶= ∥∇u∥L2(Ω) +
∥u∥L2(Ω). We observe that V ↪H ↪ V ′, where we identify H and H ′ in the sense that for
every u ∈H we set

⟨u, f⟩ = Tu(f) =
ˆ

Ω

ufdx

for f ∈H. In this case we see that ⟨u, f⟩ = (u, f)L2(Ω).
We assume for this section that

Ω = R3,

f ∈ L2(0, T ;H−1(R3)) and ∇ ⋅ f = 0,

u0 ∈H

or

Ω is a smooth, bounded, open and connected set in R3

f ∈ L2(Ω × (0, T )) and ∇ ⋅ f = 0,

u0 ∈H ∩W 2/5
5/4 (Ω).

It follows directly that the spaces L2(0, T ;H) and L2(0, T ;V ) are reflexive and L∞(0, T ;H)
and L∞(0, T ;V ) are the duals of separable Banach spaces, see for example [?], Theorem
1.29.

Definition 2.1. We call the pair (u, p) a suitable weak solution of the Navier-Stokes
system on an open set D = Ω × (0, T ) ⊂ R3 ×R with force f if:

i) u, p and f are measurable functions on D,
ii) f ∈ Lq(D) for q > 5/2, ∇ ⋅ f = 0 and p ∈ L5/4(D),

11
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iii) the solution u is bounded in the following sense

E0(u) ∶=0<t<T

ˆ

Ω

∣u(x, t)∣2dx < ∞ and E1(u) ∶=
x

D

∣∇u∣2dxdt < ∞,

iv) u, p and f solve

∂tu(x, t) + (u ⋅ ∇)u(x, t) + ∇p(x, t) −∆u(x, t) = f in Ω,

divu(x, t) = 0 on ∂Ω for all 0 < t < T
in the sense of distributions in D, i.e. u ∈ L2(0, T ;V ) and for all v ∈ V we have
d

dt

ˆ
Ω
u(x, t)v(x)dx +

ˆ
Ω
(u ⋅ ∇)u(x, t)v(x)dx +

ˆ
Ω
∇u ⋅ ∇v dx =

ˆ
Ω
f(t, x)v(x)dx

in the distributional sense on (0, T ).
v) for all ϕ ∈ C∞

0 (D), ϕ ≥ 0 it holds

2
x

D

∣∇u∣2ϕdxdt ≤
x

D

(∣u∣2(ϕt +∆ϕ) + (∣u∣2 + 2p)u ⋅ ∇ϕ + 2(u ⋅ f)ϕ)dxdt.

The goal of this chapter is to show that for every f ∈ Lq(D) there exists a suitable
weak solution in the sense of Defintion 2.1.

The first step is to show that the equation

ut + (w ⋅ ∇)u −∆u +∇p = f
has a solution for suitable f and w, where we use the following lemma.

Lemma 2.2 (see [Tem79], Lemma 1.2). Suppose f ∈ L2(0, T ;V ′), u ∈ L2(0, T ;V ), p is
a distribution and

ut −∆u +∇p = f
in the sense of distributions on D. Then

ut ∈ L2(0, T ;V ′),
d

dt

ˆ
Ω
∣u∣2 = 2(ut, u)L2(Ω)

in the sense of distributions on (0, T ) and

u ∈ C([0, T ],H)
after modification on a set of measure zero. Solutions of (2.2) are unique in the space
L2(0, T ;V ) for given initial data u0 ∈H.

Proof. Here we give the main ideas of the proof.
Let the function û ∶ R → V be equal to u on [0, T ] and to 0 outside this interval. We see
by [LM72], Theorem 4.3 a sequence (um)m∈N such that

∀m,um is infinitly differentiable from [0, T ] onto V , as m→∞
um → u in L2

loc(0, T ;V ),
u′m → u′ in L2

loc(0, T ;V ′).
It follows directly

d

dt

ˆ
Ω
∣um(t)∣2 = 2(u′m(t), um(t))L2(Ω)

and as m→∞ we get

∥um∥2
L2(Ω) → ∥u∥2

L2(Ω) in L1
loc((0, T ))

(u′m, um)L2(Ω) → (u′, u)L2(Ω) in L1
loc((0, T )).
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These convergences also hold in the distribution sense. So by passing to the limit we get

d

dt

ˆ
Ω
∣u∣2 = 2(ut, u)L2(Ω)

and by (2) we see that u ∈ L∞(0, T ;H). We conclude by [Tem79], Lemma 1.4 that
u ∈ C([0, T ];H). Uniqueness will follow by the next lemma. �

Lemma 2.3. Let f ∈ L2(0, T ;V ′), u0 ∈ H and w ∈ C∞(D,R3) with ∇ ⋅ w = 0. Then
there exists a unique function u and a distribution p such that

u ∈ C([0, T ],H) ∩L2(0, T ;V ),
ut + (w ⋅ ∇)u −∆u +∇p = f

in the sense of distributions on D, with u(0) = u0.

Proof. We will follow [Tem79], Theorem 1.1 by constructing the solution. Let
{xn}n∈N ⊂ V be a sequence of linearly indepedent vectors such that span((xn)n∈N) = V ,

which exists as V is separable. We set Vn ∶= span(x1, . . . , xn) and un ∶=
n

∑
i=1
gin(t)xi, where

(gin)ni=1 is a solution of the system

n

∑
i=1

g′in(t)(xi, xj)L2(Ω) +
n

∑
i=1

gin(t)(((w ⋅ ∇)xi, xj)L2(Ω) + (∇xi,∇xj)L2(Ω)) = ⟨f, xj⟩

gjn(0) = PVn(x0)j

for j = 1, . . . , n. Then un solves the equation

(u′n, v)L2(Ω) + ((w ⋅ ∇)un, v) + (∇un,∇v)L2(Ω) = ⟨f, v⟩

for all v ∈ Vn. Observe by partial integration that

((w ⋅ ∇)un, un)L2(Ω) = −(un, (w ⋅ ∇)un)L2(Ω) = 0

and one obtains

1

2

d

dt
∥un∥2

L2(Ω) =(u
′
n, un)L2(Ω)

=⟨f, un⟩ − (∇un,∇un)L2(Ω)

≤1

2
∥f∥2

V ′ + 1

2
∥un∥2

L2(Ω) −
1

2
∥∇u∥2

L2(Ω)

≤1

2
∥f∥2

V ′ + 1

2
∥un∥2

L2(Ω),

whch follows by

⟨f, un⟩ ≤
1

2
∥f∥2

V ′ + 1

2
∥un∥2

V ≤ 1

2
∥f∥2

V ′ + 1

2
∥un∥2

L2(Ω) +
1

2
∥∇un∥2

L2(Ω).

The continuity of the projection and Gronwall’s inequality imply that

∥un(t)∥2
L2(Ω) ≤

⎛
⎜
⎝
∥u0∥2

L2(Ω) +
T̂

0

∥f(s)∥2
V ′ ds

⎞
⎟
⎠
eT < ∞,
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which implies that (un)n∈N is uniformly bounded in L∞(0, T ;H). Furthermore, we see by
integrating (2)

∥un(t)∥2
L2(Ω) +

tˆ

0

∥∇un(s)∥2
L2(Ω)ds

≤∥un(0)∥2
L2(Ω) +

tˆ

0

∥f(s)∥2
V ′ds +

ˆ T

0
∥un(s)∥2

L2(Ω) ds

≤(∥u(0)∥2
L2(Ω) + ∥f∥2

L2(0,T ;V ′)) (1 + TeT )

and we conclude that (un)n∈N is uniformly bounded in L2(0, T ;V ). One infers that there
exists a subsequence (un)n∈N ⊂ L2(0, T ;V ) ∩L∞(0, T ;H) such that there exists an
u ∈ L2(0, T ;V ) ∩L∞(0, T ;H)

un ⇀ u for n→∞ in L2(0, T ;V ) and

un
∗⇀ u for n→∞ in L∞(0, T ;H).

We conclude for every ϕ ∈ C1([0, T ]) with ϕ(T ) = 0 that

0 =
ˆ T

0
((u′n(t), ϕ(t)xj)L2(Ω) + ((w ⋅ ∇)un(t), ϕ(t)xj) + (∇un(t),∇xjϕ(t))L2(Ω)

− ⟨f(t), ϕ(t)xj⟩)dt

=
ˆ T

0
(−(un(t), ϕ′(t)xj)L2(Ω) + ((w ⋅ ∇)un(t), ϕ(t)xj) + (∇un(t),∇xjϕ(t))L2(Ω)

− ⟨f(t), ϕ(t)xj⟩dt − (un(0), xj)L2(Ω)ϕ(0))

→
ˆ T

0
(−(u(t), ϕ′(t)xj)L2(Ω) + ((w ⋅ ∇)u(t), ϕ(t)xj) + (∇u(t),∇xjϕ(t))L2(Ω)

− ⟨f(t), ϕ(t)xj⟩dt − (u(0), xj)L2(Ω)ϕ(0))
for n→∞ for every j ∈ N. Moreover, the equality holds for every finite combination of the
(xj) and by continuity even for all v ∈ V . We obtain that

d

dt
(u, v)L2(Ω) + ((w ⋅ ∇)u, v) + (∇u,∇v)L2(Ω) = ⟨f, v⟩

in the sense of distributions on (0, T ).
In order to see that u(0) = u0 we use that

ˆ T

0

d

dt
(u(t), v)L2(Ω)ϕ(t)dt = −

ˆ T

0
(u(t), v)ϕ′(t)dt + (u(0), v)ϕ(0),

which implies that

−
ˆ T

0
(u(t), v)ϕ′(t)dt +

ˆ T

0
(∇u,∇v)L2(Ω)ϕ(t)dt +

ˆ T

0
((w ⋅ ∇)u, v)L2(Ω)ϕ(t)dt

=(u(0), v)ϕ(0) +
ˆ T

0
⟨f(t), v⟩ϕ(t)dt

By comparison with the above equality we see that

(u0 − u(0), v)ϕ(0) = 0.

As v was arbitrary we conclude that u0 = u(0).
To show uniqueness assume that we have two solutions u1 and u2 with some initial data
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and force f . We know that u1 − u2 solves (2) with f = 0. We conclude by (2) that
1

2

d

dt
∥u1 − u2∥2

L2(Ω) ≤ −(∇(u1 − u2),∇(u1 − u2))L2(Ω) ≤ 0.

As u1(0) = u2(0) we conclude that u1 = u2. �

A solution of the Poisson equation −∆u = f for f ∈ Lq(R3) for some 1 < q < ∞ can be
written as

u(x) ∶= (−∆)−1f(x) ∶= c3

ˆ

R3

1

∣x − y∣f(y)dy,

where c3 ∈ R can be given explicitly. We use the following theorem, which can be shown
by the Calderón-Zygmund theorem.

Theorem 2.4 (see [?], Theorem B.7). The linear operator Tjk defined by

Tjkf ∶= ∂j∂k(−∆)−1f

is a bounded linear operator from Lq(R3) into Lq(R3) for all 1 < q < ∞, i.e.

∥Tjkf∥Lq(R3) ≤ C∥f∥Lq(R3)

for some constant C > 0.

Lemma 2.5. Let Ω = R3, f ∈ L2(0, T ;H−1(R3)), div f = 0 and u0 ∈ H. Then it holds
that

∆p = −∑
i,j

∂i∂j(wiuj),

in the sense of distribution. Hence, we obtain
x

D

∣p∣5/3dxdt ≤ C
x

D

∣w∣5/3 ⋅ ∣u∣5/3dxdt.

Remark 2.6. For general Ω (if Ω is bounded) it is also possible to show that p ∈
L5/3(D).

Proof. We follow [?] to show that p is given by (2.5). At first, observe that

{ϕ ∈ [S(R3)]3 ∶ div ϕ = 0}
is a dense subset of V . Furthermore, for every h ∈ [S(R3)]3 there exists a ϕ ∈ [S(R3)]3

and ψ ∈ S(R3) such that h = ϕ + ∇ψ and ∇ ⋅ ϕ = 0, see for example [?], Exercise 5.2. Now
let ξ ∈ C∞

0 ((0, T )). As u is the solution of (2) we obtain by partial integration

−
ˆ T

0
(u,h)L2(R3)ξ

′(t)dt −
ˆ T

0
(u,∆h)L2(R3)ξ(t)dt

−
ˆ T

0
(u⊗w,∇h)L2(R3)ξ(t)dt −

ˆ T

0
⟨f, h⟩ξ(t)dt

= −
ˆ T

0
(u,ϕ)L2(R3)ξ

′(t)dt +
ˆ T

0
(∇u,∇ϕ)L2(R3)ξ(t)dt

+
ˆ T

0
((w ⋅ ∇)u,ϕ)L2(R3)ξ(t)dt −

ˆ T

0
∑
i,j

(uiwj , ∂i∂jψ)L2(R3)ξ(t)dt

−
ˆ T

0
⟨f,ϕ⟩ξ(t)dt

= −
ˆ T

0
∑
i,j

(uiwj , ∂i∂jψ)L2(R3)ξ(t)dt.
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As u ∈ V , we conclude that ∆p = −∑
i,j
∂i∂j(wiuj), where we used that ∇⋅h = ∆ψ. By taking

the Fourier transform we see that we can interchange the Laplace operator and ∂i∂j and
we obtain

p = (−∆)−1(−∆)p = ∑
i,j

(−∆)−1∂i∂jwiuj = ∑
i,j

∂i∂j(−∆)−1wiuj ,

and one infers by Theorem 2.4 that ∥p∥L5/3(R3) ≤ C∥∣w∣ ⋅ ∣u∣∥L5/3 . �

Later on we want to estimate the pressure p by using following inequality

ˆ

R3

∣u∣qdx ≤ C
⎛
⎜
⎝

ˆ

R

∣∇u∣2 dx
⎞
⎟
⎠

3
4
(q−2)

(
ˆ
R
∣u∣2 dx)

1
4
(6−q)

for 2 ≤ q ≤ 6, which is a special case of the Gagliardo-Nirenberg interpolation inequality

∥Dju∥Lq(R3) ≤ C∥Dmu∥αLr(R3)∥u∥
1−α
Lp(R3)

where 1 < q, p, r < ∞ and m,j ∈ N. α is chosen is such a way that 1
q =

j
3 + (1

r −
m
3
)α + 1−α

p

and j
m ≤ α ≤ 1. By choosing j = 0, m = 1, r = p = 2 and α = 3(1

2 −
1
q ) we obtain (2). We

recall that we denote by

E0(u) ∶=0<t<T

ˆ

Ω

∣u(x, t)∣2dx and E1(u) ∶=
x

D

∣∇u∣2dxdt.

Lemma 2.7. For u,w ∈ L2(0, T ;H1(R3)),

∥u∥L10/3(0,T ;L10/3(R3)) ≤ CE
3/10
1 (u)E1/5

0 (u),

∥w ⋅ ∇u∥L5/4(0,T ;L5/4(R3)) ≤ CE
1/2
1 (u)E3/10

1 (w)E1/5
0 (w),

∥u∥L5(0,T ;L5/2(R3)) ≤ CT 1/20E
7/20
0 (u)E3/20

1 (u).
Proof. For (2.7) we use (2) and obtainˆ

R3

∣u∣10/3 dx ≤ C (
ˆ
R3

∣∇u∣2dx)(
ˆ
R3

∣u∣2dx)
2/3

≤ C (
ˆ
R3

∣∇u∣2dx)E0(u)2/3

for almost all t ∈ (0, T ). Integrating over (0, T ) gives the result. For (2.7) we see by
Hölder’s inequality that

ˆ T

0

ˆ
R3

∣w ⋅ ∇u∣5/4dxdt ≤(
ˆ T

0

ˆ
R3

∣w∣10/3 dxdt)
3/8

E1(u)
5
8

=∥w∥5/4
L10/3(0,T ;L10/3(R3))E1(u)

5
8 .

By applying (2.7) we obtain (2.7). Furthermore, we see by (2) and Hölder’s inequality that

ˆ T

0
(
ˆ
R3

∣u∣5/2 dx)
2

dt ≤C
ˆ T

0

⎛
⎜
⎝

ˆ

R

∣∇u∣2 dx
⎞
⎟
⎠

3/4

(
ˆ
R3

∣u∣2 dx)
7/4
dt

≤CE0(u)7/4
ˆ T

0

⎛
⎜
⎝

ˆ

R

∣∇u∣2 dx
⎞
⎟
⎠

3/4

dt

≤CE0(u)7/4T 1/4
⎛
⎜
⎝

ˆ T

0

ˆ

R

∣∇u∣2 dxdt
⎞
⎟
⎠

3/4

.



2. TALK 2: SUITABLE WEAK SOLUTIONS: PART 1 17

We conclude that (2.7) holds true. �



CHAPTER 3

Talk 3: Suitable weak solutions: part 2

By David Berger

Lemma 3.1 (see [GS91], Theorem 2.8). Assume that Ω, f and u0 satisfy the assump-
tions of Lemma 2.3. Let Ω be bounded, 4 = 3/q + 2/s and w ⋅ ∇u, f ∈ Ls(0, T ;Lq(Ω)) and
u0 ∈W 2−2/s

s (Ω). Then the solution (u, p) constructed in Lemma 2.3 satisfies

∥∇p∥sLs(0,T ;Lq(Ω)) + ∥ut∥sLs(0,T ;Lq(Ω)) + ∥∇2u∥sLs((0,T ;Lq(Ω))

≤C(∥u0∥s
W

2−2/s
s (Ω)

+ ∥w ⋅ ∇u∥sLs(0,T ;Lq(Ω)) + ∥f∥sLs(0,T ;Lq(Ω))).

Furthermore, by normalizing p such that
´

Ω p = 0 for all t we obtain

∥p∥L5/3(0,T ;L5/3(Ω)) < ∞.

Lemma 3.2. Let Ω, u0 and f satisfy the assumption of Chapter 2 and let w ∈ C∞(D̄,R3)
with ∇ ⋅w = 0. Let (u, p) be the solution of Lemma 2.3. Then, for every ϕ ∈ C∞(D̄) with
ϕ = 0 near ∂Ω × (0, T ), and for every t, 0 < t ≤ T ,ˆ

Ω

∣u(x, t)∣2ϕ(x, t)dx + 2
x

D

∣∇u∣2ϕ =
ˆ

Ω

∣u0∣2ϕ(x,0) +
x

D

∣u∣2(ϕt +∆ϕ)

+
x

D

(∣u∣2w + 2pu) ⋅ ∇ϕ + 2
x

D

(u ⋅ f)ϕ

Proof. We assume that Ω is bounded. Suppose for the moment that ϕ vanishes near
t = 0, choose Ω1, so that Ω1 ⊂ Ω and suppϕ ⊂ Ω1 × (0, T ). Writing F = f −w ⋅ ∇u, we have

ut −∆u +∇p = F on D.

Mollifying in R4 each term of the equation above, we obtain sequences of smooth functions
um, pm and Fm, m = 1,2, . . . , such that

dum
dt

−∆um +∇pm = Fm ∇ ⋅ um = 0

in a neighborhood of suppΦ, and such that

um → u in L5(0, T ;L
5
2 (Ω) ∩L2(D)),

∇um → ∇u in L2(D),

pm → p in L
5
4 (0, T ;L

5
3 (Ω1)),

Fm → F in L2(D).
Taking the inner product of 3 with 2umΦ and integrating by parts yields

2
x

D

∣∇um∣2ϕ =
x

D

∣um∣2(ϕt +∆ϕ) + 2
x

D

pm(um ⋅ ∇ϕ) + 2
x

D

(um ⋅ Fm)ϕ.

We pass to the limit as m→∞, to conclude for u, p and F , with F = f −w ⋅ ∇u,
2
x

D

(u ⋅ F )ϕ = 2
x

D

(u ⋅ f)ϕ +
x

D

∣u∣2w ⋅ ∇ϕ.

18
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This gives the proof when ϕ ∈ C∞
0 (D) and t = T . For the more general case use a cutoff

function in time and the continuity of u in H at 0. �

The goal of this chapter is to use the results shown in Chapter 2 to prove the existence
of the weak solution. Therefore, we will introduce the mollyfing operator

Ψδ(u)(x, t) ∶= (δ−4ψ(⋅/δ)) ∗ u(x, t) = δ−4
x

R4

ψ (y
δ
,
τ

δ
) ũ(x − y, t − τ)dydτ,

where ψ ∈ C∞(R4), ψ ≥ 0,
s

R4 ψ(x, t)dxdt = 1 and supp ψ ⊂ {(x, t) ∶ ∣x∣2 < t,1 < t < 2}
and ũ is the extension of u on R4, i.e. ũ(x, t) = u(x, t) on D and elsewhere 0. We see
by [Gra14], Theorem 1.2.19 that ψδ is an approximating identity on R4.

Lemma 3.3. For any u ∈ L∞(0, T ;H) ∩L2(0, T ;V ) it holds

∇ ⋅ ψδ(u) = 0,

sup
0≤t≤T

ˆ
Ω
∣ψδ(u)∣2dx ≤ CE0(u),

x

D

∣∇ψδ(u)∣2dxdt ≤ CE1(u),

for some C > 0 independent of u and δ.

Proof. It is easy to see that

∇ ⋅Ψδ(u) = δ−4
x

R4

∇ψ (y
δ
,
τ

δ
) ⋅ ũ(x − y, t − τ)dydτ

= δ−4
x

Ω

∇ψ (y
δ
,
τ

δ
) ⋅ u(x − y, t − τ)dydτ = 0.

Furthemore, we obtain (3.3) by Hölder’s and Young’s inequality
ˆ

Ω
∣ψδ(u)j ∣2dx =

ˆ
Ω
(
ˆ 2δ

δ

ˆ
R3

ψδ (y, τ) ũj(x − y, t − τ)dydτ)
2

dx

≤δ
ˆ 2δ

δ

ˆ
Ω
(
ˆ
R3

ψδ (y, τ) ũj(x − y, t − τ)dy)
2

dxdτ

≤
ˆ
R
δ−1∥ψ(⋅, τ/δ)∥2

L1(R3)∥u(⋅, τ)∥
2
L2(R3)dτ

≤E0(u)
ˆ
R
∥ψ(⋅, τ)∥2

L2(R3)dτ.

The inequality (3.3) is a direct consequence of Young’s inequality

x

D

∣∇jψδ(u)i∣2dxdt ≤
x

R4

RRRRRRRRRRRR
δ−4

x

R4

ψ (y
δ
,
τ

δ
)∇j ũi(x − y, t − τ)dydτ

RRRRRRRRRRRR

2

dxdt

≤ ∥ψ∥2
L1(R4)∥∇jui∥

2
L2(R3).

�

In the proof of the main theorem we will use the following theorem, which gives a
sufficient condition that a sequence (xn)n∈N ∩L2(0, T ;L2(Ω)) is relatively compact.

Theorem 3.4 (see [Tem79], Theorem 1). Let X0 ⊂ X ⊂ X1 be threee Banach spaces
such that X0 is compact in X, and X0 and X1 are reflexive. Then the space

Y = {v ∈ Lα0(0, T ;X0),
d

dt
v ∈ Lα1(0, T ;X1)}
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with α0, α1 > 1 is compact in Lα0(0, T ;X).
Theorem 3.5. Assume that Ω, u0 and f satisfy the assumptions from Chapter 2. Then

there exists a weak solution (u, p) of the Navier-Stokes system such that

u ∈ L2(0, T ;V ) ∩L∞(0, T ;H),
u(t) ⇀ u0 in H as t→ 0,

p ∈ L5/3(D) if Ω = R3,

∇p ∈ L5/4(D) if Ω is bounded and

for all ϕ ∈ C∞
0 (D), ϕ ≥ 0 and ϕ = 0 near ∂Ω × (0, T ) it holdsˆ
Ω
∣u(x, t)∣2ϕ(x, t)dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2ϕdxdt

≤
ˆ

Ω
∣u0∣2ϕ(x,0)dx +

ˆ t

0

ˆ
Ω
(∣u∣2(ϕt +∆ϕ) + (∣u∣2 + 2p)u ⋅ ∇ϕ + 2(u ⋅ f)ϕ)dxdt.

Let N ∈ N and δ = T /N . uN ∈ L2(0, T ;V )∩C([0, T ];H) is the solution of the equation
d

dt
uN + (ψδ(uN) ⋅ ∇)uN −∆uN +∇pN = f, uN(0) = u0,

which exists by applying Lemma 2.3 on each time interval (δm, δ(m + 1)) for each m =
0, . . . ,N − 1 separately. By using (2), (2) and (2) we obtainˆ

Ω
∣uN(t, x)∣2dx +

ˆ t

0

ˆ
Ω
∣∇uN ∣2dxdt ≤ C (

ˆ
Ω
∣u0∣2dx +

ˆ t

0
∥f(t)∥V ′dt) ,

for some constant C > 0 which implies that uN is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ).
Morever, by [Tem79], Lemma 4.2 we conclude that d

dtun is bounded in L2(0, T ;V ′
2), hence

(uN)N∈N is relatively compact in L2(D) by Theorem 3.4. We obtain a subsequence (un)
such that un → u∗ in L2(D), un ⇀ u∗ in L2(0, T ;V ) and un

∗⇀ u∗ in L∞(0, T ;H). More-
over, as (uN) is bounded in L10/3(D) we see easily by an interpolation argument that
un → u∗ in Ls(D) for every 2 ≤ s < 10/3. Using the above inequalities it is possible to
show that u∗ solves the Navier-Stokes equation. We will only prove the convergence of the
term

´ t
0 ϕ(t)((ψδ(uN) ⋅ ∇)uN , v)L2(Ω)dt, as the other parts are trivial. As v ∈ H1(Ω), we

see that ∥uivj∥L2(R3) < ∞, which follows by the Sobolev embedding theorem. We conclude
that

∣
ˆ t

0

ˆ
Ω
((ψδ(uN) ⋅ ∇)uN , v)ϕ(t)dxdt −

ˆ t

0

ˆ
Ω
((u ⋅ ∇)u, v)ϕ(t)dxdt∣

≤ ∣
ˆ t

0

ˆ
Ω
((ψδ(uN) ⋅ ∇)uN , v)ϕ(t)dxdt −

ˆ t

0

ˆ
Ω
((u ⋅ ∇)uN , v)ϕ(t)dxdt∣

+ ∣
ˆ t

0

ˆ
Ω
((u ⋅ ∇)uN , v)ϕ(t)dxdt −

ˆ t

0

ˆ
Ω
((u ⋅ ∇)u, v)ϕ(t)dxdt∣

→ 0 for N →∞,
where we use for the first term that ψδ(uN) → u in L3(R3) and in the second term that
un ⇀ u in L2(0, T ;V ).
In the case that Ω is bounded, we use Lemma 3.1. Let {Ωj}j∈N be a sequence of subdomains
such that Ωj ⊂ Ωj+1 and ∪j∈NΩj = Ω. We see that ∇pN is bounded in L5/4(D) and pn in
L5/4(0, T ;L5/3(Ωj)). We obtain for every j a subsequence pN ⇀ p∗ in L5/4(0, T ;L5/3(Ωj)).
Moreover, we see that uN → u∗ in L5(0, T ;L5/2(Ω)). The proof follows the same arguments
as in the case of Ω = R3.



CHAPTER 4

Talk 4: Background and Definitions

By Fabian Rupp
4.1. On the initial boundary value problem

First, note that the condition div f = 0 is not a restriction at all. Indeed, suppose
we want to solve (1.1) for a general force f ∈ Lq(Ω) with 1 < q < ∞. We may apply a
Lq-Helmholtz decomposition to write f = ∇Φ + f1 with div f1 = 0 and ∥f1∥Lq(Ω×[0,T ]) ≤
C(q,Ω) ∥f∥Lq(Ω×[0,T ]). If (u, p) is a solution of (1.1) with the force term f1, it is easy to
see that (u, p +Φ) is a solution to (1.1) with the right hand side ∇Φ + f1 = f as desired.

To obtain an existence theory for arbitrary time intervals, we study weak solutions of
(1.1) for which the energy

ess sup0<t<T

ˆ
Ω
∣u∣2 dx +

ˆ T

0

ˆ
Ω
∣∇u∣2 dx dt < ∞, (4.1)

is finite, where ∣∇u∣2 ∶= ∑i,j ∣∂iuj ∣
2. This choice is motivated by multiplying (1.1) by u,

integration and using integration by parts. (4.1) justifies why requiring a solution u to
have space derivatives of first order is a somewhat physical assumption.

If one instead multiplies (1.1) by 2uφ for some φ ∈ C∞(Ω × [0, T ]) and integrates one
obtains ˆ t

0

ˆ
Ω

2∂tu ⋅ uφ + 2 ((u ⋅ ∇)u) ⋅ uφ − 2∆u ⋅ uφ + 2∇p ⋅ uφ dx =
ˆ t

0

ˆ
Ω

2f ⋅ uφ dx.(4.2)

Since u∣∂Ω = 0 by (1.2), we may use integration by parts without creating any boundary
terms. For the first term, we use ∂t ∣u∣2 = 2∂tu ⋅ u, soˆ t

0

ˆ
Ω

2∂tu ⋅ uφ dx dt =
ˆ t

0
∂t

ˆ
Ω
∣u∣2 φ dx dt −

ˆ
Ω
∣u∣2 ∂tφ dx dt (4.3)

=
ˆ

Ω
∣u(t)∣2 φ dx −

ˆ
Ω
∣u(0)∣2 φ dx −

ˆ
Ω
∣u∣2 ∂tφ dx dt.

For the second part, integration by parts yields, using summation convention,ˆ t

0

ˆ
Ω

2ui∂iu
jujφ dx dt = −

ˆ t

0

ˆ
Ω
∣u∣2 ∂iuiφ dx dt −

ˆ
Ω
∣u∣2 ui∂iφ dx dt (4.4)

= −
ˆ t

0

ˆ
Ω
∣u∣2 u ⋅ ∇φ dx dt,

since ∂i ∣u∣2 = 2∂iu
juj and divu = 0 by (1.1). For the third term, we get using ∂i ∣u∣2 =

2∂iu
juj again

−2

ˆ t

0

ˆ
Ω
∂i∂iu

jujφ dx = 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt + 2

ˆ t

0

ˆ
Ω
∂iu

juj∂iφ dx dt (4.5)

= 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt −

ˆ t

0

ˆ
Ω
∣u∣2 ∂i∂iφ dx dt

= 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt −

ˆ t

0

ˆ
Ω
∣u∣2 ∆φ dx dt.

21
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Finally, for the last term, using divu = 0, we have

2

ˆ t

0

ˆ
Ω
∂ipu

iφ dx dt = −2

ˆ t

0

ˆ
Ω
p∂iu

iφ dx dt − 2

ˆ t

0

ˆ
Ω
pui∂iφ dx dt (4.6)

= −2

ˆ t

0

ˆ
Ω
pu ⋅ ∇φ dx dt.

Combining, (4.2),(4.3),(4.4),(4.5) and (4.6), we get
ˆ

Ω
∣u(t)∣2 φ dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt =

ˆ
Ω
∣u0∣2 φ dx (4.7)

+
ˆ t

0

ˆ
Ω
∣u∣2 (∂tφ +∆φ) dx dt +

ˆ t

0

ˆ
Ω
(∣u∣2 + 2p)u ⋅ ∇φ dx dt

+ 2

ˆ t

0

ˆ
Ω
f ⋅ uφ dx dt.

Pluggin in φ ≡ 1 in (4.7) we obtain
ˆ

Ω
∣u(t)∣2 dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2 dx dt =

ˆ
Ω
∣u0∣2 + 2

ˆ t

0

ˆ
Ω
f ⋅ u dx. (4.8)

Note that for f ≡ 0 in (4.8), we may formally conclude (4.1) with an explicit bound
depending on the initial date u0 ∈ L2(Ω). The key point in proving existence of weak
Leray-Hopf solutions is the energy inequality, an inequality form of (4.8).

ˆ
Ω
∣u(t)∣2 dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2 dx dt ≤

ˆ
Ω
∣u0∣2 + 2

ˆ t

0

ˆ
Ω
f ⋅ u dx, (4.9)

for almost every t.
For the main result, the localized version of (4.9) is crucial. Taking any φ ≥ 0 with

compact support in Ω × (0, T ) in (4.7), one may conclude the following generalized energy
inequality by estimating the first term by zero

2

ˆ T

0

ˆ
Ω
∣∇u∣2 φ dx dt ≤

ˆ T

0

ˆ
Ω

[∣u∣2 (∂tφ +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2u ⋅ fφ] dx dt.

(4.10)

By definition, any suitable weak solution satisfies (4.10). Last week, we saw that such a
suitable weak solution in fact exists (cf. David’s talk Lemma 2.2, Theorem 2.5, Farid’s
talk Lemma 1.3).

Definition 4.1. We call a pair (u, p) a suitable weak solution to the Navier-Stokes
equation with force f on Ω × (0, T ) if the following conditions are satisfied.

(1) u, p, f are measureable on Ω × (0, T ) and
(a) f ∈ Lq(Ω × (0, T )) for q > 5

2 and div f = 0,
(b) p ∈ L 5

4 (Ω × (0, T ))
(c) for some E0,E1 < ∞ we haveˆ

Ω
∣u∣2 dx ≤ E0 for almost every t ∈ (0, T ), and (4.11)

ˆ T

0

ˆ
Ω
∣∇u∣2 dx dt ≤ E1. (4.12)

(2) u, p and f satisfy (1.1) in the sense of distributions on Ω × (0, T ).
(3) For each φ ∈ C∞0 (Ω × (0, T )) with φ ≥ 0, inequality (4.10) holds.
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Even for a suitable weak solution, it is not immediately clear that the right hand side
of (4.10) is well, defined, i.e. it is not obvious that the integralsˆ T

0

ˆ
Ω
∣u∣2 u ⋅ ∇φ dx dt and

ˆ T

0

ˆ
Ω
pu ⋅ ∇φ dx dt

do exist. We will prove that this is the case.

4.2. Higher Regularity

Recall that a point (x, t) in space-time is regular if u ∈ L∞loc(U) for an open neighbor-
hood U of (x, t). This is justified by the following result due to Serrin [Ser63]. If u is a
weak solution of (1.1) on a cylinder Ω × (a, b) satisfyingˆ b

a
(
ˆ

Ω
∣u∣q dx)

s
q

dt < ∞ with
3

q
+ 2

s
< 1, (4.13)

then u us necessarily Cm+2,β in space on compact subsets of Ω, provided f is Cm,β in space
with m ≥ 0 and 0 < β < 1. In particular if f is C∞ in space and (4.13) is satisfied, then u is
C∞ in space. Regularity in time is more difficult. If u ∈ L∞(0, T ;L3(U)), then u is Hölder
continuous in time. From this, if u ∈ L∞loc(U) in a neighborhood U of (x, t), then (4.13)
clearly holds, so u is smooth in space, provided f is smooth in space.

4.3. Recurrent Themes

The following three observations will be used frequently.

4.3.1. Interpolation inequalities for u and p. If Br ⊂ R3 be a ball of radius r > 0
and let u ∈H1(Br). Then, the Gagliardo-Nirenberg-Sobolev inequality yields

ˆ
Br

∣u∣q dx ≤ C (
ˆ
Br

∣∇u∣2 dx)
a

(
ˆ
Br

∣u∣2 dx)
q
2
−a

+ C

r2a
(
ˆ
Br

∣u∣2 dx)
q
2

, (4.14)

where C > 0, 2 ≤ q ≤ 6 and a = 3
4(q−2). If Br is replaced by R3 the second term on the right

in (4.14) can be omitted. Inequality (4.14) follows from the classical Gagliardo-Nirenberg-
Sobolev inequality [Nir59] by applying an extension operator to u ∈ H1(Br). The term

1
r2a makes (4.14) scaling invariant with respect to r > 0.

We will now use (4.14) to interpolate between (4.11) and (4.12). Take q = 10
3 so a = 1

in (4.14) and integrate in time. Thenˆ T

0

ˆ
Br

∣u∣
10
3 dx dt ≤ C (E

2
3
0 E1 + r−2E

5
3
0 T) . (4.15)

A particular consequence is that u ∈ L3(Ω × (0, T )), hence

∣
ˆ T

0

ˆ
Ω
∣u∣2 u ⋅ ∇φ dx dt∣ ≤ ∥∇φ∥L∞(Ω×(0,T )) ∥u∥L3(Ω×(0,T )) < ∞,

so the corresponding term in (4.10) is in fact finite if u is a suitable weak solution and
φ ∈ C∞(Ω × (0, T )). Moreover, if q = 5

2 , so a =
3
8 we get

ˆ T

0
(
ˆ
Br

∣u∣
5
2 dx)

8
3

dt ≤ C(E
7
3
0 E1 + r−2E

10
3

0 T ). (4.16)

If we take the (distributional) divergence of (1.1), we get

0 = ∆p + ∂i (uj∂jui) = ∆p + ∂i∂j(ujui),
hence

∆p = −∂i∂j(uiuj) on Ω × (0, T ) in the sense of distributions. (4.17)
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In addition, any solution u ∈ C1(0, T ;C2(Ω)) of (1.1) on Ω×(0, T ) for f ≡ 0 satisfying (1.2)
has to fulfill

ν ⋅ ∇p = ν ⋅∆u on ∂Ω × (0, T ),
by simply restricting (1.1) to ∂Ω and multiplying with ν.
Recall that in R3, the unique solution to −∆v = f , with f ∈ Lq(R3) is given by

v(x) = 1

4π

ˆ
R3

1

∣x − y∣f(y) dy.

We may thus rewrite (4.17) as p = (−∆)−1∂i∂j(uiuj).
First, we consider the case Ω = R3. For u smooth enough, we have

p(x) = 1

4π

ˆ
R3

1

∣x − y∣∂yi∂yj(u
iuj) dy = αijui(x)uj(x)

+ 1

4π

ˆ
R3

∂yi∂yj (
1

∣x − y∣)u
iuj dy,

where the latter has to be understood as a singular integral, i.e. a principal value

lim
ε→0

ˆ
∣x−y∣>ε

.

Also note that αij = 0 if i ≠ j.
We now use standard Calderón-Zygmund theory, see for instance [Ste70]. To that end,

fix i, j ∈ {1, . . . ,3} and consider the convolution operator

Sijf = 1

4π

ˆ
R3

∂yj∂yi (
1

∣x − y∣) f dy.

A computation yields ∂yj∂yi ( 1
∣x−y∣) = −

δij

∣x−y∣3
+ 3

(xi−yi)(xj−yj)
∣x−y∣5

. We may write

Sijf(x) =
ˆ
R3

Ω(x − y)
∣x − y∣3

f(y) dy,

with Ω(y) = −δij +3
yiyj

∣y∣2
. Note that Ω is homogeneous of degree 0 and a computation shows´

S2 Ω(y) dS(y) = 0 for all i, j. Clearly, Ω is Lipschitz on S2. Thus, by Calderón-Zygmund
theory [Ste70, §4.3, Theorem 3],

Sij ∶Lq(R3) → Lq(R3) is bounded for any 1 < q < ∞, i, j = 1, . . . ,3. (4.18)

As a consequence

∥p∥Lq(R3) = ∥(−∆)−1∂i∂j(uiuj)∥Lq(R3) ≤ C∑
i,j

∥uiuj∥
Lq(R3) ,

for some C = C(q) > 0 and

∥uiuj∥q
Lq(R3) =

ˆ
R3

∣uiuj ∣q dx ≤
ˆ
R3

∣u∣2q dx.

This yieldsˆ
R3

∣p∣q dx ≤ C
ˆ
R3

∣u∣2q dx.

In particular, if (u, p) is a suitable weak solution of (1.1) on R3 × (0, T ) we haveˆ T

0

ˆ
R3

∣p∣
5
3 dx dt ≤ C

ˆ T

0

ˆ
R3

∣u∣
10
3 dx dt ≤ CE

2
3
0 E1

by (4.15) using that we don’t need the second term in (4.14) since we are in the whole
space R3.
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For general Ω ⊂ R3 bounded, let Ω1 ⊂ Ω and φ ∈ C∞0 (Ω) with φ ≡ 1 in a neighborhood
U of Ω1. Then for t fixed we have using

φ(x)p(x, t) = − 1

4π

ˆ
R3

1

∣x − y∣∆y(φp) dy (4.19)

= − 1

4π

ˆ
R3

1

∣x − y∣ [p∆φ + 2⟨∇φ,∇p⟩ + φ∆p] dy.

We plug in (4.17) for ∆p in (4.19) and obtain using summation convention

φp = − 1

4π

ˆ
R3

1

∣x − y∣
[p∆φ + 2⟨∇φ,∇p⟩ − φ∂i∂j(uiuj)] dy. (4.20)

Now, we integrate by parts to remove all derivatives on p and u. Note that in order to do
this in a precise way, you have to cut out a ball Bε of radius ε and do integration by parts
there. However, since ∂yi ( 1

∣x−y∣) is L1
loc(R3), the boundary terms will vanish as ε→ 0. We

have ˆ
R3

1

∣x − y∣ ⟨∇φ,∇p⟩ dy = −
ˆ
R3

∂yi (
1

∣x − y∣)∂iφp dy −
ˆ
R3

1

∣x − y∣∆φp dy. (4.21)

For the last term in (4.20) we have
ˆ
R3

1

∣x − y∣φ∂i∂j(u
iuj) dy = −

ˆ
R3

∂yi (
1

∣x − y∣)φ∂j(u
iuj) dy (4.22)

−
ˆ
R3

1

∣x − y∣∂iφ∂j(u
iuj) dy

=
ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy +

ˆ
R3

∂yi (
1

∣x − y∣)∂jφu
iuj dy

+
ˆ
R3

∂yj (
1

∣x − y∣)∂iφu
iuj dy +

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

=
ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy +

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy

+
ˆ
R3

xj − yj
∣x − y∣3

∂iφu
iuj dy +

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

=
ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy + 2

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy

+
ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

Therefore, combining (4.19), (4.20), (4.21) and (4.22) we get

pφ = p̃ + p3 + p4 (4.23)

with

p̃ = αijui(x)uj(x) +
1

4π

ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy

p3 =
1

2π

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy + 1

4π

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

p4 = (− 1

4π
+ 2

4π
)
ˆ
R3

1

∣x − y∣p∆φ dy + 1

2π

ˆ
R3

xi − yi
∣x − y∣3

∂iφp dy.
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Note that we have for x ∈ Ω1, using φ ≡ 1 on U and φ ≡ 0 on R3 ∖Ω

∣p3∣ (x, t) ≤ ∣ 1

2π

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy∣ + ∣ 1

4π

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy∣

≤ 1

2π

ˆ
Ω∖U

1

∣x − y∣2
∣∂jφ∣ ∣u∣2 dy + 1

4π

ˆ
Ω∖U

1

∣x − y∣ ∣∂i∂jφ∣ ∣u∣
2 dy

≤ ∥φ∥C1

2πδ2

ˆ
Ω
∣u∣2 dy + ∥φ∥C2

4πδ

ˆ
Ω
∣u∣2 dy,

where δ ∶= d(Ω1, ∂U) > 0 gives lower bounds on ∣x − y∣. Similarly for p4, we have for x ∈ Ω1

∣p4∣ (x, t) ≤
1

4π

ˆ
Ω∖U

1

∣x − y∣ ∣p∣ ∣∆φ∣ dy + 1

2π

ˆ
Ω∖U

1

∣x − y∣2
∣∂iφ∣ ∣p∣ dy

≤ ∥φ∥C2

4πδ

ˆ
Ω
∣p∣ dy + ∥φ∥C1

2πδ2

ˆ
Ω
∣p∣ dy.

Consequently,

∣p3∣ (x, t) + ∣p4∣ (x, t) ≤ C
ˆ

Ω

(∣p∣ + ∣u∣2) dy, for x ∈ Ω1. (4.24)

Since the operators Sij are bounded by (4.18), there exists C > 0 such thatˆ
R3

∣p̃∣5/3 dx ≤ ∑
i,j

ˆ
R3

∣Sij(φuiuj)∣
5/3

dx ≤ C∑
i,j

ˆ
R3

∣φuiuj ∣
5/3

dx,

and consequentlyˆ
Ω1

∣p̃∣5/3 dx ≤ C∑
i,j

ˆ
R3

∣φuiuj ∣
5/3

dx ≤ C ∥φ∥L∞
ˆ

Ω
∣u∣10/3 dx. (4.25)

From (4.24) and (4.25), we may deduce p ∈ L5/4(0, T ;L
5/3(Ω1))).

We have using (4.15) and (4.25)
ˆ T

0
(
ˆ

Ω1

∣p̃∣5/3 dx)
3/5⋅5/4

dt ≤ C
ˆ T

0
(
ˆ

Ω
∣u∣10/3 dx + 1)

3/4
dt (4.26)

≤ C (
ˆ T

0

ˆ
Ω
∣u∣10/3 dx dt + T)

≤ C(E2/3
0 E1 +E

5/3
0 T + T ),

where the constant C > 0 changes from line to line. For the remaining terms in (4.23), we
have using (4.24) and Jensen’s inequality

ˆ T

0
(
ˆ

Ω1

(∣p3∣ + ∣p4∣)5/3 dx)
3/4

dt ≤ C ∣Ω1∣
ˆ T

0
(
ˆ

Ω
(∣p∣ + ∣u∣2) dx)

5/3⋅3/4
dt (4.27)

≤ C
ˆ T

0
((
ˆ

Ω
∣p∣ dx)

5/4
+ (
ˆ

Ω
∣u∣2 dx)

5/4
) dt

≤ C
ˆ T

0

ˆ
Ω
∣p∣5/4 dx dt +CTE5/4

0

= C ∥p∥L5/4(Ω×(0,T )) +CTE
5/4
0 .

Therefore, combining (4.26) and (4.27) we get using p = φp for a.e. t and x ∈ Ω1

∥p∥L5/4(0,T ;L5/3(Ω1)) ≤ ∥p̃∥L5/4(0,T ;L5/3(Ω1)) + ∥∣p3∣ + ∣p4∣∥L5/4(0,T ;L5/3(Ω1)) < ∞, (4.28)

if (u, p) is a suitable weak solution. Thus, we have proven the following
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Lemma 4.2. If (u, p) is a suitable weak solution of (1.1) on Ω×(0, T ) and Br ×(a, b) ⊂
Ω × (0, T ), then p ∈ L5/4(a, b;L5/3(Br)) and u ∈ L5(a, b;L5/2(Br)).

Proof. This follows from (4.28) and (4.16). �

In particular, the term
´ ´

p(u ⋅∇φ) in (4.10) is integrable, since if suppφ ⊂ Ω1 we have

ˆ T

0

ˆ
Ω
∣pu ⋅ ∇φ∣ dx dt ≤ C

ˆ
0T

∥u(t)∥L5/2(Ω1) ∥p(t)∥L5/3(Ω1) dt

≤ C (
ˆ T

0
∥u(t)∥5

L5/2(Ω1) dt)
1/5

(
ˆ T

0
∥p(t)∥5/4

L5/3(Ω1)
dt)

4/5

= C ∥u∥L5(0,T ;L5/2(Ω1)) ∥p∥L5/4(0,T ;L5/3(Ω1)) ,

by Hölder’s inequality and since 3
5 +

2
5 = 4

5 +
1
5 = 1. Thus, we have shown that for any

suitable weak solution of (1.1), the right hand side of (4.9) exists.

4.3.2. Weak continuity. It can be shown, that any suitable weak solution u of (1.1)
is weakly continuous in time with values in L2(Ω), i.e. for any w ∈ L2(Ω) we have

ˆ
Ω
u(x, t)w(x) dx→

ˆ
Ω
u(x, t0)w(x) dx as t→ t0.

For a proof of this property we refer to [Tem79, p. 281-282]. This has some important
consequences.

(i) We can evaluate u at times t and it makes sense to impose the initial condition
u(0) = u0 in the sense that u(t) ⇀ u0 in L2(Ω) as t → 0, i.e. u extends weakly
continously to [0, T ).

(ii) The integrability condition (4.11) holds for every t ∈ (0, T ). If t0 ∈ (0, T ), then
there exist tn → t0 with

´
Ω ∣u(tn)∣2 dx ≤ E0, otherwise (4.11) would not hold almost

everywhere. But since the L2(Ω)-norm is weakly lower semicontinuous and as u(tn) →
u(t0) as n→∞, we conclude

´
Ω ∣u(t0)∣2 dx ≤ E0.

(iii) If (u, p) is a suitable weak solution of (1.1) on Ω × (a, b), then for each a < t0 < b and
φ ∈ C∞0 (Ω × (a, b)) with φ ≥ 0 we have

ˆ
Ω
∣u(t0)∣2 φ(t0) dx + 2

ˆ t0

a

ˆ
Ω
∣∇u∣2 φ dx dt (4.29)

≤
ˆ t0

a

ˆ
Ω

[∣u∣2 (∂tφ +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2u ⋅ fφ] dx dt.

This follows from (4.10), by choosing the positive test function φ(x, t)χ ((t0−t)/ε),
where ε > 0 and χ is a smooth function with 0 ≤ χ ≤ 1, χ(s) ≡ 0 for s ≤ 0 and χ(s) ≡ 1
for s ≥ 1. Then (4.10) yields

2

ˆ t0

a

ˆ
Ω
∣∇u∣2 φχ ((t0−t)/ε) dx dt ≤

ˆ t0

a

ˆ
Ω
[ ∣u∣2 (∂t (φχ ((t0−t)/ε)) (4.30)

+∆φχ ((t0−t)/ε)) + (∣u∣2 + 2p)u ⋅ ∇φχ ((t0−t)/ε)

+ 2u ⋅ fφχ ((t0−t)/ε) ] dx dt.
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Note that for t ≤ t0, χ ((t0−t)/ε) → 1 as ε → 0. Since 0 ≤ χ ≤ 1, the dominated
convergence theorem yields that as ε→ 0 in (4.30)

2

ˆ t0

a

ˆ
Ω
∣∇u∣2 φ dx dt ≤

ˆ t0

a

ˆ
Ω
[ ∣u∣2 (∂tφ +∆φ + (∣u∣2 + 2p)u ⋅ ∇φ + 2u ⋅ fφ] dx dt

(4.31)

+ lim
ε→0

ˆ t0

a

ˆ
Ω
∣u∣2 φ∂t (χ ((t0−t)/ε)) dx dt,

since all terms in u and p are integrable. Taking a closer look at the last term, we
observe that for u smooth enough
ˆ t0

a

ˆ
Ω
∣u∣2 φ∂t (χ ((t0−t)/ε)) dx dt =

ˆ
Ω

ˆ t0

a
∣u∣2 φ∂t (χ ((t0−t)/ε)) dt dx

=
ˆ

Ω
∣u(t0)∣2 φ(t0)χ(0) dx −

ˆ
Ω
∣u(a)∣2 φ(a)χ ((t0−a)/ε) dx

−
ˆ t0

a

ˆ
Ω
∂t ∣u∣2 φχ ((t0−t)/ε) dx d −

ˆ t0

a

ˆ
Ω
∣u∣2 ∂tφχ ((t0−t)/ε) dx dt.

If we let ε→ 0 we obtain

lim
ε→0

ˆ t0

a

ˆ
Ω
∣u∣2 φ∂t (χ ((t0−t)/ε)) dx dt

= −
ˆ

Ω
∣u(a)∣2 φ(a) dx −

ˆ t0

a

ˆ
Ω
∂t ∣u∣2 φ dx dt −

ˆ t0

a

ˆ
Ω
∣u∣2 ∂tφ dx dt

= −
ˆ

Ω
∣u(a)∣2 φ(a) dx −

ˆ t0

a

ˆ
Ω
∂t (∣u∣2 φ) dx dt = −

ˆ
Ω
∣u(t0)∣2 φ(t0) dx,

which together with (4.31) proves (4.29). If u is not smooth in time, we can approx-
imate, so (4.29) holds for a.e. t0 and any suitable weak solution (u, p). But by weak
continuity this implies that (4.29) has to hold for all t0. Like in (ii), for any t0 ∈ (a, b)
we may find tn such that (4.29) holds along tn. By dominated convergence, all double
integrals in (4.29) will then converge in the correct way as tn → t0 since the involved
functions are integrable on Ω × (a, b) as (u, p) is a suitable weak solution. More-
over, for the single integral, we have using weak continuity and the Cauchy-Schwarz
inequality
ˆ

Ω
∣u(t0)∣2 φ(t0) dx = lim

n→∞

ˆ
Ω
u(tn)

√
φ(tn) ⋅ u(t0)

√
φ(t0) dx

≤ lim inf
n→∞

(
ˆ

Ω
∣u(tn)∣2 φ(tn) dx)

1/2
(
ˆ

Ω
∣u(t0)∣2 φ(t0) dx)

1/2
,

hence
´

Ω ∣u(t0)∣2 φ(t0) dx ≤ lim infn→∞
´

Ω ∣u(tn)∣2 φ(tn) dx. Here we used that for
any v ∈ L2(Ω)
ˆ

Ω
(u(tn)

√
φ(tn) − u(t0)

√
φ(t0)) v dx

=
ˆ

Ω
u(tn) (

√
φ(tn) −

√
φ(t0)) v dx +

ˆ
Ω
(u(tn) − u(t0))

√
φ(t0)v dx→ 0,

as n→∞ since ∥u(tn)∥L2(Ω) is bounded. This proves (4.29) for all t0 ∈ (a, b).
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4.3.3. The measures H k and Pk. Recall that the k-dimensional Hausdorff mea-
sure in Rd of a set X ⊂ Rd is given by

H k(X) ∶= lim
δ→0+

H k
δ (X) = sup

δ>0
H k
δ (X),

where

H k
δ (X) ∶= inf {

∞
∑
`=1

α(k)(diamU`)k∣U` ⊂ Rd closed, X ⊂
∞
⋃
`=1

U`,diamU` < δ} ,

where α(k) is chosen such that H k([0,1]k × {0}d−k) = 1. In a completely analogous
manner, we define a “parabolic” Hausdorff meausre via

Pk(X) ∶= lim
δ→0+

Pk
δ (X) = sup

δ>0
Pk
δ (X),

with

Pk
δ (X) ∶= inf {

∞
∑
`=1

rk` ∣Qr` ⊂ R3 ×R,X ⊂
∞
⋃
`=1

Qr` , r` < δ} ,

where the supremum is taken over any parabolic cylinders, i.e. any sets

Qr,x0,t ∶= {(y, τ) ∈ R3 ×R ∣ ∣y − x0∣ ≤ r, t − r2 ≤ τ ≤ t}.
Like for H k, one can show that Pk is an outer measure for which all Borel sets are
measurable and a Borel regular measure on the σ-algebra of measurable sets.

Lemma 4.3. There exists C(k) > 0 such that H k ≤ C(k)Pk.

Proof. Let 0 < δ < 1 and let Q` = Qr`,x`,t` be parabolic cylinders with r` < δ. Let
d` ∶= diamQ`. Then, clearly r` ≤ d`. Moreover, by the Pythagorean theorem d` ≤

√
r` + r2

` ≤√
2r`, since r` < δ < 1. Thus, for X ⊂ R3 ×R, we have

H k
δ (X) ≤ inf {

∞
∑
`=1

α(k)(d`)k∣Q` ⊂ R3 ×R parabolic cylinders ,X ⊂
∞
⋃
`=1

Q`, d` < δ}

≤ α(k)
√

2
k

inf {
∞
∑
`=1

(r`)k∣Q` ⊂ R3 ×R parabolic cylinders,

X ⊂
∞
⋃
`=1

Q`, r` <
δ√
2
}

= α(k)
√

2
k
Pk

δ/√2
(X).

Taking δ → 0 finishes the proof. �
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