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Preface

These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg
Theory for the Navier-Stokes equations at the Universität Ulm in the summer term of 2019.
We mainly follow the [CKN82] in a modern fashion. This work is aimed at enthusiastic
Masters and PhD students.

I would like to thank everyone taking the seminar for typing parts of these notes.
Corrections and suggestions should be sent to jack.skipper@uni-ulm.de.
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CHAPTER 1

Talk 1: Introduction

By Dr. Jack Skipper

For this introduction we will use the original paper of [CKN82] and the excellent
book [RRS16].

The three-dimensional Navier-Stokes equations are

∂tu(x, t) + (u ⋅ ∇)u(x, t) +∇p(x, t) −∆u(x, t) = f(x, t)
divu(x, t) = 0.

(1.1)

Here, (x, t) ∈ Ω × [0, T ], where Ω ⊂ R3 or T3 or R3 some domain, and we have the
unknown velocity field

u∶Ω × [0, T ]→ R3;

the unknown pressure field

p∶Ω × [0, T ]→ R;

and the given force f ∶Ω × [0, T ] → R3 with div f = 0 in Ω × [0, T ]. Together with initial
data and boundary data, (1.1) turns into an initial boundary value problem

u(x,0) = u0(x), x ∈ Ω, (1.2)
u(x, t) = 0, x ∈ ∂Ω for 0 < t < T.

With compatibility conditions for u0 and f we see that

−∆p = ∂i∂j(uiuj) for a.e t.

1.1. Outline: The Navier-Stokes Equations

1.1.1. Weak and Strong. Here we will give an overview of the important results
currently known about the Navier-Stokes equations(NSE). The results here were taken
from the book by Robinson, Rodrigo,

● (Leray 1934, R3) in [Ler34] and (Hopf 1951, Ω or T3) in [Hop51] showed that
Leray-Hopf (LH) weak solutions exist globally in time. Here we assume that the
initial data u0 ∈ L2

σ (in L2 and weakly incompressible) and u ∈ L∞(0, T ;L2
σ) ∩

L2(0, T ;H1) and satisfy the weak energy inequality, namely,
ˆ

Ω
u2(t) dx +

ˆ t

s

ˆ
Ω
∣∇u∣2 dx dt ≤

ˆ
Ω
u(s) dx

for almost every t, s. We do not know about uniqueness here.
● (Leray 1934, R3) in [Ler34] and (Kiseler-Ladyzhenskaya 1857) in [KL57] showed
that strong solutions (LH weak solutions with u0 ∈ L2

σ∩H1 and u ∈ L∞(0, T ;H1)∩
L2(0, T ;H2)) exist and are unique locally in time. They showed a lover bound on
the potential "blow up" time T = c∥∇u0∥−4

L2 . Further, strong solutions are imme-
diately smooth, even real analytic according to (Foias-Temam 1989) in [FT89].
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1.1. OUTLINE: THE NAVIER-STOKES EQUATIONS 5

● We have global existence of strong solutions for small data on Ω or T3 where we
have an absolute constant C(Ω) or C̃(Ω) such that, for example,

∥∇u0∥L2 < C ∥u0∥L2 < C∥∇u0∥L2 < C̃.
For R3 we have a scaling uλ(x, t) = λu(λx,λ2t) is a solution. Thus if we want to
talk about small data we need the norm to be invariant under this map, we say
these spaces are critical spaces. Ḣ1/2, L3, BMO−1 are invariant spaces where for
small data we have strong solutions and for any data have local in time strong
solutions.

● (Sather-Serrin 1963) see [Ser63] showed weak-strong uniqueness, that is, strong
solutions are unique in the class of LH weak solutions. (Need the energy inequal-
ity) This suggests 2 possibilities u is strong always ∥∇u(t)∥L2 <∞ for all s > 0 or
there exists T ∗ the "blow-up" time where

∥∇u)(t)∥2 ≥ C(Ω)√
(T ∗ − t)

.

Can use similar techniques to show robustness of solutions "if initial data is close
to a strong solution initial data then the solutions is strong for a while".

● Leary noticed that any global in time LH weak solution is eventually strong and
for large time ∥u(t)∥L2 → 0 as t→∞.

Figure 1. The H1 norm of a potential solution to the Navier-Stokes equations.

1.1.2. Regularity. We can now look at the regularity of solutions and either we find
conditions on how bad could the space of solutions be, or we find conditions on solutions
that guarantee they are strong and smooth.

● (Scheffer 1976) in [Sch76] gave an upper bound on the size of the set of singular
times. We say a time is regular and in the set R if ∥∇u(t)∥L2 is essentially
bounded. The singular times T a the rest. Here we see that the 1

2 dimensional
Hausdorff measure of the set T is zero. (Box counting measure is the same.)

● (Kato 1984) in [Kat84] showed that ifˆ T

0
∥∇u(s)∥L∞ ds <∞
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then u is strong on (0, T ].
● (Beal-Kato-Majda 1984) in [BKM84] showed that if

ˆ T

0
∥ curlu(s)∥L∞ ds <∞

then u is strong on (0, T ] and further if we have "blow-up" at T then

lim
t→T

ˆ t

0
∥ curlu(s)∥L∞ ds =∞.

● Serrin see [Ser63] condition that

u ∈ Lr(0, T ;Ls(Ω)) 2

r
+ 3

s
= 1

gives a smooth solution on (0, T ]. We note that we only unfortunately know that
for a LH weak solution that

2

r
+ 3

s
= 3

2
.

Further, we have other Serrin type conditions, by (Beirão da Veiga 1995) in
[Bei95]

∇u ∈ Lr(0, T ;Ls(Ω)) 2

r
+ 3

s
= 2

3

2
< s <∞

and by (Berselli-Galdi 2002) in [BG02] in

p ∈ Lr(0, T ;Ls(Ω)) 2

r
+ 3

s
= 2

3

2
< s.

● (Serrin 1962) in [Ser62], for the (<) case, showed a local version of the Serrin
condition that, on a sub-domain U × (t1, t2), if

u ∈ Lr(t1, t2;Ls(U)) 2

r
+ 3

s
= 1

then u is smooth in space on U × (t1, t2) and α-Hölder continuous with α < 1
2

(Don’t get smoothness in time as have problems with ∇p and ∂tu interacting
locally.) The equality was worked out by (Fabes-Jones-Riviere 1972) see [FJR72],
(Struwe 1988) see [Str88] and (Takahashi 1990) in [Tak90].

Leary thought that his solutions were turbulent solutions and that a self-similar con-
struction would give a solution that would "blow-up", however, (Nečas-Ru̇žička-Šverák
1996) in [NRS96] essentially disproved this. Further, for Euler equations non-uniqueness
of weak solutions has been shown starting with the work of (Scheffer 1993) in [Sch93] then
(De Lellis-Székelyhidi 2010) in [DS10] and finally with (Wiedemann 2011) in [Wie11].

We have a picture of how LH weak solutions are behaving and the interplay with strong
solutions. Regularity results go down two lines where either we ask for extra conditions,
we can’t guarantee, from LH weak solutions so that then they are strong solutions an thus
unique. Here, for the CKN result we want to keep with the regularity we know LH weak
solutions can have and find upper bounds on how bad the set of "bad singular points" of
the weak solutions can be. We will show that we get a bound of on the 1 dimensional
Hausdorff measure and show that the size of the set in this measure is 0.
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1.2. "Suitable" Weak Solutions

The CKN partial regularity result for suitable week solutions of the NSE. (How bad is
the space-time set of blow-ups)

We know that for any u0 ∈ L2
σ there us a LH weak solution of the NSE that satisfies

the local energy inequality. (This modern result needs maximal regularity theory for the
pressure p). (Sohr-von Wahl 1986) in [SvW86] showed that for any ε > 0

p ∈ Lr(ε, T ;Ls) for
2

r
+ 3

s
= 3 (s > 1)

or for the gradient of the pressure

∇p ∈ Lr(ε, T ;Ls) for
2

r
+ 3

s
= 4 (s > 1)

and thus we obtain that p ∈ L 5
3 (Ω × (0, T ])). CKN only knew that p ∈ L 5

4 (Ω × (0, T ]))
which adds extra technical difficulties.

Definition 1.1. The pair (u, p) is a suitable weak solution of the NSE on Ω× [0, T ]
with force f if the following are satisfied.

(1) Integrability:
(a) f ∈ Lq(Ω × [0, T ]) for q > 5

2 ,
(b) p ∈ L 5

4 (Ω × [0, T ]) [Modern times can get as high as L
5
3 (Ω × [0, T ])],

(c) u ∈ L∞(0, T ;L2) ∩L2(0, T ;H1).
(2) Local energy inequality: For all φ ≥ 0, φ ∈ C∞

c , then,

2
x

∣∇u∣2φ dx ds ≤
x

∣u∣2(φt +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2(u ⋅ f)φ dx ds

(3) Weak solution: We need u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ;H1

σ), ∇ ⋅ f = 0, −∆p =
∂i∂j(uiuj) and for a.e.t ∈ (a, b) and for all φ ∈ C∞

σ,cˆ
Ω×{0}

u0 ⋅ φ(0) dx =
ˆ T

0

ˆ
Ω
∇u ∶ ∇φ + (u ⋅ ∇)uφ − u ⋅ ∂tφ − f ⋅ φ dx dt.

For the CKN theory we do not need point 3 above, that is, the pair (u, p) does not
actually need to be a LH weak solution of the NSE. The proof just deals with local energy
inequality and interpolation inequalities as so points 1 and 2 are sufficient, the “suitable”
bit.

As an interesting aside, it is important to note that in (Scheffer 1987) in [Sch87] he
showed that the end result, that the one dimensional Hausedroff measure of the singular
set of space-time points is zero, cannot be improved using the “suitable” criteria and the
method would have to use (the equation) part 3 above. He showed that if you just pick a
“suitable” pair (u, p) then for any γ < 1 there will exist at least one (u, p) pair where the
γ- dimensional Hausdrof measure of the singular set is infinite.

1.3. Partial Regularity

We want to study “how bad” the set of “singular points” for u a suitable solution.
We denote R the set of regular points (x, t) ∈ R if there exists an open set U ⊂

Ω × [0, T ] with (x, t) ∈ U and u ∈ L∞(U). Let S be the set of singular points defined by
S ∶= Ω × [0, T ] ∖R, so the points where u is not L∞loc in any neighbourhood of (x, t). (Can
also be defined similarly but with curlu or ∇u.) By “bad” we want an upper-bound on the
dimension of S here using the Hausdroff measure.

Theorem 1.2 (Main Theorem (B) in [CKN82]). For any suitable weak solution of
the NSE on an open set in space-time the asscoiated singular set S satisfies

P1(S) = 0.
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This condition is equivalent to H1(S) = 0 which denotes that the one dimensional
Hausdroff measure of the singular set is 0.

Importantly this shows that there are no curves in space-time where the solution u is
singular along the curve. If we have “blow-up” then this occurs at distinct points in space
time and not on a continuum.

CKN also impose extra conditions to prove two other theorems. These results are more
in the spirit of previous partial regularity results like Serrin conditions as discussed earlier.

Let E denote the initial “kinetic energy”, the L2 norm of for the initial data, that is,

E ∶= 1

2

ˆ
R3

∣u0∣2 dx

and let G, be a weighted form of E where we want extra decay at infinity, that is,

G ∶= 1

2

ˆ
R3

∣u0∣2∣x∣ dx <∞.

For initial data satisfying this condition one can show that a suitable weak solution of the
NSE from this data satisfies

1

2

ˆ
R3×{t}

∣u∣2∣x∣ dx +
ˆ t

0

ˆ
R3

∣∇u∣2∣x∣ dx ds <∞

for every t, so obtain the following theorem showing that the solution is regular for large
enough x.

Theorem 1.3 (Theorem C in [CKN82]). Suppose u0 ∈ L2(R3) ∇ ⋅ u0 = 0 and G <∞.
Then there exists a weak solution of the NSE with f = 0 which is regular on the set

{(x, t)∶ ∣x∣2t >K1}
where K1 =K1(E,G) is a constant only depending on u0 via E and G.

Here we see that G is a restriction that the initial data u0 should decay sufficiently
rapidly at infinity.

If instead we have a different condition where we ask for decay approaching zero, that
is, ˆ

R3

∣u0∣2∣x∣−1 dx = L ≤ L0

then we obtain

sup
τ

ˆ
R3×{τ}

∣u∣2∣x∣−1 dx <∞,
ˆ t

0

ˆ
R3

∣∇u∣2∣x∣−1 dx dτ <∞

for each t. From this we obtain the following theorem where we see that u is regular in a
parabola above the origin and the line x = 0 is regular for all t.

Theorem 1.4 (Theorem D in [CKN82]). There exists an absolute constant L0 > 0
with the following properties. If u0 ∈ L2(R3) ∇ ⋅ u0 = 0 and L < L0 then there exists a weak
solution of the NSE with f = 0 which is regular on the set

{(x, t)∶ ∣x∣2 < t(L0 −L)}.

1.4. Scale-invariant Quantities (Dimensionless Quantities)

On R3 if we have a solution to the NSE then by rescaling by λ, in the following way,

u(x, t)↦ λu(λx,λ2t)
p(x, t)↦ λ2p(λx,λ2t)
f(x, t)↦ λ3f(λx,λ2t)

we have another solution. Here we see that time scales quadratically and space linearly.
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For local estimates it will be best to use, rather than balls, parabolic cylinders, that is,

Qr(x, t) ∶= {(y, τ)∶ ∣y − x∣ ≤ r, t − r2 < τ < t}
or Q∗

r(x, t) = Qr(x, t − 1
8r

2) (here (x, t) is the geometric centre of Q r
2
(x, t + 1

8r
2)). The

scaling that works on R3 also works on the parabolic cylinders where if (u, p) is a solution
on Qr(x, t) then (uλ, pλ) will be a solution on Q r

λ
(x, t).

We want to study “quantities” being “small” over parabolic cylinders and thus to have a
sensible definition of a “smallness” assumption we should study scale invariant “quantities”,
that is, “quantities” whose value will not change after rescaling space and time as above. If
the “quantities” we study did not have this property then under rescaling we could shrink
or blow-up the values and could not compare the values. We will use factors of 1

r to make
the scale invariant quantities we need.

For example,

1

( r
λ
)2

ˆ
Q r
λ
(0,0)

∣uλ∣3 dx dt = λ
2

r2

ˆ
Q r
λ
(0,0)

λ3∣u(λx,λ2t)∣3 dx dt

= 1

r2

ˆ
Qr(0,0)

∣u(y, s)∣3 dy ds

where we have a change of variable y = λx, s = λ2t.
Some of the scale-invariant quantities we will use are

1

r
sup

−r2<t<0

ˆ
Br

∣u(t)∣2 dx,
1

r

x

Qr

∣∇u∣2 dx dt,
1

r2

x

Qr

∣u∣3 dx dt,
1

r2

x

Qr

∣p∣
3
2 dx dt.

1.5. The Main Ideas

We need to show two main propositions that concern bounds on u for large radii giving
properties for u on smaller radii.

Proposition 1.5. There are absolute constants ε,C1 > 0 and constant ε2(q) > 0 with
the following properties. If (u, p) is a suitable weak solution of the NSE on Q1(0,0) with
force f ∈ Lq, for some q > 5

2 and

x

Q1(0,0)

(∣u∣3 + ∣u∣∣p∣) dx dt +
ˆ 0

−1
(
ˆ
B1

∣p∣ dx)
5
4

dt ≤ ε1 and
x

Q1(0,0)

∣f ∣q dx dt ≤ ε2

then u ∈ L∞(Q 1
2
(0,0)) with ∥u∥L∞(Q 1

2
(0,0)) ≤ C1. (u is regular on Q 1

2
(0,0)).

With no force and modern p ∈ L 5
3 we can just assume that

x

Q1(0,0)

(∣u∣3 + ∣p∣
3
2 ) dx dt ≤ ε1

and the proof is simplified.
We can shift and rescale this proposition to apply it to different Qr(x, t).

Proposition 1.6. There exists an absolute constant ε3 such that if (u, p) is a suitable
weak solution to the NSE on QR(a, s) for some R > 0 and if

lim sup
r→0

1

r

ˆ
Qr(as)

∣∇u∣2 dx dt ≤ ε3

then u ∈ L∞(Qρ(a, s)) for some ρ with 0 < ρ < R. (a, s) is a regular point.

We will now discuss a rough outline of the proof and the tools used.



10 1. TALK 1: INTRODUCTION

● We have the local energy inequality,

2
x

∣∇u∣2φ dx ds ≤
x

∣u∣2(φt +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2(u ⋅ f)φ dx ds.

We use an approximation to the backwards heat equation for φ on a parabolic
cylinder so it approximately solves φt + ∆φ = 0 and get appropriate bounds on
φ and ∇φ as powers of 1

r . This gives an inequality over parabolic cylinders with
weighting in front of the remaining terms that means they are scaling invariant.

● We can use different interpolation inequalities over parabolic cylinders, for exam-
ple,

1

r2

x

Qr(a,s)

∣u∣3 dx dt ≤ C0

⎡⎢⎢⎢⎢⎢⎣

1

r
sup

s−r2<t<s

ˆ
Br(a)

∣u(t)∣2 + 1

r

x

Qr(a,s)

∣∇u∣2 dx dt

⎤⎥⎥⎥⎥⎥⎦

3
2

.

● We can use these two inequalities. We see that the term on the RHS of the local
energy inequality is quadratic in u and on the LHS they are all act cubic in u
(with the assumed regularity on p and f) however this is the opposite for the
interpolation inequality. We can thus iterate between these two inequalities to
obtain inductive bounds on a solution u from the larger cylinder to a smaller
cylinder that are shrinking and so can use Lebesgue differentiation theorem to get
that the points (a, s) are regular on the smaller cylinder.



CHAPTER 2

Talk 2: Suitable weak solutions: part 1

By Farid Mohamed

We introduce the spaces for Ω ⊂ R3

V = {u ∈ C∞
0 (Ω),div u = 0},

V = V∥⋅∥
H1

0
(Ω) and

H = V∥⋅∥L2(Ω) .

The space H is equipped with the norm ∥ ⋅ ∥L2(Ω) and we write

(u, v)L2(Ω) ∶=
ˆ

Ω

uv dx

for the generating scalar product. In the case of V we need to distinguish two cases. If Ω
is bounded we set ∥u∥V ∶= ∥∇u∥L2(Ω) and if Ω is unbounded we define ∥u∥V ∶= ∥∇u∥L2(Ω) +
∥u∥L2(Ω). We observe that V ↪H ↪ V ′, where we identify H and H ′ in the sense that for
every u ∈H we set

⟨u, f⟩ = Tu(f) =
ˆ

Ω

ufdx

for f ∈H. In this case we see that ⟨u, f⟩ = (u, f)L2(Ω).
We assume for this section that

Ω = R3,

f ∈ L2(0, T ;H−1(R3)) and ∇ ⋅ f = 0,

u0 ∈H

or

Ω is a smooth, bounded, open and connected set in R3

f ∈ L2(Ω × (0, T )) and ∇ ⋅ f = 0,

u0 ∈H ∩W 2/5
5/4 (Ω).

It follows directly that the spaces L2(0, T ;H) and L2(0, T ;V ) are reflexive and L∞(0, T ;H)
and L∞(0, T ;V ) are the duals of separable Banach spaces, see for example [?], Theorem
1.29.

Definition 2.1. We call the pair (u, p) a suitable weak solution of the Navier-Stokes
system on an open set D = Ω × (0, T ) ⊂ R3 ×R with force f if:

i) u, p and f are measurable functions on D,
ii) f ∈ Lq(D) for q > 5/2, ∇ ⋅ f = 0 and p ∈ L5/4(D),

11
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iii) the solution u is bounded in the following sense

E0(u) ∶=0<t<T

ˆ

Ω

∣u(x, t)∣2dx <∞ and E1(u) ∶=
x

D

∣∇u∣2dxdt <∞,

iv) u, p and f solve

∂tu(x, t) + (u ⋅ ∇)u(x, t) +∇p(x, t) −∆u(x, t) = f in Ω,

divu(x, t) = 0 on ∂Ω for all 0 < t < T
in the sense of distributions in D, i.e. u ∈ L2(0, T ;V ) and for all v ∈ V we have
d

dt

ˆ
Ω
u(x, t)v(x)dx +

ˆ
Ω
(u ⋅ ∇)u(x, t)v(x)dx +

ˆ
Ω
∇u ⋅ ∇v dx =

ˆ
Ω
f(t, x)v(x)dx

in the distributional sense on (0, T ).
v) for all ϕ ∈ C∞

0 (D), ϕ ≥ 0 it holds

2
x

D

∣∇u∣2ϕdxdt ≤
x

D

(∣u∣2(ϕt +∆ϕ) + (∣u∣2 + 2p)u ⋅ ∇ϕ + 2(u ⋅ f)ϕ)dxdt.

The goal of this chapter is to show that for every f ∈ Lq(D) there exists a suitable
weak solution in the sense of Defintion 2.1.

The first step is to show that the equation

ut + (w ⋅ ∇)u −∆u +∇p = f
has a solution for suitable f and w, where we use the following lemma.

Lemma 2.2 (see [Tem79], Lemma 1.2). Suppose f ∈ L2(0, T ;V ′), u ∈ L2(0, T ;V ), p is
a distribution and

ut −∆u +∇p = f
in the sense of distributions on D. Then

ut ∈ L2(0, T ;V ′),
d

dt

ˆ
Ω
∣u∣2 = 2(ut, u)L2(Ω)

in the sense of distributions on (0, T ) and

u ∈ C([0, T ],H)
after modification on a set of measure zero. Solutions of (2.2) are unique in the space
L2(0, T ;V ) for given initial data u0 ∈H.

Proof. Here we give the main ideas of the proof.
Let the function û ∶ R → V be equal to u on [0, T ] and to 0 outside this interval. We see
by [LM72], Theorem 4.3 a sequence (um)m∈N such that

∀m,um is infinitly differentiable from [0, T ] onto V , as m→∞
um → u in L2

loc(0, T ;V ),
u′m → u′ in L2

loc(0, T ;V ′).
It follows directly

d

dt

ˆ
Ω
∣um(t)∣2 = 2(u′m(t), um(t))L2(Ω)

and as m→∞ we get

∥um∥2
L2(Ω) → ∥u∥2

L2(Ω) in L1
loc((0, T ))

(u′m, um)L2(Ω) → (u′, u)L2(Ω) in L1
loc((0, T )).
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These convergences also hold in the distribution sense. So by passing to the limit we get

d

dt

ˆ
Ω
∣u∣2 = 2(ut, u)L2(Ω)

and by (2) we see that u ∈ L∞(0, T ;H). We conclude by [Tem79], Lemma 1.4 that
u ∈ C([0, T ];H). Uniqueness will follow by the next lemma. �

Lemma 2.3. Let f ∈ L2(0, T ;V ′), u0 ∈ H and w ∈ C∞(D,R3) with ∇ ⋅ w = 0. Then
there exists a unique function u and a distribution p such that

u ∈ C([0, T ],H) ∩L2(0, T ;V ),
ut + (w ⋅ ∇)u −∆u +∇p = f

in the sense of distributions on D, with u(0) = u0.

Proof. We will follow [Tem79], Theorem 1.1 by constructing the solution. Let
{xn}n∈N ⊂ V be a sequence of linearly indepedent vectors such that span((xn)n∈N) = V ,

which exists as V is separable. We set Vn ∶= span(x1, . . . , xn) and un ∶=
n

∑
i=1
gin(t)xi, where

(gin)ni=1 is a solution of the system

n

∑
i=1

g′in(t)(xi, xj)L2(Ω) +
n

∑
i=1

gin(t)(((w ⋅ ∇)xi, xj)L2(Ω) + (∇xi,∇xj)L2(Ω)) = ⟨f, xj⟩

gjn(0) = PVn(x0)j

for j = 1, . . . , n. Then un solves the equation

(u′n, v)L2(Ω) + ((w ⋅ ∇)un, v) + (∇un,∇v)L2(Ω) = ⟨f, v⟩

for all v ∈ Vn. Observe by partial integration that

((w ⋅ ∇)un, un)L2(Ω) = −(un, (w ⋅ ∇)un)L2(Ω) = 0

and one obtains

1

2

d

dt
∥un∥2

L2(Ω) =(u
′
n, un)L2(Ω)

=⟨f, un⟩ − (∇un,∇un)L2(Ω)

≤1

2
∥f∥2

V ′ + 1

2
∥un∥2

L2(Ω) −
1

2
∥∇u∥2

L2(Ω)

≤1

2
∥f∥2

V ′ + 1

2
∥un∥2

L2(Ω),

whch follows by

⟨f, un⟩ ≤
1

2
∥f∥2

V ′ + 1

2
∥un∥2

V ≤ 1

2
∥f∥2

V ′ + 1

2
∥un∥2

L2(Ω) +
1

2
∥∇un∥2

L2(Ω).

The continuity of the projection and Gronwall’s inequality imply that

∥un(t)∥2
L2(Ω) ≤

⎛
⎜
⎝
∥u0∥2

L2(Ω) +
T̂

0

∥f(s)∥2
V ′ ds

⎞
⎟
⎠
eT <∞,
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which implies that (un)n∈N is uniformly bounded in L∞(0, T ;H). Furthermore, we see by
integrating (2)

∥un(t)∥2
L2(Ω) +

tˆ

0

∥∇un(s)∥2
L2(Ω)ds

≤∥un(0)∥2
L2(Ω) +

tˆ

0

∥f(s)∥2
V ′ds +

ˆ T

0
∥un(s)∥2

L2(Ω) ds

≤ (∥u(0)∥2
L2(Ω) + ∥f∥2

L2(0,T ;V ′)) (1 + TeT )

and we conclude that (un)n∈N is uniformly bounded in L2(0, T ;V ). One infers that there
exists a subsequence (un)n∈N ⊂ L2(0, T ;V ) ∩L∞(0, T ;H) such that there exists an
u ∈ L2(0, T ;V ) ∩L∞(0, T ;H)

un ⇀ u for n→∞ in L2(0, T ;V ) and

un
∗⇀ u for n→∞ in L∞(0, T ;H).

We conclude for every ϕ ∈ C1([0, T ]) with ϕ(T ) = 0 that

0 =
ˆ T

0
((u′n(t), ϕ(t)xj)L2(Ω) + ((w ⋅ ∇)un(t), ϕ(t)xj) + (∇un(t),∇xjϕ(t))L2(Ω)

− ⟨f(t), ϕ(t)xj⟩)dt

=
ˆ T

0
(−(un(t), ϕ′(t)xj)L2(Ω) + ((w ⋅ ∇)un(t), ϕ(t)xj) + (∇un(t),∇xjϕ(t))L2(Ω)

− ⟨f(t), ϕ(t)xj⟩dt − (un(0), xj)L2(Ω)ϕ(0))

→
ˆ T

0
(−(u(t), ϕ′(t)xj)L2(Ω) + ((w ⋅ ∇)u(t), ϕ(t)xj) + (∇u(t),∇xjϕ(t))L2(Ω)

− ⟨f(t), ϕ(t)xj⟩dt − (u(0), xj)L2(Ω)ϕ(0))
for n→∞ for every j ∈ N. Moreover, the equality holds for every finite combination of the
(xj) and by continuity even for all v ∈ V . We obtain that

d

dt
(u, v)L2(Ω) + ((w ⋅ ∇)u, v) + (∇u,∇v)L2(Ω) = ⟨f, v⟩

in the sense of distributions on (0, T ).
In order to see that u(0) = u0 we use that

ˆ T

0

d

dt
(u(t), v)L2(Ω)ϕ(t)dt = −

ˆ T

0
(u(t), v)ϕ′(t)dt + (u(0), v)ϕ(0),

which implies that

−
ˆ T

0
(u(t), v)ϕ′(t)dt +

ˆ T

0
(∇u,∇v)L2(Ω)ϕ(t)dt +

ˆ T

0
((w ⋅ ∇)u, v)L2(Ω)ϕ(t)dt

=(u(0), v)ϕ(0) +
ˆ T

0
⟨f(t), v⟩ϕ(t)dt

By comparison with the above equality we see that

(u0 − u(0), v)ϕ(0) = 0.

As v was arbitrary we conclude that u0 = u(0).
To show uniqueness assume that we have two solutions u1 and u2 with some initial data
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and force f . We know that u1 − u2 solves (2) with f = 0. We conclude by (2) that
1

2

d

dt
∥u1 − u2∥2

L2(Ω) ≤ −(∇(u1 − u2),∇(u1 − u2))L2(Ω) ≤ 0.

As u1(0) = u2(0) we conclude that u1 = u2. �

A solution of the Poisson equation −∆u = f for f ∈ Lq(R3) for some 1 < q <∞ can be
written as

u(x) ∶= (−∆)−1f(x) ∶= c3

ˆ

R3

1

∣x − y∣f(y)dy,

where c3 ∈ R can be given explicitly. We use the following theorem, which can be shown
by the Calderón-Zygmund theorem.

Theorem 2.4 (see [?], Theorem B.7). The linear operator Tjk defined by

Tjkf ∶= ∂j∂k(−∆)−1f

is a bounded linear operator from Lq(R3) into Lq(R3) for all 1 < q <∞, i.e.

∥Tjkf∥Lq(R3) ≤ C∥f∥Lq(R3)

for some constant C > 0.

Lemma 2.5. Let Ω = R3, f ∈ L2(0, T ;H−1(R3)), div f = 0 and u0 ∈ H. Then it holds
that

∆p = −∑
i,j

∂i∂j(wiuj),

in the sense of distribution. Hence, we obtain
x

D

∣p∣5/3dxdt ≤ C
x

D

∣w∣5/3 ⋅ ∣u∣5/3dxdt.

Remark 2.6. For general Ω (if Ω is bounded) it is also possible to show that p ∈
L5/3(D).

Proof. We follow [?] to show that p is given by (2.5). At first, observe that

{ϕ ∈ [S(R3)]3 ∶ div ϕ = 0}
is a dense subset of V . Furthermore, for every h ∈ [S(R3)]3 there exists a ϕ ∈ [S(R3)]3

and ψ ∈ S(R3) such that h = ϕ + ∇ψ and ∇ ⋅ ϕ = 0, see for example [?], Exercise 5.2. Now
let ξ ∈ C∞

0 ((0, T )). As u is the solution of (2) we obtain by partial integration

−
ˆ T

0
(u,h)L2(R3)ξ

′(t)dt −
ˆ T

0
(u,∆h)L2(R3)ξ(t)dt

−
ˆ T

0
(u⊗w,∇h)L2(R3)ξ(t)dt −

ˆ T

0
⟨f, h⟩ξ(t)dt

= −
ˆ T

0
(u,ϕ)L2(R3)ξ

′(t)dt +
ˆ T

0
(∇u,∇ϕ)L2(R3)ξ(t)dt

+
ˆ T

0
((w ⋅ ∇)u,ϕ)L2(R3)ξ(t)dt −

ˆ T

0
∑
i,j

(uiwj , ∂i∂jψ)L2(R3)ξ(t)dt

−
ˆ T

0
⟨f,ϕ⟩ξ(t)dt

= −
ˆ T

0
∑
i,j

(uiwj , ∂i∂jψ)L2(R3)ξ(t)dt.
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As u ∈ V , we conclude that ∆p = −∑
i,j
∂i∂j(wiuj), where we used that ∇⋅h = ∆ψ. By taking

the Fourier transform we see that we can interchange the Laplace operator and ∂i∂j and
we obtain

p = (−∆)−1(−∆)p =∑
i,j

(−∆)−1∂i∂jwiuj =∑
i,j

∂i∂j(−∆)−1wiuj ,

and one infers by Theorem 2.4 that ∥p∥L5/3(R3) ≤ C∥∣w∣ ⋅ ∣u∣∥L5/3 . �

Later on we want to estimate the pressure p by using following inequality

ˆ

R3

∣u∣qdx ≤ C
⎛
⎜
⎝

ˆ

R

∣∇u∣2 dx
⎞
⎟
⎠

3
4
(q−2)

(
ˆ
R
∣u∣2 dx)

1
4
(6−q)

for 2 ≤ q ≤ 6, which is a special case of the Gagliardo-Nirenberg interpolation inequality

∥Dju∥Lq(R3) ≤ C∥Dmu∥αLr(R3)∥u∥
1−α
Lp(R3)

where 1 < q, p, r <∞ and m,j ∈ N. α is chosen is such a way that 1
q =

j
3 + (1

r −
m
3
)α + 1−α

p

and j
m ≤ α ≤ 1. By choosing j = 0, m = 1, r = p = 2 and α = 3(1

2 −
1
q ) we obtain (2). We

recall that we denote by

E0(u) ∶=0<t<T

ˆ

Ω

∣u(x, t)∣2dx and E1(u) ∶=
x

D

∣∇u∣2dxdt.

Lemma 2.7. For u,w ∈ L2(0, T ;H1(R3)),

∥u∥L10/3(0,T ;L10/3(R3)) ≤ CE
3/10
1 (u)E1/5

0 (u),

∥w ⋅ ∇u∥L5/4(0,T ;L5/4(R3)) ≤ CE
1/2
1 (u)E3/10

1 (w)E1/5
0 (w),

∥u∥L5(0,T ;L5/2(R3)) ≤ CT 1/20E
7/20
0 (u)E3/20

1 (u).
Proof. For (2.7) we use (2) and obtainˆ

R3

∣u∣10/3 dx ≤ C (
ˆ
R3

∣∇u∣2dx)(
ˆ
R3

∣u∣2dx)
2/3

≤ C (
ˆ
R3

∣∇u∣2dx)E0(u)2/3

for almost all t ∈ (0, T ). Integrating over (0, T ) gives the result. For (2.7) we see by
Hölder’s inequality that

ˆ T

0

ˆ
R3

∣w ⋅ ∇u∣5/4dxdt ≤(
ˆ T

0

ˆ
R3

∣w∣10/3 dxdt)
3/8

E1(u)
5
8

=∥w∥5/4
L10/3(0,T ;L10/3(R3))E1(u)

5
8 .

By applying (2.7) we obtain (2.7). Furthermore, we see by (2) and Hölder’s inequality that

ˆ T

0
(
ˆ
R3

∣u∣5/2 dx)
2

dt ≤C
ˆ T

0

⎛
⎜
⎝

ˆ

R

∣∇u∣2 dx
⎞
⎟
⎠

3/4

(
ˆ
R3

∣u∣2 dx)
7/4
dt

≤CE0(u)7/4
ˆ T

0

⎛
⎜
⎝

ˆ

R

∣∇u∣2 dx
⎞
⎟
⎠

3/4

dt

≤CE0(u)7/4T 1/4
⎛
⎜
⎝

ˆ T

0

ˆ

R

∣∇u∣2 dxdt
⎞
⎟
⎠

3/4

.
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We conclude that (2.7) holds true. �



CHAPTER 3

Talk 3: Suitable weak solutions: part 2

By David Berger

Lemma 3.1 (see [GS91], Theorem 2.8). Assume that Ω, f and u0 satisfy the assump-
tions of Lemma 2.3. Let Ω be bounded, 4 = 3/q + 2/s and w ⋅ ∇u, f ∈ Ls(0, T ;Lq(Ω)) and
u0 ∈W 2−2/s

s (Ω). Then the solution (u, p) constructed in Lemma 2.3 satisfies

∥∇p∥sLs(0,T ;Lq(Ω)) + ∥ut∥sLs(0,T ;Lq(Ω)) + ∥∇2u∥sLs((0,T ;Lq(Ω))

≤C(∥u0∥s
W

2−2/s
s (Ω)

+ ∥w ⋅ ∇u∥sLs(0,T ;Lq(Ω)) + ∥f∥sLs(0,T ;Lq(Ω))).

Furthermore, by normalizing p such that
´

Ω p = 0 for all t we obtain

∥p∥L5/3(0,T ;L5/3(Ω)) <∞.

Lemma 3.2. Let Ω, u0 and f satisfy the assumption of Chapter 2 and let w ∈ C∞(D̄,R3)
with ∇ ⋅w = 0. Let (u, p) be the solution of Lemma 2.3. Then, for every ϕ ∈ C∞(D̄) with
ϕ = 0 near ∂Ω × (0, T ), and for every t, 0 < t ≤ T ,ˆ

Ω

∣u(x, t)∣2ϕ(x, t)dx + 2
x

D

∣∇u∣2ϕ =
ˆ

Ω

∣u0∣2ϕ(x,0) +
x

D

∣u∣2(ϕt +∆ϕ)

+
x

D

(∣u∣2w + 2pu) ⋅ ∇ϕ + 2
x

D

(u ⋅ f)ϕ

Proof. We assume that Ω is bounded. Suppose for the moment that ϕ vanishes near
t = 0, choose Ω1, so that Ω1 ⊂ Ω and suppϕ ⊂ Ω1 × (0, T ). Writing F = f −w ⋅ ∇u, we have

ut −∆u +∇p = F on D.

Mollifying in R4 each term of the equation above, we obtain sequences of smooth functions
um, pm and Fm, m = 1,2, . . . , such that

dum
dt

−∆um +∇pm = Fm ∇ ⋅ um = 0

in a neighborhood of suppΦ, and such that

um → u in L5(0, T ;L
5
2 (Ω) ∩L2(D)),

∇um → ∇u in L2(D),

pm → p in L
5
4 (0, T ;L

5
3 (Ω1)),

Fm → F in L2(D).
Taking the inner product of 3 with 2umΦ and integrating by parts yields

2
x

D

∣∇um∣2ϕ =
x

D

∣um∣2(ϕt +∆ϕ) + 2
x

D

pm(um ⋅ ∇ϕ) + 2
x

D

(um ⋅ Fm)ϕ.

We pass to the limit as m→∞, to conclude for u, p and F , with F = f −w ⋅ ∇u,
2
x

D

(u ⋅ F )ϕ = 2
x

D

(u ⋅ f)ϕ +
x

D

∣u∣2w ⋅ ∇ϕ.

18
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This gives the proof when ϕ ∈ C∞
0 (D) and t = T . For the more general case use a cutoff

function in time and the continuity of u in H at 0. �

The goal of this chapter is to use the results shown in Chapter 2 to prove the existence
of the weak solution. Therefore, we will introduce the mollyfing operator

Ψδ(u)(x, t) ∶= (δ−4ψ(⋅/δ)) ∗ u(x, t) = δ−4
x

R4

ψ (y
δ
,
τ

δ
) ũ(x − y, t − τ)dydτ,

where ψ ∈ C∞(R4), ψ ≥ 0,
s

R4 ψ(x, t)dxdt = 1 and supp ψ ⊂ {(x, t) ∶ ∣x∣2 < t,1 < t < 2}
and ũ is the extension of u on R4, i.e. ũ(x, t) = u(x, t) on D and elsewhere 0. We see
by [Gra14], Theorem 1.2.19 that ψδ is an approximating identity on R4.

Lemma 3.3. For any u ∈ L∞(0, T ;H) ∩L2(0, T ;V ) it holds

∇ ⋅ ψδ(u) = 0,

sup
0≤t≤T

ˆ
Ω
∣ψδ(u)∣2dx ≤ CE0(u),

x

D

∣∇ψδ(u)∣2dxdt ≤ CE1(u),

for some C > 0 independent of u and δ.

Proof. It is easy to see that

∇ ⋅Ψδ(u) = δ−4
x

R4

∇ψ (y
δ
,
τ

δ
) ⋅ ũ(x − y, t − τ)dydτ

= δ−4
x

Ω

∇ψ (y
δ
,
τ

δ
) ⋅ u(x − y, t − τ)dydτ = 0.

Furthemore, we obtain (3.3) by Hölder’s and Young’s inequality
ˆ

Ω
∣ψδ(u)j ∣2dx =

ˆ
Ω
(
ˆ 2δ

δ

ˆ
R3

ψδ (y, τ) ũj(x − y, t − τ)dydτ)
2

dx

≤δ
ˆ 2δ

δ

ˆ
Ω
(
ˆ
R3

ψδ (y, τ) ũj(x − y, t − τ)dy)
2

dxdτ

≤
ˆ
R
δ−1∥ψ(⋅, τ/δ)∥2

L1(R3)∥u(⋅, τ)∥
2
L2(R3)dτ

≤E0(u)
ˆ
R
∥ψ(⋅, τ)∥2

L2(R3)dτ.

The inequality (3.3) is a direct consequence of Young’s inequality

x

D

∣∇jψδ(u)i∣2dxdt ≤
x

R4

RRRRRRRRRRRR
δ−4

x

R4

ψ (y
δ
,
τ

δ
)∇j ũi(x − y, t − τ)dydτ

RRRRRRRRRRRR

2

dxdt

≤ ∥ψ∥2
L1(R4)∥∇jui∥

2
L2(R3).

�

In the proof of the main theorem we will use the following theorem, which gives a
sufficient condition that a sequence (xn)n∈N ∩L2(0, T ;L2(Ω)) is relatively compact.

Theorem 3.4 (see [Tem79], Theorem 1). Let X0 ⊂ X ⊂ X1 be threee Banach spaces
such that X0 is compact in X, and X0 and X1 are reflexive. Then the space

Y = {v ∈ Lα0(0, T ;X0),
d

dt
v ∈ Lα1(0, T ;X1)}
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with α0, α1 > 1 is compact in Lα0(0, T ;X).
Theorem 3.5. Assume that Ω, u0 and f satisfy the assumptions from Chapter 2. Then

there exists a weak solution (u, p) of the Navier-Stokes system such that

u ∈ L2(0, T ;V ) ∩L∞(0, T ;H),
u(t)⇀ u0 in H as t→ 0,

p ∈ L5/3(D) if Ω = R3,

∇p ∈ L5/4(D) if Ω is bounded and

for all ϕ ∈ C∞
0 (D), ϕ ≥ 0 and ϕ = 0 near ∂Ω × (0, T ) it holdsˆ
Ω
∣u(x, t)∣2ϕ(x, t)dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2ϕdxdt

≤
ˆ

Ω
∣u0∣2ϕ(x,0)dx +

ˆ t

0

ˆ
Ω
(∣u∣2(ϕt +∆ϕ) + (∣u∣2 + 2p)u ⋅ ∇ϕ + 2(u ⋅ f)ϕ)dxdt.

Let N ∈ N and δ = T /N . uN ∈ L2(0, T ;V )∩C([0, T ];H) is the solution of the equation
d

dt
uN + (ψδ(uN) ⋅ ∇)uN −∆uN +∇pN = f, uN(0) = u0,

which exists by applying Lemma 2.3 on each time interval (δm, δ(m + 1)) for each m =
0, . . . ,N − 1 separately. By using (2), (2) and (2) we obtainˆ

Ω
∣uN(t, x)∣2dx +

ˆ t

0

ˆ
Ω
∣∇uN ∣2dxdt ≤ C (

ˆ
Ω
∣u0∣2dx +

ˆ t

0
∥f(t)∥V ′dt) ,

for some constant C > 0 which implies that uN is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ).
Morever, by [Tem79], Lemma 4.2 we conclude that d

dtun is bounded in L2(0, T ;V ′
2), hence

(uN)N∈N is relatively compact in L2(D) by Theorem 3.4. We obtain a subsequence (un)
such that un → u∗ in L2(D), un ⇀ u∗ in L2(0, T ;V ) and un

∗⇀ u∗ in L∞(0, T ;H). More-
over, as (uN) is bounded in L10/3(D) we see easily by an interpolation argument that
un → u∗ in Ls(D) for every 2 ≤ s < 10/3. Using the above inequalities it is possible to
show that u∗ solves the Navier-Stokes equation. We will only prove the convergence of the
term

´ t
0 ϕ(t)((ψδ(uN) ⋅ ∇)uN , v)L2(Ω)dt, as the other parts are trivial. As v ∈ H1(Ω), we

see that ∥uivj∥L2(R3) <∞, which follows by the Sobolev embedding theorem. We conclude
that

∣
ˆ t

0

ˆ
Ω
((ψδ(uN) ⋅ ∇)uN , v)ϕ(t)dxdt −

ˆ t

0

ˆ
Ω
((u ⋅ ∇)u, v)ϕ(t)dxdt∣

≤ ∣
ˆ t

0

ˆ
Ω
((ψδ(uN) ⋅ ∇)uN , v)ϕ(t)dxdt −

ˆ t

0

ˆ
Ω
((u ⋅ ∇)uN , v)ϕ(t)dxdt∣

+ ∣
ˆ t

0

ˆ
Ω
((u ⋅ ∇)uN , v)ϕ(t)dxdt −

ˆ t

0

ˆ
Ω
((u ⋅ ∇)u, v)ϕ(t)dxdt∣

→ 0 for N →∞,
where we use for the first term that ψδ(uN) → u in L3(R3) and in the second term that
un ⇀ u in L2(0, T ;V ).
In the case that Ω is bounded, we use Lemma 3.1. Let {Ωj}j∈N be a sequence of subdomains
such that Ωj ⊂ Ωj+1 and ∪j∈NΩj = Ω. We see that ∇pN is bounded in L5/4(D) and pn in
L5/4(0, T ;L5/3(Ωj)). We obtain for every j a subsequence pN ⇀ p∗ in L5/4(0, T ;L5/3(Ωj)).
Moreover, we see that uN → u∗ in L5(0, T ;L5/2(Ω)). The proof follows the same arguments
as in the case of Ω = R3.



CHAPTER 4

Talk 4: Background and Definitions

By Fabian Rupp
4.1. On the initial boundary value problem

First, note that the condition div f = 0 is not a restriction at all. Indeed, suppose
we want to solve (1.1) for a general force f ∈ Lq(Ω) with 1 < q < ∞. We may apply a
Lq-Helmholtz decomposition to write f = ∇Φ + f1 with div f1 = 0 and ∥f1∥Lq(Ω×[0,T ]) ≤
C(q,Ω) ∥f∥Lq(Ω×[0,T ]). If (u, p) is a solution of (1.1) with the force term f1, it is easy to
see that (u, p +Φ) is a solution to (1.1) with the right hand side ∇Φ + f1 = f as desired.

To obtain an existence theory for arbitrary time intervals, we study weak solutions of
(1.1) for which the energy

ess sup0<t<T

ˆ
Ω
∣u∣2 dx +

ˆ T

0

ˆ
Ω
∣∇u∣2 dx dt <∞, (4.1)

is finite, where ∣∇u∣2 ∶= ∑i,j ∣∂iuj ∣
2. This choice is motivated by multiplying (1.1) by u,

integration and using integration by parts. (4.1) justifies why requiring a solution u to
have space derivatives of first order is a somewhat physical assumption.

If one instead multiplies (1.1) by 2uφ for some φ ∈ C∞(Ω × [0, T ]) and integrates one
obtains ˆ t

0

ˆ
Ω

2∂tu ⋅ uφ + 2 ((u ⋅ ∇)u) ⋅ uφ − 2∆u ⋅ uφ + 2∇p ⋅ uφ dx =
ˆ t

0

ˆ
Ω

2f ⋅ uφ dx.(4.2)

Since u∣∂Ω = 0 by (1.2), we may use integration by parts without creating any boundary
terms. For the first term, we use ∂t ∣u∣2 = 2∂tu ⋅ u, soˆ t

0

ˆ
Ω

2∂tu ⋅ uφ dx dt =
ˆ t

0
∂t

ˆ
Ω
∣u∣2 φ dx dt −

ˆ
Ω
∣u∣2 ∂tφ dx dt (4.3)

=
ˆ

Ω
∣u(t)∣2 φ dx −

ˆ
Ω
∣u(0)∣2 φ dx −

ˆ
Ω
∣u∣2 ∂tφ dx dt.

For the second part, integration by parts yields, using summation convention,ˆ t

0

ˆ
Ω

2ui∂iu
jujφ dx dt = −

ˆ t

0

ˆ
Ω
∣u∣2 ∂iuiφ dx dt −

ˆ
Ω
∣u∣2 ui∂iφ dx dt (4.4)

= −
ˆ t

0

ˆ
Ω
∣u∣2 u ⋅ ∇φ dx dt,

since ∂i ∣u∣2 = 2∂iu
juj and divu = 0 by (1.1). For the third term, we get using ∂i ∣u∣2 =

2∂iu
juj again

−2

ˆ t

0

ˆ
Ω
∂i∂iu

jujφ dx = 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt + 2

ˆ t

0

ˆ
Ω
∂iu

juj∂iφ dx dt (4.5)

= 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt −

ˆ t

0

ˆ
Ω
∣u∣2 ∂i∂iφ dx dt

= 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt −

ˆ t

0

ˆ
Ω
∣u∣2 ∆φ dx dt.

21
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Finally, for the last term, using divu = 0, we have

2

ˆ t

0

ˆ
Ω
∂ipu

iφ dx dt = −2

ˆ t

0

ˆ
Ω
p∂iu

iφ dx dt − 2

ˆ t

0

ˆ
Ω
pui∂iφ dx dt (4.6)

= −2

ˆ t

0

ˆ
Ω
pu ⋅ ∇φ dx dt.

Combining, (10.6),(10.10),(4.4),(4.5) and (4.6), we get
ˆ

Ω
∣u(t)∣2 φ dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2 φ dx dt =

ˆ
Ω
∣u0∣2 φ dx (4.7)

+
ˆ t

0

ˆ
Ω
∣u∣2 (∂tφ +∆φ) dx dt +

ˆ t

0

ˆ
Ω
(∣u∣2 + 2p)u ⋅ ∇φ dx dt

+ 2

ˆ t

0

ˆ
Ω
f ⋅ uφ dx dt.

Pluggin in φ ≡ 1 in (4.7) we obtain
ˆ

Ω
∣u(t)∣2 dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2 dx dt =

ˆ
Ω
∣u0∣2 + 2

ˆ t

0

ˆ
Ω
f ⋅ u dx. (4.8)

Note that for f ≡ 0 in (4.8), we may formally conclude (4.1) with an explicit bound
depending on the initial date u0 ∈ L2(Ω). The key point in proving existence of weak
Leray-Hopf solutions is the energy inequality, an inequality form of (4.8).

ˆ
Ω
∣u(t)∣2 dx + 2

ˆ t

0

ˆ
Ω
∣∇u∣2 dx dt ≤

ˆ
Ω
∣u0∣2 + 2

ˆ t

0

ˆ
Ω
f ⋅ u dx, (4.9)

for almost every t.
For the main result, the localized version of (4.9) is crucial. Taking any φ ≥ 0 with

compact support in Ω × (0, T ) in (4.7), one may conclude the following generalized energy
inequality by estimating the first term by zero

2

ˆ T

0

ˆ
Ω
∣∇u∣2 φ dx dt ≤

ˆ T

0

ˆ
Ω

[∣u∣2 (∂tφ +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2u ⋅ fφ] dx dt.

(4.10)

By definition, any suitable weak solution satisfies (4.10). Last week, we saw that such a
suitable weak solution in fact exists (cf. David’s talk Lemma 2.2, Theorem 2.5, Farid’s
talk Lemma 1.3).

Definition 4.1. We call a pair (u, p) a suitable weak solution to the Navier-Stokes
equation with force f on Ω × (0, T ) if the following conditions are satisfied.

(1) u, p, f are measureable on Ω × (0, T ) and
(a) f ∈ Lq(Ω × (0, T )) for q > 5

2 and div f = 0,
(b) p ∈ L 5

4 (Ω × (0, T ))
(c) for some E0,E1 <∞ we haveˆ

Ω
∣u∣2 dx ≤ E0 for almost every t ∈ (0, T ), and (4.11)

ˆ T

0

ˆ
Ω
∣∇u∣2 dx dt ≤ E1. (4.12)

(2) u, p and f satisfy (1.1) in the sense of distributions on Ω × (0, T ).
(3) For each φ ∈ C∞0 (Ω × (0, T )) with φ ≥ 0, inequality (4.10) holds.
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Even for a suitable weak solution, it is not immediately clear that the right hand side
of (4.10) is well, defined, i.e. it is not obvious that the integralsˆ T

0

ˆ
Ω
∣u∣2 u ⋅ ∇φ dx dt and

ˆ T

0

ˆ
Ω
pu ⋅ ∇φ dx dt

do exist. We will prove that this is the case.

4.2. Higher Regularity

Recall that a point (x, t) in space-time is regular if u ∈ L∞loc(U) for an open neighbor-
hood U of (x, t). This is justified by the following result due to Serrin [Ser63]. If u is a
weak solution of (1.1) on a cylinder Ω × (a, b) satisfyingˆ b

a
(
ˆ

Ω
∣u∣q dx)

s
q

dt <∞ with
3

q
+ 2

s
< 1, (4.13)

then u us necessarily Cm+2,β in space on compact subsets of Ω, provided f is Cm,β in space
with m ≥ 0 and 0 < β < 1. In particular if f is C∞ in space and (4.13) is satisfied, then u is
C∞ in space. Regularity in time is more difficult. If u ∈ L∞(0, T ;L3(U)), then u is Hölder
continuous in time. From this, if u ∈ L∞loc(U) in a neighborhood U of (x, t), then (4.13)
clearly holds, so u is smooth in space, provided f is smooth in space.

4.3. Recurrent Themes

The following three observations will be used frequently.

4.3.1. Interpolation inequalities for u and p. If Br ⊂ R3 be a ball of radius r > 0
and let u ∈H1(Br). Then, the Gagliardo-Nirenberg-Sobolev inequality yields

ˆ
Br

∣u∣q dx ≤ C (
ˆ
Br

∣∇u∣2 dx)
a

(
ˆ
Br

∣u∣2 dx)
q
2
−a

+ C

r2a
(
ˆ
Br

∣u∣2 dx)
q
2

, (4.14)

where C > 0, 2 ≤ q ≤ 6 and a = 3
4(q−2). If Br is replaced by R3 the second term on the right

in (4.14) can be omitted. Inequality (4.14) follows from the classical Gagliardo-Nirenberg-
Sobolev inequality [Nir59] by applying an extension operator to u ∈ H1(Br). The term

1
r2a makes (4.14) scaling invariant with respect to r > 0.

We will now use (4.14) to interpolate between (4.11) and (4.12). Take q = 10
3 so a = 1

in (4.14) and integrate in time. Thenˆ T

0

ˆ
Br

∣u∣
10
3 dx dt ≤ C (E

2
3
0 E1 + r−2E

5
3
0 T) . (4.15)

A particular consequence is that u ∈ L3(Ω × (0, T )), hence

∣
ˆ T

0

ˆ
Ω
∣u∣2 u ⋅ ∇φ dx dt∣ ≤ ∥∇φ∥L∞(Ω×(0,T )) ∥u∥L3(Ω×(0,T )) <∞,

so the corresponding term in (4.10) is in fact finite if u is a suitable weak solution and
φ ∈ C∞(Ω × (0, T )). Moreover, if q = 5

2 , so a =
3
8 we get

ˆ T

0
(
ˆ
Br

∣u∣
5
2 dx)

8
3

dt ≤ C(E
7
3
0 E1 + r−2E

10
3

0 T ). (4.16)

If we take the (distributional) divergence of (1.1), we get

0 = ∆p + ∂i (uj∂jui) = ∆p + ∂i∂j(ujui),
hence

∆p = −∂i∂j(uiuj) on Ω × (0, T ) in the sense of distributions. (4.17)
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In addition, any solution u ∈ C1(0, T ;C2(Ω)) of (1.1) on Ω× (0, T ) for f ≡ 0 satisfying (1.2)
has to fulfill

ν ⋅ ∇p = ν ⋅∆u on ∂Ω × (0, T ),
by simply restricting (1.1) to ∂Ω and multiplying with ν.
Recall that in R3, the unique solution to −∆v = f , with f ∈ Lq(R3) is given by

v(x) = 1

4π

ˆ
R3

1

∣x − y∣f(y) dy.

We may thus rewrite (4.17) as p = (−∆)−1∂i∂j(uiuj).
First, we consider the case Ω = R3. For u smooth enough, we have

p(x) = 1

4π

ˆ
R3

1

∣x − y∣∂yi∂yj(u
iuj) dy = αijui(x)uj(x)

+ 1

4π

ˆ
R3

∂yi∂yj (
1

∣x − y∣)u
iuj dy,

where the latter has to be understood as a singular integral, i.e. a principal value

lim
ε→0

ˆ
∣x−y∣>ε

.

Also note that αij = 0 if i ≠ j.
We now use standard Calderón-Zygmund theory, see for instance [Ste70]. To that end,

fix i, j ∈ {1, . . . ,3} and consider the convolution operator

Sijf = 1

4π

ˆ
R3

∂yj∂yi (
1

∣x − y∣) f dy.

A computation yields ∂yj∂yi ( 1
∣x−y∣) = −

δij

∣x−y∣3
+ 3

(xi−yi)(xj−yj)
∣x−y∣5

. We may write

Sijf(x) =
ˆ
R3

Ω(x − y)
∣x − y∣3

f(y) dy,

with Ω(y) = −δij +3
yiyj

∣y∣2
. Note that Ω is homogeneous of degree 0 and a computation shows´

S2 Ω(y) dS(y) = 0 for all i, j. Clearly, Ω is Lipschitz on S2. Thus, by Calderón-Zygmund
theory [Ste70, §4.3, Theorem 3],

Sij ∶Lq(R3)→ Lq(R3) is bounded for any 1 < q <∞, i, j = 1, . . . ,3. (4.18)

As a consequence

∥p∥Lq(R3) = ∥(−∆)−1∂i∂j(uiuj)∥Lq(R3) ≤ C∑
i,j

∥uiuj∥
Lq(R3) ,

for some C = C(q) > 0 and

∥uiuj∥q
Lq(R3) =

ˆ
R3

∣uiuj ∣q dx ≤
ˆ
R3

∣u∣2q dx.

This yieldsˆ
R3

∣p∣q dx ≤ C
ˆ
R3

∣u∣2q dx.

In particular, if (u, p) is a suitable weak solution of (1.1) on R3 × (0, T ) we haveˆ T

0

ˆ
R3

∣p∣
5
3 dx dt ≤ C

ˆ T

0

ˆ
R3

∣u∣
10
3 dx dt ≤ CE

2
3
0 E1

by (4.15) using that we don’t need the second term in (4.14) since we are in the whole
space R3.



4.3. RECURRENT THEMES 25

For general Ω ⊂ R3 bounded, let Ω1 ⊂ Ω and φ ∈ C∞0 (Ω) with φ ≡ 1 in a neighborhood
U of Ω1. Then for t fixed we have using

φ(x)p(x, t) = − 1

4π

ˆ
R3

1

∣x − y∣∆y(φp) dy (4.19)

= − 1

4π

ˆ
R3

1

∣x − y∣ [p∆φ + 2⟨∇φ,∇p⟩ + φ∆p] dy.

We plug in (4.17) for ∆p in (4.19) and obtain using summation convention

φp = − 1

4π

ˆ
R3

1

∣x − y∣
[p∆φ + 2⟨∇φ,∇p⟩ − φ∂i∂j(uiuj)] dy. (4.20)

Now, we integrate by parts to remove all derivatives on p and u. Note that in order to do
this in a precise way, you have to cut out a ball Bε of radius ε and do integration by parts
there. However, since ∂yi ( 1

∣x−y∣) is L1
loc(R3), the boundary terms will vanish as ε→ 0. We

have ˆ
R3

1

∣x − y∣ ⟨∇φ,∇p⟩ dy = −
ˆ
R3

∂yi (
1

∣x − y∣)∂iφp dy −
ˆ
R3

1

∣x − y∣∆φp dy. (4.21)

For the last term in (4.20) we have
ˆ
R3

1

∣x − y∣φ∂i∂j(u
iuj) dy = −

ˆ
R3

∂yi (
1

∣x − y∣)φ∂j(u
iuj) dy (4.22)

−
ˆ
R3

1

∣x − y∣∂iφ∂j(u
iuj) dy

=
ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy +

ˆ
R3

∂yi (
1

∣x − y∣)∂jφu
iuj dy

+
ˆ
R3

∂yj (
1

∣x − y∣)∂iφu
iuj dy +

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

=
ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy +

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy

+
ˆ
R3

xj − yj
∣x − y∣3

∂iφu
iuj dy +

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

=
ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy + 2

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy

+
ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

Therefore, combining (4.19), (4.20), (4.21) and (4.22) we get

pφ = p̃ + p3 + p4 (4.23)

with

p̃ = αijui(x)uj(x) +
1

4π

ˆ
R3

∂yj∂yi (
1

∣x − y∣)φu
iuj dy

p3 =
1

2π

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy + 1

4π

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy

p4 = (− 1

4π
+ 2

4π
)
ˆ
R3

1

∣x − y∣p∆φ dy + 1

2π

ˆ
R3

xi − yi
∣x − y∣3

∂iφp dy.
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Note that we have for x ∈ Ω1, using φ ≡ 1 on U and φ ≡ 0 on R3 ∖Ω

∣p3∣ (x, t) ≤ ∣ 1

2π

ˆ
R3

xi − yi
∣x − y∣3

∂jφu
iuj dy∣ + ∣ 1

4π

ˆ
R3

1

∣x − y∣∂i∂jφu
iuj dy∣

≤ 1

2π

ˆ
Ω∖U

1

∣x − y∣2
∣∂jφ∣ ∣u∣2 dy + 1

4π

ˆ
Ω∖U

1

∣x − y∣ ∣∂i∂jφ∣ ∣u∣
2 dy

≤ ∥φ∥C1

2πδ2

ˆ
Ω
∣u∣2 dy + ∥φ∥C2

4πδ

ˆ
Ω
∣u∣2 dy,

where δ ∶= d(Ω1, ∂U) > 0 gives lower bounds on ∣x − y∣. Similarly for p4, we have for x ∈ Ω1

∣p4∣ (x, t) ≤
1

4π

ˆ
Ω∖U

1

∣x − y∣ ∣p∣ ∣∆φ∣ dy + 1

2π

ˆ
Ω∖U

1

∣x − y∣2
∣∂iφ∣ ∣p∣ dy

≤ ∥φ∥C2

4πδ

ˆ
Ω
∣p∣ dy + ∥φ∥C1

2πδ2

ˆ
Ω
∣p∣ dy.

Consequently,

∣p3∣ (x, t) + ∣p4∣ (x, t) ≤ C
ˆ

Ω

(∣p∣ + ∣u∣2) dy, for x ∈ Ω1. (4.24)

Since the operators Sij are bounded by (4.18), there exists C > 0 such thatˆ
R3

∣p̃∣5/3 dx ≤∑
i,j

ˆ
R3

∣Sij(φuiuj)∣
5/3

dx ≤ C∑
i,j

ˆ
R3

∣φuiuj ∣
5/3

dx,

and consequentlyˆ
Ω1

∣p̃∣5/3 dx ≤ C∑
i,j

ˆ
R3

∣φuiuj ∣
5/3

dx ≤ C ∥φ∥L∞
ˆ

Ω
∣u∣10/3 dx. (4.25)

From (4.24) and (4.25), we may deduce p ∈ L5/4(0, T ;L
5/3(Ω1))).

We have using (4.15) and (4.25)
ˆ T

0
(
ˆ

Ω1

∣p̃∣5/3 dx)
3/5⋅5/4

dt ≤ C
ˆ T

0
(
ˆ

Ω
∣u∣10/3 dx + 1)

3/4
dt (4.26)

≤ C (
ˆ T

0

ˆ
Ω
∣u∣10/3 dx dt + T)

≤ C(E2/3
0 E1 +E

5/3
0 T + T ),

where the constant C > 0 changes from line to line. For the remaining terms in (4.23), we
have using (4.24) and Jensen’s inequality

ˆ T

0
(
ˆ

Ω1

(∣p3∣ + ∣p4∣)5/3 dx)
3/4

dt ≤ C ∣Ω1∣
ˆ T

0
(
ˆ

Ω
(∣p∣ + ∣u∣2) dx)

5/3⋅3/4
dt (4.27)

≤ C
ˆ T

0
((
ˆ

Ω
∣p∣ dx)

5/4
+ (

ˆ
Ω
∣u∣2 dx)

5/4
) dt

≤ C
ˆ T

0

ˆ
Ω
∣p∣5/4 dx dt +CTE5/4

0

= C ∥p∥L5/4(Ω×(0,T )) +CTE
5/4
0 .

Therefore, combining (4.26) and (4.27) we get using p = φp for a.e. t and x ∈ Ω1

∥p∥L5/4(0,T ;L5/3(Ω1)) ≤ ∥p̃∥L5/4(0,T ;L5/3(Ω1)) + ∥∣p3∣ + ∣p4∣∥L5/4(0,T ;L5/3(Ω1)) <∞, (4.28)

if (u, p) is a suitable weak solution. Thus, we have proven the following
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Lemma 4.2. If (u, p) is a suitable weak solution of (1.1) on Ω× (0, T ) and Br × (a, b) ⊂
Ω × (0, T ), then p ∈ L5/4(a, b;L5/3(Br)) and u ∈ L5(a, b;L5/2(Br)).

Proof. This follows from (4.28) and (4.16). �

In particular, the term
´ ´

p(u ⋅∇φ) in (4.10) is integrable, since if suppφ ⊂ Ω1 we have

ˆ T

0

ˆ
Ω
∣pu ⋅ ∇φ∣ dx dt ≤ C

ˆ
0T

∥u(t)∥L5/2(Ω1) ∥p(t)∥L5/3(Ω1) dt

≤ C (
ˆ T

0
∥u(t)∥5

L5/2(Ω1) dt)
1/5

(
ˆ T

0
∥p(t)∥5/4

L5/3(Ω1)
dt)

4/5

= C ∥u∥L5(0,T ;L5/2(Ω1)) ∥p∥L5/4(0,T ;L5/3(Ω1)) ,

by Hölder’s inequality and since 3
5 +

2
5 = 4

5 +
1
5 = 1. Thus, we have shown that for any

suitable weak solution of (1.1), the right hand side of (4.9) exists.

4.3.2. Weak continuity. It can be shown, that any suitable weak solution u of (1.1)
is weakly continuous in time with values in L2(Ω), i.e. for any w ∈ L2(Ω) we have

ˆ
Ω
u(x, t)w(x) dx→

ˆ
Ω
u(x, t0)w(x) dx as t→ t0.

For a proof of this property we refer to [Tem79, p. 281-282]. This has some important
consequences.

(i) We can evaluate u at times t and it makes sense to impose the initial condition
u(0) = u0 in the sense that u(t) ⇀ u0 in L2(Ω) as t → 0, i.e. u extends weakly
continously to [0, T ).

(ii) The integrability condition (4.11) holds for every t ∈ (0, T ). If t0 ∈ (0, T ), then
there exist tn → t0 with

´
Ω ∣u(tn)∣2 dx ≤ E0, otherwise (4.11) would not hold almost

everywhere. But since the L2(Ω)-norm is weakly lower semicontinuous and as u(tn)→
u(t0) as n→∞, we conclude

´
Ω ∣u(t0)∣2 dx ≤ E0.

(iii) If (u, p) is a suitable weak solution of (1.1) on Ω × (a, b), then for each a < t0 < b and
φ ∈ C∞0 (Ω × (a, b)) with φ ≥ 0 we have

ˆ
Ω
∣u(t0)∣2 φ(t0) dx + 2

ˆ t0

a

ˆ
Ω
∣∇u∣2 φ dx dt (4.29)

≤
ˆ t0

a

ˆ
Ω

[∣u∣2 (∂tφ +∆φ) + (∣u∣2 + 2p)u ⋅ ∇φ + 2u ⋅ fφ] dx dt.

This follows from (4.10), by choosing the positive test function φ(x, t)χ ((t0−t)/ε),
where ε > 0 and χ is a smooth function with 0 ≤ χ ≤ 1, χ(s) ≡ 0 for s ≤ 0 and χ(s) ≡ 1
for s ≥ 1. Then (4.10) yields

2

ˆ t0

a

ˆ
Ω
∣∇u∣2 φχ ((t0−t)/ε) dx dt ≤

ˆ t0

a

ˆ
Ω
[ ∣u∣2 (∂t (φχ ((t0−t)/ε)) (4.30)

+∆φχ ((t0−t)/ε)) + (∣u∣2 + 2p)u ⋅ ∇φχ ((t0−t)/ε)

+ 2u ⋅ fφχ ((t0−t)/ε) ] dx dt.
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Note that for t ≤ t0, χ ((t0−t)/ε) → 1 as ε → 0. Since 0 ≤ χ ≤ 1, the dominated
convergence theorem yields that as ε→ 0 in (4.30)

2

ˆ t0

a

ˆ
Ω
∣∇u∣2 φ dx dt ≤

ˆ t0

a

ˆ
Ω
[ ∣u∣2 (∂tφ +∆φ + (∣u∣2 + 2p)u ⋅ ∇φ + 2u ⋅ fφ] dx dt

(4.31)

+ lim
ε→0

ˆ t0

a

ˆ
Ω
∣u∣2 φ∂t (χ ((t0−t)/ε)) dx dt,

since all terms in u and p are integrable. Taking a closer look at the last term, we
observe that for u smooth enough

ˆ t0

a

ˆ
Ω
∣u∣2 φ∂t (χ ((t0−t)/ε)) dx dt =

ˆ
Ω

ˆ t0

a
∣u∣2 φ∂t (χ ((t0−t)/ε)) dt dx

=
ˆ

Ω
∣u(t0)∣2 φ(t0)χ(0) dx −

ˆ
Ω
∣u(a)∣2 φ(a)χ ((t0−a)/ε) dx

−
ˆ t0

a

ˆ
Ω
∂t ∣u∣2 φχ ((t0−t)/ε) dx d −

ˆ t0

a

ˆ
Ω
∣u∣2 ∂tφχ ((t0−t)/ε) dx dt.

If we let ε→ 0 we obtain

lim
ε→0

ˆ t0

a

ˆ
Ω
∣u∣2 φ∂t (χ ((t0−t)/ε)) dx dt

= −
ˆ

Ω
∣u(a)∣2 φ(a) dx −

ˆ t0

a

ˆ
Ω
∂t ∣u∣2 φ dx dt −

ˆ t0

a

ˆ
Ω
∣u∣2 ∂tφ dx dt

= −
ˆ

Ω
∣u(a)∣2 φ(a) dx −

ˆ t0

a

ˆ
Ω
∂t (∣u∣2 φ) dx dt = −

ˆ
Ω
∣u(t0)∣2 φ(t0) dx,

which together with (4.31) proves (4.29). If u is not smooth in time, we can approx-
imate, so (4.29) holds for a.e. t0 and any suitable weak solution (u, p). But by weak
continuity this implies that (4.29) has to hold for all t0. Like in (ii), for any t0 ∈ (a, b)
we may find tn such that (4.29) holds along tn. By dominated convergence, all double
integrals in (4.29) will then converge in the correct way as tn → t0 since the involved
functions are integrable on Ω × (a, b) as (u, p) is a suitable weak solution. More-
over, for the single integral, we have using weak continuity and the Cauchy-Schwarz
inequality

ˆ
Ω
∣u(t0)∣2 φ(t0) dx = lim

n→∞

ˆ
Ω
u(tn)

√
φ(tn) ⋅ u(t0)

√
φ(t0) dx

≤ lim inf
n→∞

(
ˆ

Ω
∣u(tn)∣2 φ(tn) dx)

1/2
(
ˆ

Ω
∣u(t0)∣2 φ(t0) dx)

1/2
,

hence
´

Ω ∣u(t0)∣2 φ(t0) dx ≤ lim infn→∞
´

Ω ∣u(tn)∣2 φ(tn) dx. Here we used that for
any v ∈ L2(Ω)

ˆ
Ω
(u(tn)

√
φ(tn) − u(t0)

√
φ(t0)) v dx

=
ˆ

Ω
u(tn) (

√
φ(tn) −

√
φ(t0)) v dx +

ˆ
Ω
(u(tn) − u(t0))

√
φ(t0)v dx→ 0,

as n→∞ since ∥u(tn)∥L2(Ω) is bounded. This proves (4.29) for all t0 ∈ (a, b).
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4.3.3. The measures H k and Pk. Recall that the k-dimensional Hausdorff mea-
sure in Rd of a set X ⊂ Rd is given by

H k(X) ∶= lim
δ→0+

H k
δ (X) = sup

δ>0
H k
δ (X),

where

H k
δ (X) ∶= inf {

∞
∑
`=1

α(k)(diamU`)k∣U` ⊂ Rd closed, X ⊂
∞
⋃
`=1

U`,diamU` < δ} ,

where α(k) is chosen such that H k([0,1]k × {0}d−k) = 1. In a completely analogous
manner, we define a “parabolic” Hausdorff meausre via

Pk(X) ∶= lim
δ→0+

Pk
δ (X) = sup

δ>0
Pk
δ (X),

with

Pk
δ (X) ∶= inf {

∞
∑
`=1

rk` ∣Qr` ⊂ R3 ×R,X ⊂
∞
⋃
`=1

Qr` , r` < δ} ,

where the supremum is taken over any parabolic cylinders, i.e. any sets

Qr,x0,t ∶= {(y, τ) ∈ R3 ×R ∣ ∣y − x0∣ ≤ r, t − r2 ≤ τ ≤ t}.
Like for H k, one can show that Pk is an outer measure for which all Borel sets are
measurable and a Borel regular measure on the σ-algebra of measurable sets.

Lemma 4.3. There exists C(k) > 0 such that H k ≤ C(k)Pk.

Proof. Let 0 < δ < 1 and let Q` = Qr`,x`,t` be parabolic cylinders with r` < δ. Let
d` ∶= diamQ`. Then, clearly r` ≤ d`. Moreover, by the Pythagorean theorem d` ≤

√
r` + r2

` ≤√
2r`, since r` < δ < 1. Thus, for X ⊂ R3 ×R, we have

H k
δ (X) ≤ inf {

∞
∑
`=1

α(k)(d`)k∣Q` ⊂ R3 ×R parabolic cylinders ,X ⊂
∞
⋃
`=1

Q`, d` < δ}

≤ α(k)
√

2
k

inf {
∞
∑
`=1

(r`)k∣Q` ⊂ R3 ×R parabolic cylinders,

X ⊂
∞
⋃
`=1

Q`, r` <
δ√
2
}

= α(k)
√

2
k
Pk

δ/√2
(X).

Taking δ → 0 finishes the proof. �



CHAPTER 5

Talk 7: The Blow-up estimate part 1

By Lukas Niebel

The aim of this talk is to provide a partial proof of the following Proposition 5.1. This
proposition gives a criterion for the regularity of certain points of suitable weak solutions
by means of control of the parabolic mean of the gradient of u in cylinders shrinking to
that point. Let us recall some notation first. Given any point (t, x) and a radius r > 0 we
introduce the cylinders

Qr(t, x) = {(s, y) ∈ R4 ∣ t − r2 < s < t, ∣x − y∣ < r}

Q∗
r(t, x) = {(s, y) ∈ R4 ∣ t − 7

8
r2 < s < t + 1

8
r2, ∣x − y∣ < r} .

The cylinders Q∗
r(t, x) are useful in the sense that (t, x) ∈ Q∗

r
2
(t, x), while (t, x) ∉ Qr(t, x).

Therefore we may apply Corollary 5.3 to the cylinders Q∗
r(t, x) to show that the point

(t, x) ∈ Q∗
r
2
(t, x) is regular.

Proposition 5.1 (Proposition 2 in [CKN82]). There is an aabsolute constant ε3 > 0
such that for all suitable weak solutions (u, p) of the Navier-Stokes in a neighborhood of a
given point (t,x) satisfying

lim sup
r→0

1

r

ˆ
Q∗
r(t,x)

∣∇u∣2 d(t, x) ≤ 1

2
ε3

are regular in (t, x).
This theorem is going to be used to show Theorem B in [CKN82], namely that the

singular set S satisfies P1(S) = 0.
The proof of Proposition 5.1 is based on a rather technical decay estimate for a quantity

M∗(r) in terms of M∗, δ∗ and F∗. These quantities are analogues to the quantities intro-
duced in section 3. However they are defined on the translated cylinders Q∗

r(t, x) instead
of on the cylinder Qr(t, x). The estimate and its proof are going to be subject of the next
talk. We are going to use it to prove Proposition 5.1 for now. To provide a shorthand way
of writing it down we introduce several dimension-less quantities depending on u, p and f .
Without loss of generality we may restrict to the case (t, x) = (0,0) by translation in space
and time. Writing Q∗

r = Q∗
r(0,0), we define

G∗(r) = r−2

ˆ
Q∗
r

∣u∣3 d(t, x) K∗(r) = r−
13
4

ˆ 1
8
r2

− 7
8
r2

(
ˆ
Br(0)

∣p∣ dx)
5
4

dt

J∗(r) = r−2

ˆ
Q∗
r

∣u∣ ∣p∣ d(t, x) H∗(r) = r−2

ˆ
Q∗
r

∣u∣ ∣∣u∣2 − ∣u∣2r∣ d(t, x)

δ∗(r) = r−1

ˆ
Q∗
r

∣∇u∣2 d(t, x) F∗(r) = r−
1
2

ˆ
Q∗
r

∣f ∣
3
2 d(t, x),

where

∣u∣2r =
 
Br(0)

∣u∣2 dx.

30
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Let us compare these quantities to their analogues from section 3. Clearly δ,G,K are ex-
actly the same integral, with the only difference that they are now defined on the translated
cylinder Q∗

r(0,0). The quantity F∗(r) corresponds to the quantity F (r) with q = 3
2 fixed

and again Qr(0,0) swapped by Q∗
r(0,0). The function δ∗(r) is used to provide a shorthand

way of writing down the regularity condition in Proposition 5.1, i.e. lim sup
r→0

δ∗(r) ≤ 1
2ε3.

We define the function

M∗(r) = G
2
3
∗ (r) +H∗(r) + J∗(r) +K

8
5
∗ (r),

which satisfies the following decay estimate.

Proposition 5.2. Let ρ > 0 and let (u, p) be a suitable weak solution of the Navier-
Stokes System with force f on the cylinder Q∗

ρ(0,0). If it holds δ∗(ρ) ≤ 1 and F∗(ρ) ≤ 1,
then the following decay estimate holds

M∗(r) ≤ C
⎡⎢⎢⎢⎣
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2

(M
1
2
∗ (ρ)δ

1
2
∗ (ρ) +M∗(ρ)δ∗(ρ) + F∗(ρ) + δ∗(ρ))

⎤⎥⎥⎥⎦
for some constant C > 0 and all 0 < r ≤ 1

4ρ. Moreover M∗(r) is finite for all r ≤ 1
4ρ.

Corollary 5.3. There exists absolute constants ε1, ε2 > 0 such that the following holds.
We consider a cylinder Qr(t, x) and any suitable weak solution of the Navier Stokes system
in the given cylinders with a force term f ∈ Lq for q > 5

2 . Suppose that

r−2

ˆ
Qr(t,x)

∣u∣3 + ∣u∣ ∣p∣ d(s, y) + r−
13
4

ˆ t

t−r2

(
ˆ
Br(x)

∣p∣ dy)
5
4

ds ≤ ε1

and

Fq(r) = r3q−5

ˆ
Qr(t,x)

∣f ∣q d(s, y) ≤ ε2,

then it must hold ∣u∣ ≤ Cr−1 Lebesgue almost everywhere in the smaller cylinder Q r
2
(t, x).

In particular u is regular on Q r
2
(t, x).

Proof of Proposition 5.1. By translation of (u, p) we may assume that (t, x) =
(0,0). Let (u, p) be a suitable weak solution of the Navier Stokes System in a neighborhood
D of (0,0). We want to apply Corollary 5.3 and verify its assumptions to prove that (0,0)
is a regular point. It holds Q∗

r = Qr(1
8r

2,0) which suggest that we can use Corollary 5.3
applied to the point (1

8r
2,0). Let r ≤ 1 such that Q∗

r ⊂D, then it holds

Fq(r) = r3q−5

ˆ
Qr

∣f ∣q d(t, x) ≤ r
5
2

ˆ
D

∣f ∣q d(t, x),

whence lim
r→0

Fq(r) = 0 due to the fact that f ∈ L1(D). This shows that, by Corollary 5.3,

the point (0,0) ∈ Q r
2
(1

8r
2,0) is regular if for example it holds

lim inf
r→0

r−2

ˆ
Qr(0, 18 r

2)
∣u∣3 + ∣u∣ ∣p∣ d(t, x) + r−

13
4

ˆ 1
8
r2

− 7
8
r2

(
ˆ
Br(0)

∣p∣ dy)
5
4

ds ≤ ε1

which can be written as

lim inf
r→0

G∗(r) + J∗(r) +K∗(r) ≤ ε1.

Due to the nonnegativity of the involved terms the latter condition is clearly verified if it
holds

lim inf
r→0

M∗(r) ≤ ε̃1 ∶= min

⎧⎪⎪⎨⎪⎪⎩

ε1
3
,(ε1

3
)

2
3

,(ε1
3
)

8
5
⎫⎪⎪⎬⎪⎪⎭
.
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We claim that there are constants ε3 ∈ (0,1] and γ ∈ (0, 1
4] such that whenever it holds

M∗(ρ) > ε̃1, F∗(ρ) ≤ ε3 and δ∗(ρ) ≤ ε3
for some ρ > 0 with Q∗

ρ ⊂ D it follows that M∗(γρ) ≤ 1
2M∗(ρ). To show the existence of

such constants we choose

γ < min{ 1

(C6)5
,
1

4
}

and then ε3 > 0 such that

ε3 < min{ 1

12C
γ2ε̃1,1} and ε3 + (ε3

ε̃1
)

1
2

≤ γ2

6C
.

Let us suppose that M∗(ρ) > ε̃1, that F∗(ρ) ≤ ε3 and that δ∗(ρ) ≤ ε3. In this case it holds

M
1
2
∗ (ρ) < ε̃−

1
2

1 M∗(ρ).
Using the decay estimate from Proposition 5.2 we deduce

M∗(r) ≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2 ⎡⎢⎢⎢⎣
ε3 + (ε3

ε1
)

1
2
⎤⎥⎥⎥⎦
M∗(ρ) + 2(ρ

r
)

2

ε3

⎫⎪⎪⎬⎪⎪⎭
for all r ≤ 1

4ρ. Choosing r = γρ ≤
1
4ρ and using the assumptions on γ and ε3 we deduce

M∗(γρ) ≤ C
⎧⎪⎪⎨⎪⎪⎩
γ

1
5M∗(ρ) + (1

γ
)

2 ⎡⎢⎢⎢⎣
ε3 + (ε3

ε1
)

1
2
⎤⎥⎥⎥⎦
M∗(ρ) + 2(1

γ
)

2

ε3

⎫⎪⎪⎬⎪⎪⎭
≤ 1

6
M∗(ρ) +

1

6
M∗(ρ) +

1

6
ε̃1 ≤

1

2
M∗(ρ).

Now let us show that

lim inf
r→0

M∗(r) ≤ ε̃1.

We first note that due to q > 5
4 it holds

F∗(r) = r−
1
2

ˆ
Q∗
r

∣f ∣
3
2 d(t, x) ≤ C (

ˆ
Q∗
r

∣f ∣q d(t, x))
3
2q

r
9
2
− 15

2
q

≤ Cr
3
2 (

ˆ
D

∣f ∣q d(t, x))
3
2q

for all r ≤ 1 such that Q∗
r ⊂ D by Hölder’s inequality. This shows lim

r→0
F∗(r) = 0, which

together with the assumption yields a radius r0 > 0 such that F∗(r) ≤ ε3 and δ∗(r) ≤ ε3 for
all r < r0. This is due to the assumption that lim sup

r→0
δ∗(r) ≤ 1

2ε3 < ε3. Let us now suppose

that lim inf
r→0

M∗(r) > ε̃1. We claim that there is N ∈ N such that M∗(γNr0) ≤ ε̃1. Assuming

the opposite would be true it must hold that M∗(γnr0) > ε̃1 for all n ∈ N. Consequently as
we have proven before it follows that

M∗(γnr0) ≤ (1

2
)
n

M∗(r0)

for all n ∈ N, which is a contradiction to lim inf
r→0

M∗(r) > ε̃1. This is only due to the fact that

M∗(r0) is finite. Hence, we may assume thatM∗(γNr0) ≤ ε̃1 for some N ∈ N. Now if it were
true that M∗(γN+1r0) > ε̃1 we could conclude that ε̃1 < M∗(γN+1r0) ≤ 1

2M∗(γNr0) ≤ 1
2 ε̃1

which is a contradiction. By induction it follows that M∗(γN+kr0) ≤ ε̃1 for all k ∈ N,
whence lim inf

r→0
M∗(r) ≤ ε̃1. This shows that (0,0) is a regular point. �
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In preparation of the proof of the decay estimate we are going to start with an bound
of H∗ in terms of G∗(r), δ∗(r) and in terms of A∗(r), which is given by

A∗(r) = sup
− 7

8
r2<t< 1

8
r2

r−1

ˆ
{t}×Br(0)

∣u∣2 (t, ⋅) dx.

Let us fix a suitable weak solution (u, p) of the Navier Stokes system in a neighborhood D
of (0,0). Let r > 0 such that Q∗

r ⊂D. Clearly it holds that A∗(r) ≤ r−1E0 <∞.

Lemma 9.4. For any r such that Q∗
r ⊂D it holds

H∗(r) ≤ C(G
2
3
∗ (r) +A∗(r)δ∗(r))

for some constant C > 0.

Proof. At almost every time t it holdsˆ
Br(0)

∣u(t, x)∣ ∣∣u∣2 (t, x) − ∣u∣2r(t)∣ dx

≤ (
ˆ
Br(0)

∣u∣3 (t) dx)
1
3 ⎛
⎝

ˆ
Br(0)

∣∣u∣2 (t) − ∣u∣2r(t)∣
3
2

dx
⎞
⎠

2
3

≤ C (
ˆ
Br(0)

∣u∣3 (t) dx)
1
3
ˆ
Br(0)

∣∇ ∣u∣2∣ (t) dx

≤ C (
ˆ
Br(0)

∣u∣3 (t) dx)
1
3
ˆ
Br(0)

∣∇u∣ (t) ∣u∣ (t) dx

≤ C (
ˆ
Br(0)

∣u∣3 (t) dx)
1
3

(
ˆ
Br(0)

∣∇u∣2 (t) dx)
1
2

(
ˆ
Br(0)

∣u∣2 (t) dx)
1
2

≤ C (
ˆ
Br(0)

∣u∣3 (t) dx)
1
3

(rA∗(r))
1
2 (

ˆ
Br(0)

∣u∣2 (t) dx)
1
2

,

where we have used Hölder’s inequality, the Poincaré inequality on the ball Br(0), the
Cauchy-Schwarz inequality and the definition of A∗(r). Integration in time from −7

8r
2 to

1
8r

2 yields

r2H∗(r) ≤ C (rA∗(r))
1
2

ˆ 1
8
r2

− 7
8
r2

(
ˆ
Br(0)

∣u∣ (t)3 dx)
1
3

(
ˆ
Br(0)

∣u∣2 (t) dx)
1
2

dt

≤ (rA∗(r))
1
2 (

ˆ
Q∗
r

∣u∣3 d(t, x))
1
3

(
ˆ
Q∗
r

∣∇u∣2 d(t, x))
1
2

r
1
3

= r2A
1
2
∗ (r)G

1
3
∗ (r)δ∗(r)

1
2

by Hölders inequality. Applying Young’s inequality we conclude

H∗(r) ≤ Cr−
1
6A

1
2
∗ (r)G

1
3
∗ (r)δ∗(r)

1
2 ≤ C(G

2
3
∗ (r) +A∗(r)δ∗(r)).

�

Remark 9.5. Let r > 0 such that Q∗
r ⊂ D, then A∗(r) ≤ r−1E0 and δ∗(r) ≤ r−1E1. It

can be shown similar to Lemma 3.1 that G∗(r) can be bounded by A∗(r) and δ∗(r) and
thus must be finite. This is going to be proven in the next talk given by Marius. By Lemma
9.4 we deduce that H∗(r) is finite as well. Furthermore, due to the fact that p ∈ L 5

4 (D)
it holds that K∗(r) is finite. Finally J∗(r) can be bounded by A∗(r), δ∗(r),G∗(r) and
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K∗(r), whence M∗(r) must be finite. The latter claim is going to be shown in the talk
given by Marius, too.



CHAPTER 10

Talk 8: The Blow-Up Estimate, Part 2

By Marius Müller

10.1. Introduction

In this talk, (u, p) will always denote a suitable weak solution in the sense of [CKN82]
2.1, cf. Talk 1 and Talk 2.

Our goal is to finish up the proof of Proposition 2 of [CKN82] (cf. Talk 7). Proposition
2 roughly states that a certain L2-control of the gradient ∣∇u∣ in a neighborhood of a point
(x, t) is sufficient for the regularity of (x, t). For the precise statement we refer to Talk 7.

In our computations, we will assume without loss of generality that (x, t) = (0,0).
Another assumption that we make for the sake of simiplicity is that the force vanishes, i.e.
f ≡ 0. This is less general than the situation in [CKN82], but it makes computations less
lengthy and important concepts more obvious.

For the entire talk we set Q∗
r ∶= Br(0) × (−7

8r
2, 1

8r
2), where the ball Br ∶= Br(0) ⊂ R3

denotes a ball formed only in the x−variables. We leave out the integration measures in
each integral as the integration set will always indicate clearly, whether the integral is over
x or over t or even in both.

In Talk 7, Proposition 2 is shown once we accept Proposition 3, which will be proved
in this talk as Proposition 10.7. We first recall some important quantities from Talk 7,
which also have analogues in Section 3, cf. Talk 5.

Definition 10.1 (Some quantities, cf. Talk 7). Let u be a suitable weak solution of
the Navier Stokes equations with f ≡ 0. With our fixed notation from above, we can define
the following quantities

G∗(r) ∶=
1

r2

ˆ
Q∗
r

∣u∣3,

H∗(r) ∶=
1

r2

ˆ
Q∗
r

∣u∣ ∣∣u∣2 − ⨏
Br

∣u∣2∣ ,

J∗(r) ∶=
1

r2

ˆ
Q∗
r

∣u∣∣p∣,

K∗(r) ∶=
1

r
13
4

ˆ r2

8

− 7r2

8

(
ˆ
Br

∣p∣)
5
4

,

M∗(r) ∶= G
2
3
∗ (r) +H∗(r) + J∗(r) +K

8
5
∗ (r),

δ∗(r) ∶=
1

r

ˆ
Qr∗

∣∇u∣2

A∗(r) ∶= sup
t∈[− 7r2

8
, r

2

8
]

ˆ
Br

∣u∣2.
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Remark 10.2. Proposition 2 in [CKN82] states that there is some ε3 > 0 such that
the condition that lim supr→0 δ∗(r) ≤ ε3 is sufficient for regularity of (0,0). If we imagine
the condition to be satisfied we can think of δ∗ as a small quantity. The estimates to come
seem more natural once one keeps this in mind.

Remark 10.3. To begin with, it may be unclear whether these quantities are finite.
We refer to Remark 1 in Talk 7, where arguments for the finiteness of all quantities except
for J∗ and M∗ are given. Finiteness of J∗ will follow from Lemma 10.19, which will be
proved in the sequel. Given this, one can easily infer that M∗ is finite as a sum of finite
quantities. One has to say that another method to deduce the finiteness of J∗ is to use
the integrability results on the top of page 783 in [CKN82] and Hölder’s inequality. This
computation is recommended as an exercise but not very insightful for our talk, since we
cannot obtain appropriate control of J∗ this way.

Remark 10.4. Smallness of M∗(r) implies regularity of u in Q∗
r
2
by Proposition 1

of [CKN82], cf. Talk 6. The strategy in the proof of Proposition 2 is therefore to show
smallness of M∗(r) for some sufficiently small r > 0 and apply Proposition 1.

Proposition 1 however requires actually a little bit less than the smallness of M∗(r):
It is enough if G∗(r), J∗(r) and K∗(r) are small, so no condition on H∗(r) needs to be
imposed.

This raises the question, whether H∗ is actually needed in the definition of M∗, as no
control of it is required for the regularity of (0,0). We will justify its appearance during
the proof.

Remark 10.5. The quantity A∗(r) seems to be unimportant for the proof of Propo-
sition 2, since M∗(r) does not contain it explicitly. It will however turn out to be of
paramount importance since it behaves comparably to M∗. We can profit from this com-
parision since A∗ is a quantity which is easier to handle than M∗.

We have seen part of this comparision result already in Talk 7, where Lukas prensented
the inequality

H∗(r) ≤ C(G∗(r)
2
3 +A∗(r)δ∗(r)).

In a similar way, more quantities will be controllable by A∗ and δ∗. We have already
discussed in Remark 10.2 that control by δ∗ is desirable. That control of quantities by A∗
is also desirable will become clear when we observe an "interaction" between A∗ and M∗
in Lemma 10.9 and afterwards.

Remark 10.6. The inequality we intend to prove is useful because it enables us to
compare the values of M∗ for different radii r and ρ. During this comparision process we
will often use some obvious estimates for r ≤ ρ, for example

δ∗(r) ≤
ρ

r
δ∗(ρ). (10.1)

Indeed, this is easy to prove:

rδ∗(r) =
ˆ
Q∗
r

∣∇u∣2 ≤
ˆ
Q∗
ρ

∣∇u∣2 ≤ ρδ∗(ρ). (10.2)

Later, the comparision with the half radius will be of particular importance, i.e. δ∗(ρ2) ≤
2δ∗(ρ), which follows immediately from (10.1). Similar inequalities can be proved following
the lines of (10.2) for other quantities. Let us point out one more such estimate:

K∗(r) ≤ (ρ
r
)

13
4

K∗(ρ),

i.e. K∗(ρ2) ≤ 2
13
4 K∗(ρ). Deriving such inqualities for all given quantities we can infer that

M∗(ρ2) ≤ CM∗(ρ) for some C > 0 independent of ρ. This will become important later.
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10.2. Statement of Proposition 3

Just like in Talk 7, we state the version of Proposition 3 that we are going to prove:

Main Proposition 10.7 (Proposition 3 in [CKN82] with vanishing force). Let ρ > 0
and let (u, p) be a suitable weak solution of the Navier Stokes System on Q∗

ρ with vanishing
force f ≡ 0. If δ∗(ρ) ≤ 1 then there exists a constant C > 0 such that

M∗(r) ≤ C
⎡⎢⎢⎢⎣
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2

(M
1
2
∗ (ρ)δ

1
2
∗ (ρ) +M∗(ρ)δ∗(ρ) + δ∗(ρ))

⎤⎥⎥⎥⎦
, (10.3)

for all r ∈ (0, ρ4) .
The strategy of the proof will be the following: The structure of the equation can be

used to relate the growth of the quantity M∗ to the quantity A∗, which controls again all
the quantities that contribute to M∗, possibly for a different radius.

Remark 10.8. In the case of f ≡ 0 (which is the only case we consider), we can acutally
show an easier inequality, namely

M∗(r) ≤ C
⎡⎢⎢⎢⎣
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2

(M
1
2
∗ (ρ)δ

1
2
∗ (ρ) +M∗(ρ)δ∗(ρ))

⎤⎥⎥⎥⎦
, ∀r ∈ (0, ρ4) .

10.3. M∗ and A∗ interact because of the energy inequality

The energy inequality gives us an important relation between A∗ and M∗, which we
will prove now:

Lemma 10.9 (cf. Lemma 5.5 in [CKN82]). There exists a constant C1 > 0 such that
for all r ∈ (0, 1

2ρ] one has

A∗(r) ≤ C1 (
ρ

r
)(G

2
3
∗ (ρ) +H∗(ρ) + J∗(ρ)) .

In particular,

A∗(r) ≤ C1 (
ρ

r
)M∗(ρ) ∀r ∈ (0, 1

2ρ]. (10.4)

Proof. In this proof, C denotes a generic constant that can be chosen such that all
the estimates are true. We use equation (2.17) in [CKN82] substantially, which is a slight
improvment on the energy inequality. The equation reads as follows: If (u, p) is a suitable
weak solution on a domain Ω × (a, b) then each nonnegative φ ∈ C∞

0 (Ω × (a, b)) satisfiesˆ
Ω×{t}

∣u∣2φ+2

ˆ
Ω×(a,t)

∣∇u∣2φ ≤
ˆ

Ω×(a,t)
∣u∣2(φt+∆φ)+(∣u∣2+2p)u⋅∇φ ∀t ∈ (a, b).

In our case we will choose Ω = Bρ(0) as well as a = −7
8ρ

2 and b = 1
8ρ

2. Note that Ω×(a, b) =
Q∗
ρ. Choose as well φ ∈ C∞

0 (Q∗
ρ) such that 0 ≤ φ ≤ 1 and φ ≡ 1 on Q∗

r . Moreover we can
require that ∣∇φ∣ ≤ C

ρ and ∣φt∣+ ∣∆φ∣ ≤ C
ρ2 , see (3.8) in [CKN82]. Now observe for arbitrary

but fixed t ∈ (−7
8r

2, 1
8r

2) thatˆ
Br×{t}

∣u∣2 ≤
ˆ
Bρ×{t}

∣u∣2φ ≤
ˆ
Bρ×{t}

∣u∣2φ + 2

ˆ
Bρ×(− 7

8
ρ2,t)

∣∇u∣2φ

≤
ˆ
Bρ×(− 7

8
ρ2,t)

∣u∣2(φt +∆φ) +
ˆ
Bρ×(− 7

8
ρ2,t)

(∣u∣2 + 2p)u ⋅ ∇φ.

Now note that by (weak) divergence-freeness of u one hasˆ
Bρ×(− 7

8
ρ2,t)

(⨏
Bρ

∣u∣2)u ⋅ ∇φ =
ˆ t

− 7
8
ρ2

ˆ
Bρ

(⨏
Bρ

∣u∣2)u ⋅ ∇φ (10.5)
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=
ˆ t

− 7
8
ρ2

(⨏
Bρ

∣u∣2)
ˆ
Bρ

u ⋅ ∇φ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 a.e.

= 0.

Hence we can insert this term into the equation above to find

ˆ
Br×{t}

∣u∣2 ≤
ˆ
Bρ×(− 7

8
ρ2,t)

∣u∣2(φt +∆φ) +
ˆ
Bρ×(− 7

8
ρ2,t)

(∣u∣2 − ⨏
Bρ

∣u∣2)u ⋅ ∇φ

+ 2

ˆ
Bρ×(− 7

8
ρ2,t)

pu ⋅ ∇φ

≤
ˆ
Bρ×(− 7

8
ρ2,t)

∣u∣2(∣φt∣ + ∣∆φ∣) +
ˆ
Bρ×(− 7

8
ρ2,t)

∣∣u∣2 − ⨏
Bρ

∣u∣2∣ ∣u∣ ∣∇φ∣

+ 2

ˆ
Bρ×(− 7

8
ρ2,t)

∣p∣ ∣u∣ ∣∇φ∣

≤
ˆ
Q∗
ρ

∣u∣2(∣φt∣ + ∣∆φ∣) +
ˆ
Q∗
ρ

∣∣u∣2 − ⨏
Bρ

∣u∣2∣ ∣u∣ ∣∇φ∣ + 2

ˆ
Q∗
ρ

∣p∣ ∣u∣ ∣∇φ∣.

Using the estimates for φ and its derivatives we obtainˆ
Br×{t}

∣u∣2 ≤ C

ρ2

ˆ
Q∗
ρ

∣u∣2 + C
ρ

ˆ
Q∗
ρ

(∣u∣2 − ⨏
Bρ

∣u∣2) ∣u∣ + 2
C

ρ

ˆ
Qρ

∣p∣ ∣u∣

= C

ρ2

ˆ
Q∗
ρ

∣u∣2 + ρH∗(ρ) + ρJ∗(ρ). (10.6)

Using Hölder’s inequality with q = 3
2 , q

′ = 3 in the first term, we can estimate

1

ρ2

ˆ
Q∗
ρ

∣u∣2 ≤ C 1

ρ2
ρ

5
3
⎛
⎝

ˆ
Q∗
ρ

∣u∣3
⎞
⎠

2
3

= C 1

ρ
1
3

⎛
⎝

ˆ
Q∗
ρ

∣u∣3
⎞
⎠

2
3

= C 1

ρ
1
3

ρ
4
3
⎛
⎝

1

ρ2

ˆ
Q∗
ρ

∣u∣3
⎞
⎠

2
3

= CρG
2
3
∗ (ρ).

Plugging this into (10.6) we findˆ
Br×{t}

∣u∣2 ≤ Cρ(G
2
3
∗ (ρ) + J∗(ρ) +H∗(ρ)) ∀t ∈ (−7

8r
2, 1

8r
2).

Dividing by r and taking the supremum over all t ∈ (−7
8r

2, 1
8r

2) we obtain the claim. �

Remark 10.10. The above computation reveals the reason why a summand in M∗ is
G

2/3
∗ and not G∗ to any other power. This differs from section 3. Moreover the power of 2

3
is really needed, since higher powers of G∗ in this estimate would lead to higher powers of
M∗(ρ) in the right hand side of (10.3) - at least if we can only use (10.8) to estimate G∗.

Remark 10.11. Without the trick in (10.5) we would not be able to bring H∗ into
play and therefore there would be no hope to control the third-power-of-u term with G2/3

∗
or with J∗ (look at the scaling properties!). Hence H∗ is really needed for the inequality
we just proved.

Remark 10.12. An important special case is again r = ρ
2 for which one can deduce

that there exists C > 0 such that

A∗(ρ2) ≤ CM∗(ρ). (10.7)
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The main task for the rest of this section is to bound the quantities G∗, J∗,H∗ and
K∗ in terms of M∗ so that we get a converse inequality that bounds M∗(r) in terms of
A∗(ρ), δ∗(ρ). H∗ has already been bounded in Talk 7, see Remark 10.5. Before we bound
the other quantities we state a general and recurrent proposition, which is a refinement
of Sobolev’s inequality, stating that for one certain exponent, the constant in the Sobolev
inequality does not depend on the domain.

Proposition 10.13 (Essentially Section 5.6.1. in [EG92]). Let Ω ⊂ Rn be a C1-
smooth domain or Ω = Rn. Then there exists a constant D = D(n) > 0 such that for each
f ∈W 1,1(Ω) one has

(
ˆ
Br(x)

∣f − ⨏
Br(x)

f ∣
n
n−1

)
n−1
n

≤D
ˆ
Br(x)

∣∇f ∣ ∀x ∈ Ω, r > 0 ∶ Br(x) ⊂ Ω.

Remark 10.14. The fact that the constant D in the previous Proposition does not
depend on Ω becomes clear once one proves the inequality for f ∈ W 1,1(Rn) and argues
with the extension operator.

Lemma 10.15 (Bounding G∗, cf. Lemma 5.2 in [CKN82]). Suppose that r ≤ ρ. Then
we have

G∗(r) ≤ C2 {(
r

ρ
)

3

A
3
2
∗ (ρ) + (ρ

r
)

3

A
3
4
∗ (ρ)δ

3
4
∗ (ρ)} . (10.8)

Proof. In this proof, C will again be used as a generic constant that can be determined
such that all estimates below are true. First of all recall equation (2.9) of [CKN82], which
is a Sobolev inequality with explicit embeding constants in three dimensions. It reads:

ˆ
Br

∣u∣q ≤ C (
ˆ
Br

∣∇u∣2)
a

(
ˆ
Br

∣u∣2)
q
2
−a

+ C

r2a
(
ˆ
Br

∣u∣2)
q
2

, (10.9)

for each q ∈ [2,6] and a = 3
4(q − 2). This connects for example the L3-norms of u (which

are relevant for G∗) to δ∗ and the L2-norms of u (which are crucial to compute A∗). This
explains why G∗(r) can be bounded by A∗(r) and δ∗(r) and gives the desired inequality
in the special case r = ρ. We however want to make a transition between different radii.
For this we can use the following insightful estimate, employing the average integral and
the Sobolev inequality in Proposition 10.13. For a fixed time t we can computeˆ

Br

∣u∣2 =
ˆ
Br

(∣u∣2 − ⨏
Bρ

∣u∣2) +
ˆ
Br
⨏
Bρ

∣u∣2 ≤
ˆ
Br

∣∣u∣2 − ⨏
Bρ

∣u∣2∣ +C (r
ρ
)

3 ˆ
Bρ

∣u∣2

≤
ˆ
Bρ

∣∣u∣2 − ⨏
Bρ

∣u∣2∣ +C (r
ρ
)

3 ˆ
Bρ

∣u∣2

≤
Hölder

C(ρ3)
1
3
⎛
⎝

ˆ
Bρ

∣∣u∣2 − ⨏
Bρ

∣u∣2∣
3
2 ⎞
⎠

2
3

+C (r
ρ
)

3 ˆ
Bρ

∣u∣2

≤
Prop.10.13

Cρ

ˆ
Bρ

∣∇∣u∣2∣ +C (r
ρ
)

3 ˆ
Bρ

∣u∣2

≤ Cρ
ˆ
Bρ

∣u∣∣∇u∣ +C (r
ρ
)

3 ˆ
Bρ

∣u∣2

≤ Cρ(
ˆ
Bρ

∣u∣2)
1
2

(
ˆ
Bρ

∣∇u∣2)
1
2

+C (r
ρ
)

3 ˆ
Bρ

∣u∣2.
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Further, we estimate some terms with A∗ to obtain
ˆ
Br

∣u∣2 ≤ Cρ
3
2A∗(ρ)

1
2 (

ˆ
Bρ

∣∇u∣2)
1
2

+C r
3

ρ2
A∗(ρ). (10.10)

This gives us an estimate for the L2-norm of u on Br. Using (10.9) with q = 3 (which
implies a = 3

4) we find
ˆ
Br

∣u∣3 ≤ C (
ˆ
Br

∣∇u∣2)
3
4

(
ˆ
Br

∣u∣2)
3
4

+ C

r
3
2

(
ˆ
Br

∣u∣2)
3
2

≤ C (
ˆ
Br

∣∇u∣2)
3
4

(
ˆ
Bρ

∣u∣2)
3
4

+ C

r
3
2

(
ˆ
Br

∣u∣2)
3
2

≤ Cρ
3
4A∗(ρ)

3
4 (

ˆ
Br

∣∇u∣2)
3
4

+ C

r
3
2

(
ˆ
Br

∣u∣2)
3
2

≤ Cρ
3
4A∗(ρ)

3
4 (

ˆ
Bρ

∣∇u∣2)
3
4

+ C

r
3
2

(
ˆ
Bρ

∣u∣2)
3
2

We can use (10.10) and the fact that for nonnegative a, b the expression (a+b) 3
2 is bounded

by a constant multiple of a
3
2 + b 3

2 to estimate

ˆ
Br

∣u∣3 ≤ Cρ
3
4A∗(ρ)

3
4 (

ˆ
Br

∣∇u∣2)
3
4

+ C

r
3
2

⎛
⎝
Cρ

3
2A∗(ρ)

1
2 (

ˆ
Bρ

∣∇u∣2)
1
2

+C r
3

ρ2
A∗(ρ)

⎞
⎠

3
2

≤ Cρ
3
4A∗(ρ)

3
4 (

ˆ
Bρ

∣∇u∣2)
3
4

+Cρ
9
4

r
3
2

A∗(ρ)
3
4 (

ˆ
Bρ

∣∇u∣2)
3
4

+C (r
ρ
)

3

A∗(ρ)
3
2 .

Integrating over t ∈ (−7
8r

2, 1
8r

2) and using Hölder’s inequality with q = 3
4 , q

′ = 1
4 we find

that ˆ
Q∗
r

∣u∣3 ≤ C
⎛
⎝
ρ

3
4 + ρ

9
4

r
3
2

⎞
⎠
A∗(ρ)

3
4

ˆ 1
8
r2

− 7
8
r2

(
ˆ
Bρ

∣∇u∣2)
3
4

+Cr2 (r
ρ
)

3

A∗(ρ)
3
2

≤ C
⎛
⎝
ρ

3
4 + ρ

9
4

r
3
2

⎞
⎠
A∗(ρ)

3
4 (r2)

1
4
⎛
⎝

ˆ 1
8
r2

− 7
8
r2

ˆ
Bρ

∣∇u∣2
⎞
⎠

3
4

+Cr2 (r
ρ
)

3

A∗(ρ)
3
2

≤ C
⎛
⎝
ρ

3
4 + ρ

9
4

r
3
2

⎞
⎠
A∗(ρ)

3
4 r

1
2
⎛
⎝

ˆ 1
8
ρ2

− 7
8
ρ2

ˆ
Bρ

∣∇u∣2
⎞
⎠

3
4

+Cr2 (r
ρ
)

3

A∗(ρ)
3
2

≤ C
⎛
⎝
ρ

3
4 + ρ

9
4

r
3
2

⎞
⎠
A∗(ρ)

3
4 r

1
2
⎛
⎝

ˆ
Q∗
ρ

∣∇u∣2
⎞
⎠

3
4

+Cr2 (r
ρ
)

3

A∗(ρ)
3
2

≤ C (ρ
3
2 + ρ3

r
3
2

) r
1
2A∗(ρ)

3
4 δ∗(ρ)

3
4 +Cr2 (r

ρ
)

3

A∗(ρ)
3
2 .

Dividing by r2 we finally obtain

G∗(r) ≤ C
⎛
⎝
(ρ
r
)

3
2

+ (ρ
r
)

3⎞
⎠
A∗(ρ)

3
4 δ∗(ρ)

3
4 +C (r

ρ
)

3

A∗(ρ)
3
2 .

Due to the fact that r ≤ ρ we can estimate (ρ
r
)

3
2 ≤ (ρ

r
)3 and conclude the claim. �
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Before we can bound J∗ we prove some useful estimates on the pressure, which can be
deduced with the following splitting technique.

Proposition 10.16 (Splitting Technique for the pressure, cf. p. 801 in [CKN82]).
Suppose that ρ > 0 and φ ∈ C∞

0 (Bρ) is such that 0 ≤ φ ≤ 1 and φ ≡ 1 in B 3
4
ρ as well as

∣∇φ∣ ≤ C
ρ and ∣∆φ∣ ≤ C

ρ2 for some C > 0. Then for all x ∈ B 3
4
ρ and t ∈ (0, T ) one has

p(x, t) = p4(x, t) + p5(x, t)
where

p4(x, t) =
3

4π

ˆ
R3

1

∣x − y∣p(y, t)∆φ(y) dy + 3

2π

ˆ
R3

3

∑
i=1

xi − yi
∣x − y∣3∂iφ(y)p(y, t) dy

and

p5(x, t) =
3

4π

ˆ
R3

1

∣x − y∣φ(y)
3

∑
i,j=1

∂yiu
j(y, t)∂yjui(y, t) dy.

Moreover there exists a constant C3 > 0 such that

∣p4(x, t)∣ ≤ C3⨏
Bρ

∣p∣ ∀x ∈ B ρ
2

(10.11)

and ˆ
Br

∣p5∣2 ≤ C3ρ(
ˆ
Bρ

∣∇u∣2)
2

∀r ∈ (0, ρ2]. (10.12)

Proof. Let φ be as in the statement. Recall that the fundamental solution of the
Poisson equation is given by k(z) ∶= − 3

4π
1
∣z∣ . In the following we will leave out the t-

argument. Moreover, integrals without a specified set are always over R3. In the following
we will make extensive use of equation (2.12) in [CKN82] which reads

∆p = −
3

∑
i,j=1

∂iu
j∂ju

i, (10.13)

in the sense of distributions. For the first we will assume, that p is a smooth function on Bρ
and (10.13) holds pointwise. We have to get rid of this assumption later. This assumption
is restrictive but can be gotten rid of, as wee shall discuss in Proposition 10.17. With the
fundamental solution property we infer for x ∈ B ρ

2

p(x)φ(x) = − 3

4π

ˆ
1

∣x − y∣∆y(φp) dy

= − 3

4π

ˆ
1

∣x − y∣ (p∆φ + 2(∇φ,∇p) + φ∆p) dy. (10.14)

Now we split the integral into three summands and integrate by parts in the second one,
more precisely we compute

− 6

4π

ˆ
1

∣x − y∣ (∇φ,∇p) dy = −
3

∑
i=1

6

4π

ˆ
1

∣x − y∣∂yiφ∂yip dy

=
3

∑
i=1

6

4π

ˆ
∂yi (

1

∣x − y∣∂yiφ)p dy

= 3

2π

ˆ
p

3

∑
i=1

xi − yi
∣x − y∣3∂yiφ dy + 3

2π

ˆ
p

3

∑
i=1

1

∣x − y∣∂
2
yiyiφ dy

= 3

2π

ˆ
p

3

∑
i=1

xi − yi
∣x − y∣3∂yiφ dy + 3

2π

ˆ
1

∣x − y∣p∆φ dy.
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Plugging this back into (10.14) and using (2.12) in [CKN82] we obtain

p(x)φ(x) = (− 3

4π
+ 3

2π
)
ˆ

1

∣x − y∣p∆φ dy + 3

2π

ˆ
p

3

∑
i=1

xi − yi
∣x − y∣3∂yiφ dy

− 3

4π

ˆ
1

∣x − y∣φ∆pdy

= 3

4π

ˆ
1

∣x − y∣p∆φ dy + 3

2π

ˆ
p

3

∑
i=1

xi − yi
∣x − y∣3∂yiφ dy

+ 3

4π

ˆ
1

∣x − y∣φ
3

∑
i,j=1

∂iu
j∂ju

i dy.

If x ∈ B 3
4
ρ then φ(x) = 1 and therefore we can infer the first sentence of the claim. For the

pointwise estimate on p4 in B ρ
2
let x ∈ B ρ

2
be arbitrary but fixed. We can estimate with

the triangle inequality

∣p4(x)∣ ≤ ∣ 3

4π

ˆ
1

∣x − y∣p(y)∆φ(y) dy∣ + ∣ 3

2π

ˆ
xi − yi
∣x − y∣3 p(y)∂iφ(y) dy∣ . (10.15)

Notice that ∇φ ≡ 0,∆φ ≡ 0 on B 3
4
ρ since φ ≡ 1 on B 3

4
ρ. For the first summand we can

estimate, using the properties of φmentioned in the statement as well as the inverse triangle
inequality

∣ 3

4π

ˆ
1

∣x − y∣p(y)∆φ(y) dy∣ ≤
RRRRRRRRRRRRR

3

4π

ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣p(y)∆φ(y) dy

RRRRRRRRRRRRR
≤
ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣ ∣p(y)∣∣∆φ(y)∣ dy

≤ C

ρ2

3

4π

ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣ ∣p(y)∣ dy

≤ C

ρ2

3

4π

ˆ
Bρ∖B 3

4 ρ

1

∣y∣ − ∣x∣ ∣p(y)∣ dy

≤ C

ρ2

3

4π

ˆ
Bρ∖B 3

4 ρ

1
3
4ρ −

1
2ρ

∣p(y)∣ dy

≤ 3C

πρ3

ˆ
Bρ

∣p(y)∣ dy ≤ C3

2
⨏
Bρ

∣p(y)∣ dy,

for an appropriate choice of C3. To estimate the second summand we use that ∣xi−yi∣ ≤ ∣x−y∣
and otherwise the same techniques as above.

∣ 3

4π

ˆ
xi − yi
∣x − y∣3 p(y)∂iφ(y) dy∣ ≤ 3

4π

ˆ
Bρ∖B 3

4 ρ

∣xi − yi∣
∣x − y∣3 ∣p(y)∣∣∂iφ(y)∣ dy

≤ 3C

4πρ

ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣2 ∣p(y)∣ dy

≤ 3C

4πρ

ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣2 ∣p(y)∣ dy

≤ 3C

4πρ

ˆ
Bρ∖B 3

4 ρ

1

(∣y∣ − ∣x∣)2
∣p(y)∣ dy
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≤ 3C

4πρ

ˆ
Bρ∖B 3

4 ρ

1

(3
4ρ −

1
2ρ)2

∣p(y)∣ dy

≤ 12C

πρ3

ˆ
Bρ∖B 3

4 ρ

∣p(y)∣ dy

≤ C3

2
⨏
Bρ

∣p(y)∣ dy,

by possibly increasing C3. The two previous computations imply the pointwise estimate
of p4 together with (10.15). For the L2-estimate on p5 fix r ≤ ρ

2 . Estimating all derivatives
of u by ∣∇u∣ we get

ˆ
Br

∣p5∣2 =
ˆ
Br

RRRRRRRRRRR

3

4π

ˆ
1

∣x − y∣φ(y)
3

∑
i,j=1

∂iu
j∂ju

i dy
RRRRRRRRRRR

2

dx

≤ 3

4π

ˆ
Br

⎛
⎝

ˆ
1

∣x − y∣ ∣φ(y)∣
3

∑
i,j=1

∣∂iuj ∣∣∂jui∣ dy
⎞
⎠

2

dx

≤ 243

4π

ˆ
Br

(
ˆ

1

∣x − y∣ ∣φ(y)∣∣∇u(y)∣
2 dy)

2

dx

= 243

4π

ˆ
Br

(
ˆ

1

∣x − y∣
√

∣φ(y)∣∣∇u(y)∣
√

∣φ(y)∣∣∇u(y)∣ dy)
2

dx

≤
Hölder

243

4π

ˆ
Br

(
ˆ

1

∣x − y∣2 ∣φ(y)∣∣∇u(y)∣
2 dy)(

ˆ
∣φ(z)∣∣∇u(z)∣2 dz) dx

≤ 243

4π
(
ˆ

∣φ(z)∣∣∇u(z)∣2 dz)
ˆ
Br(0)

ˆ
Bρ(0)

1

∣x − y∣2 ∣φ(y)∣∣∇u(y)∣
2 dy dx

≤
Fubini

243

4π
(
ˆ

∣φ(z)∣∣∇u(z)∣2 dz)
ˆ
Bρ(0)

(
ˆ
Br(0)

1

∣x − y∣2 dx) ∣φ(y)∣∣∇u(y)∣2 dy.

Now note that for y ∈ Bρ one has Br(0) ⊂ Br+ρ(y) ⊂ B2ρ(y) and therefore
ˆ
Br

∣p5∣2 ≤
243

4π
(
ˆ

∣φ(z)∣∣∇u(z)∣2 dz)
ˆ
Bρ(0)

(
ˆ
B2ρ(y)

1

∣x − y∣2 dx) ∣φ(y)∣∣∇u(y)∣2 dy

≤
Subst.w=x−y

243

4π
(
ˆ

∣φ(z)∣∣∇u(z)∣2 dz)
ˆ
Bρ(0)

(
ˆ
B2ρ(0)

1

∣w∣2 dw) ∣φ(y)∣∣∇u(y)∣2 dy

≤ 243

4π
(
ˆ

∣φ(z)∣∣∇u(z)∣2 dz)
2 ˆ

B2ρ(0)

1

∣w∣2 dw.

By radial integration one has
ˆ
B2ρ(0)

1

∣w∣2 dw =
ˆ 2ρ

0
(4πs2) 1

s2
ds = 8πρ

and hence we can concludeˆ
Br

∣p5∣2 ≤ Cρ(
ˆ

∣φ(z)∣∣∇u(z)∣2 dz)
2

≤ Cρ(
ˆ
Bρ

∣∇u(z)∣2 dz)
2

.

Remark 10.17. In the fundamental solution argument in (10.14) we have used the
additional assumption that p is smooth in Bρ, which is not satisfied in general. If p is not
smooth on Bρ we follow the lines of the proof after (10.14), replacing p with p∗φε for fixed
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ε > 0, where (φε)ε>0 denotes the standard mollifier family. Note that by (10.13)

∆(p ∗ φε) = p ∗∆φε = −
3

∑
i,j=1

(∂iuj∂jui) ∗ φε.

Using this and the fact that p ∗ φε → p almost everywhere by [EG92, Theorem 1 (iv),
Section 4.2] one can possibly repeat the above computations and pass to the limit as ε→ 0.

Remark 10.18. Possibly one can circumvent adjustments in the previous Remark with
a maximal regularity argument for (10.13). For this however, more a-priori regularity of p
and higher integrability of derivatives of u have to be shown first (in case that these are
actually true).

Lemma 10.19 (Bounds for J∗, cf. Lemma 5.3 in [CKN82]). For each r ≤ ρ
2 one has

J∗(r) ≤ C4

⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

A
1
5
∗ (ρ)G

1
5
∗ (r)K

4
5
∗ (ρ) + (ρ

r
)

2

A
1
2
∗ (ρ)δ∗(ρ)

⎫⎪⎪⎬⎪⎪⎭
.

Proof. We start using the splitting of p to get

J∗(r) =
1

r2

ˆ
Q∗
r

∣u∣∣p∣ ≤ 1

r2

ˆ
Q∗
r

∣u∣∣p4∣ +
1

r2

ˆ
Br

∣u∣∣p5∣. (10.16)

We estimate both summands seperately, starting with the first one. As usual, we compute
for a fixed time t ∈ (−7

8r
2, 1

8r
2) using (10.11)

ˆ
Br

∣u∣∣p4∣ ≤ C (
ˆ
Br

∣u∣) (⨏
Bρ

∣p∣) ≤ C (
ˆ
Br

∣u∣)
2
5

(
ˆ
Br

∣u∣)
3
5

(⨏
Bρ

∣p∣)

≤
Hölder

Cr
3
5 (

ˆ
Br

∣u∣2)
1
5

(
ˆ
Br

∣u∣)
3
5

(⨏
Bρ

∣p∣)

≤
Hölder

Cr
3
5 (

ˆ
Br

∣u∣2)
1
5

r
6
5 (

ˆ
Br

∣u∣3)
1
5

(⨏
Bρ

∣p∣)

≤ Cr
9
5 (

ˆ
Br

∣u∣2)
1
5

(
ˆ
Br

∣u∣3)
1
5

(⨏
Bρ

∣p∣)

≤ Cr
9
5 (

ˆ
Bρ

∣u∣2)
1
5

(
ˆ
Br

∣u∣3)
1
5

(⨏
Bρ

∣p∣)

≤ Cr
9
5 (ρA∗(ρ))

1
5 (

ˆ
Br

∣u∣3)
1
5

(⨏
Bρ

∣p∣) .

Integrating in time we obtain
ˆ
Q∗
r

∣u∣∣p4∣ ≤ Cr
9
5 ρ

1
5A

1
5
∗ (ρ)

ˆ 1
8
r2

− 7
8
r2

(
ˆ
Br

∣u∣3)
1
5

(⨏
Bρ

∣p∣)

≤ Cr
9
5 ρ

1
5A

1
5
∗ (ρ)

⎛
⎝

ˆ 1
8
r2

− 7
8
r2

ˆ
Br

∣u∣3
⎞
⎠

1
5 ⎛
⎝

ˆ 1
8
r2

− 7
8
r2

(⨏
Bρ

∣p∣)
5
4 ⎞
⎠

4
5

≤ Cr
9
5 ρ

1
5A

1
5
∗ (ρ)(

ˆ
Q∗
r

∣u∣3)
1
5 1

ρ3

⎛
⎝

ˆ 1
8
r2

− 7
8
r2

(
ˆ
Bρ

∣p∣)
5
4 ⎞
⎠

4
5

≤ Cr
9
5 ρ

1
5A

1
5
∗ (ρ)(

ˆ
Q∗
r

∣u∣3)
1
5 1

ρ3

⎛
⎝

ˆ 1
8
ρ2

− 7
8
ρ2

(
ˆ
Bρ

∣p∣)
5
4 ⎞
⎠

4
5
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≤ Cr
9
5 ρ

1
5A

1
5
∗ (ρ)(

ˆ
Q∗
r

∣u∣3)
1
5 1

ρ3
(ρ

13
4 K∗(ρ))

4
5

≤ Cr
9
5 ρ

1
5A

1
5
∗ (ρ)(

ˆ
Q∗
r

∣u∣3)
1
5 1

ρ
2
5

K∗(ρ)
4
5

≤ Cr
9
5A

1
5
∗ (ρ)

1

ρ
1
5

(r2G∗(r))
1
5K∗(ρ)

4
5 = Cr

11
5

1

ρ
1
5

A
1
5
∗ (ρ)G∗(r)

1
5K∗(ρ)

4
5 .

Dividing by r2 we conclude

1

r2

ˆ
Q∗
r

∣u∣∣p4∣ ≤ C (r
ρ
)

1
5

A
1
5
∗ (ρ)G

1
5
∗ (ρ)K

4
5
∗ (ρ). (10.17)

To estimate the second summand in (10.16) we compute with (10.12)
ˆ
Br

∣u∣∣p5∣ ≤ (
ˆ
Br

∣u∣2)
1
2

(
ˆ
Br

∣p5∣2)
1
2

≤ (
ˆ
Bρ

∣u∣2)
1
2

ρ
1
2

ˆ
Bρ

∣∇u∣2

≤ C(ρA∗(ρ))
1
2 ρ

1
2

ˆ
Bρ

∣∇u∣2 = CρA∗(ρ)
1
2

ˆ
Bρ

∣∇u∣2.

Integrating with respect to t we obtainˆ
Q∗
r

∣u∣∣p5∣ ≤ CρA∗(ρ)
1
2

ˆ
Q∗
ρ

∣∇u∣2 = Cρ2A∗(ρ)
1
2 δ∗(ρ).

Dividing by r2 we obtain

1

r2

ˆ
Q∗
r

∣u∣∣p5∣ ≤ C (ρ
r
)

2

A∗(ρ)
1
2 δ∗(ρ).

This and (10.17) yield the claim. �

The proof of the following lemma will most likely be omitted in the talk, since it is
somewhat technical. Nevertheless it is highly recommendable to read, since it presents
useful refinements of the pressure estimate.

Lemma 10.20. [An estimate for K∗, see Lemma 5.4 in [CKN82]] If r ≤ 1
2ρ then

K∗(r) ≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
2

K∗(ρ) + (ρ
r
)

5
4

A
5
8
∗ (ρ)δ

5
8
∗ (ρ)

⎫⎪⎪⎬⎪⎪⎭
.

Before we can prove this lemma we have to prove another splitting property of the
pressure

Proposition 10.21 (Refinement of the pressure splitting and L1-control of p5, cf. p.
803 in [CKN82]). Let ρ,φ, p4, p5 be as in Proposition 10.16. Then p5 can be split as follows

p5(x, t) = p6(x, t) + p7(x, t),
where

p6(x, t) = −
3

4π

ˆ 3

∑
i=1

xi − yi
∣x − y∣3φ(y)(u ⋅ ∇u

i)(y, t) dy,

p7(x, t) = −
3

4π

ˆ
1

∣x − y∣
3

∑
i=1

∂yiφ(y)(u ⋅ ∇ui)(y).
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Moreover, for each r ≤ ρ
2 one has

ˆ
Br

∣p5∣ ≤ Crρ
1
2A∗(ρ)

1
2 (

ˆ
Bρ

∣∇u∣2)
1
2

. (10.18)

Proof. Just like in the proof of Proposition 10.16, we leave out the t-argument. To
simplify the following computation, we assume first that u is smooth in Br, an assumption
which is not at all justified but can be gotten rid of, as we will discuss after the computation.
We integrate by parts in the expression for p5 that we obtained in Proposition 10.16 to
obtain

p5(x) =
3

4π

ˆ 3

∑
i,j=1

1

∣x − y∣φ∂yju
i∂yiu

j dy

= −
3

∑
i,j=1

3

4π

ˆ
∂yi (

1

∣x − y∣φ∂yju
i)uj dy.

= −
3

∑
i,j=1

3

4π

ˆ
∂yi (

1

∣x − y∣φ∂yju
i)uj dy

= −
3

∑
i,j=1

3

4π
(
ˆ

xi − yi
∣x − y∣3φ∂yju

iuj dy +
ˆ

1

∣x − y∣∂yiφu
j∂yju

i dy

+
ˆ

1

∣x − y∣φ∂
2
yiyju

iuj)

= p6(x) + p7(x) +
3

∑
j=1

ˆ
1

∣x − y∣u
j

3

∑
i=1

∂2
yjyiu

i,

where we have rewritten the j−sums as with the dot product in the last step. Now observe
that by Schwarz’s Lemma (or Clairaut’s Theorem)

3

∑
i=1

∂2
yiyju

i = ∂yj
3

∑
i=1

∂yiu
i = ∂yjdiv(u) = 0,

as u was assumed to be divergence-free. This implies that p5 = p6 + p7 as claimed. The
point where we apply Schwarz’s Lemma is however exactly the point where the additional
regularity assumption kicks in. We will now briefly comment on how we can overcome the
unjustified regularity assumption. In the first step we rewrite

3

4π

ˆ 3

∑
i,j=1

1

∣x − y∣φ∂yju
i∂yiu

j dy = lim
ε→0

3

4π

ˆ 3

∑
i,j=1

1

∣x − y∣φ(∂ju
i ∗ φε)(y)∂yiuj dy,

where (φε)ε>0 is the standard mollifier family. Following the lines of the proof and using
that u(t, ⋅) ∈W 1,2(Ω) (which is true at least for almost every t) we obtain

p5(x) = p6(x) + p7(x) + lim
ε→0

−3

4π

3

∑
j=1

ˆ
1

∣x − y∣φu
j

3

∑
i=1

∂yi(∂jui ∗ φε)(y) dy.

Now observe that

∂yi(∂jui ∗ φε) = ∂yi
ˆ
∂zju

i(z)φε(y − z)dz = −∂yi
ˆ
ui(z)∂zjφε(y − z)dz

= −
ˆ
ui(z)∂yi∂zj [φε(y − z)]dz =

Chain Rule

ˆ
ui(z)∂2

zizj [φε(y − z)]dz

=
Schwarz’s Lemma

ˆ
ui(z)∂zi[∂zjφε(y − z)]dz.
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Summing over i and use the definition of the dot product we obtain
3

∑
i=1

∂yi(∂jui ∗ φε)(y) =
ˆ
u(z) ⋅ ∇∂zjφε(y − z)dz = 0 ∀ε > 0,

since u is weakly divergence-free and hence L2-orthogonal to ∇∂jφε(y − ⋅) for each ε > 0.
We have shown the desired decomposition. To show (10.18) we show

ˆ
Br

∣p6∣ ≤ Crρ
1
2A∗(ρ)

1
2 (

ˆ
Bρ

∣∇u∣2)
1
2

and
ˆ
Br

∣p7∣ ≤ Crρ
1
2A∗(ρ)

1
2 (

ˆ
Bρ

∣∇u∣2)
1
2

.

Given the two previous inequalities, the desired estimate follows easily with the triangle
inequality. First we obtain the L1-control for p6:ˆ

Br

∣p6∣ =
ˆ
Br

∣
ˆ
Bρ

3

4π

3

∑
i=1

xi − yi
∣x − y∣3φ(y)(u ⋅ ∇u

i)(y) dy∣ dx

≤ C
ˆ
Br

ˆ
Bρ

1

∣x − y∣2 ∣φ(y)∣ ∣u(y)∣ ∣∇u(y)∣ dy dx

=
Fubini

C

ˆ
Bρ

(
ˆ
Br

1

∣x − y∣2 dx) ∣φ∣ ∣u∣ ∣∇u∣

= C
ˆ
B2r

(
ˆ
Br

1

∣x − y∣2 dx) ∣φ∣ ∣u∣ ∣∇u∣

+C
ˆ
Bρ∖B2r

(
ˆ
Br

1

∣x − y∣2 dx) ∣φ∣ ∣u∣ ∣∇u∣.

We estimate both summands seperately. For the first summand we use that y ∈ B2r(0)
implies Br(0) ⊂ B3r(y) and henceˆ

B2r

(
ˆ
Br

1

∣x − y∣2 dx) ∣φ∣ ∣u∣ ∣∇u∣ ≤
ˆ
B2r

(
ˆ
B3r(y)

1

∣x − y∣2 dx) ∣φ∣ ∣u∣ ∣∇u∣

=
z∶=x−y

(
ˆ
B2r

∣φ∣ ∣u∣ ∣∇u∣) (
ˆ
B3r(0)

1

∣z∣2 dz)

=
Radial integration

(
ˆ
B2r

∣φ∣ ∣u∣ ∣∇u∣) (
ˆ 3r

0
(4πs2) 1

s2
ds)

≤ 12πr (
ˆ
B2r

∣φ∣ ∣u∣ ∣∇u∣) . (10.19)

For the other integral we use the inverse triangle inequality to estimate for x ∈ Br(0) and
∣y∣ ≥ 2r

1

∣x − y∣2 ≤ 1

(∣y∣ − ∣x∣)2
≤ 1

(2r − r)2
≤ . 1

r2

Thereforeˆ
Bρ∖B2r

(
ˆ
Br

1

∣x − y∣2 dx) ∣φ∣ ∣u∣ ∣∇u∣ ≤
ˆ
Bρ∖B2r

1

r2
∣Br(0)∣ ∣φ∣ ∣u∣ ∣∇u∣

= 4π

3
r

ˆ
Bρ∖B2r

∣φ∣ ∣u∣ ∣∇u∣,
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where we have used that ∣Br(0)∣ = 4
3πr

3 is the volume of Br(0). Plugging both considera-
tions back into (10.19) we obtain

ˆ
Br

∣p6∣ ≤ Cr
ˆ
Bρ

∣φ∣ ∣u∣ ∣∇u∣ ≤ Cr
ˆ
Bρ

∣u∣ ∣∇u∣ ≤ Cr (
ˆ
Bρ

∣u∣2)
1
2

(
ˆ
Bρ

∣∇u∣2)
1
2

≤ Crρ
1
2A

1
2
∗ (ρ)(

ˆ
Bρ

∣∇u∣2)
1
2

, (10.20)

which is the desired estimate for p6. Now for the estimation of p7 fix r ≤ ρ
2 and x ∈ Br(0)

to estimate with the properties of φ (cf. statement of Proposition 10.16)

∣p7(x)∣ ≤
3

4π

ˆ
1

∣x − y∣ ∣∇φ(y)∣ ∣u(y)∣ ∣∇u(y)∣ dy

=
Choice of φ

3

4π

ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣ ∣∇φ(y)∣ ∣u(y)∣ ∣∇u(y)∣ dy

≤
Choice of φ

C

ρ

ˆ
Bρ∖B 3

4 ρ

1

∣x − y∣ ∣u(y)∣ ∣∇u(y)∣ dy

≤
Inv. triangle inequality

C

ρ

ˆ
Bρ∖B 3

4 ρ

1

∣y∣ − ∣x∣ ∣u(y)∣ ∣∇u(y)∣ dy

≤
x∈B ρ

2

C

ρ

ˆ
Bρ∖B 3

4 ρ

1
3
4ρ −

1
2ρ

∣u(y)∣ ∣∇u(y)∣ dy

≤ C

ρ2

ˆ
Bρ∖B 3

4 ρ

∣u(y)∣ ∣∇u(y)∣ dy ≤ C

ρ2

ˆ
Bρ

∣u(y)∣ ∣∇u(y)∣ dy.

Integrating over x ∈ Br(0) we obtain
ˆ
Br

∣p7∣ ≤
C

ρ2
r3

ˆ
Bρ

∣u(y)∣ ∣∇u(y)∣ dy ≤ C (r
ρ
)

2

r (
ˆ
Bρ

∣u∣2)
1
2

(
ˆ
Bρ

∣∇u∣2)
1
2

≤ Crρ
1
2A∗(ρ)

1
2 (

ˆ
Bρ

∣∇u∣2)
1
2

, (10.21)

where we used that r
ρ < 1 in the last step. As we discussed before, the claim follows from

(10.20) and (10.21). �

Proof of Lemma 10.20. Let r, ρ be as in the statement. By (10.11) we conclude
that ˆ

Br

∣p4∣ ≤ C (r
ρ
)

3 ˆ
Bρ

∣p∣,

in particular

(
ˆ
Br

∣p4∣)
5
4

≤ C (r
ρ
)

15
4

(
ˆ
Bρ

∣p∣)
5
4

.

Integrating over t ∈ (−7
8r

2, 1
8r

2) we obtain
ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p4∣)
5
4

≤ C (r
ρ
)

15
4
ˆ r2

8

− 7
8
r2

(
ˆ
Bρ

∣p∣)
5
4

≤ C (r
ρ
)

15
4
ˆ ρ2

8

− 7
8
ρ2

(
ˆ
Bρ

∣p∣)
5
4

= C (r
ρ
)

15
4

ρ
13
4 A∗(ρ) = Cr

13
4 (r

ρ
)

1
2

K∗(ρ).
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Dividing by r
13
4 yields

1

r
13
4

ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p4∣)
5
4

≤ C (r
ρ
)

1
2

K∗(ρ). (10.22)

Furthermore, using (10.18) we find
ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p5∣)
5
4

≤ C
ˆ r2

8

− 7
8
r2

r
5
4 ρ

5
8A

5
8
∗ (ρ)(

ˆ
Bρ

∣∇u∣2)
5
8

≤ Cr
5
4 ρ

5
8A

5
8
∗ (ρ)

ˆ r2

8

− 7
8
r2

(
ˆ
Bρ

∣∇u∣2)
5
8

≤
Hölder p= 8

5
,q= 8

3

Cr
5
4 ρ

5
8A

5
8
∗ (ρ)(r2)

3
8

⎛
⎜
⎝

ˆ r2

8

− 7
8
r2

ˆ
Bρ

∣∇u∣2
⎞
⎟
⎠

5
8

≤ Cr2ρ
5
8A

5
8
∗ (ρ)

⎛
⎜
⎝

ˆ ρ2

8

− 7
8
ρ2

ˆ
Bρ

∣∇u∣2
⎞
⎟
⎠

5
8

≤ Cr2ρ
5
8A

5
8
∗ (ρ)(ρδ∗(ρ))

5
8

= Cr2ρ
5
4A

5
8
∗ (ρ)δ

5
8
∗ (ρ).

Dividing by r
13
4 we infer

1

r
13
4

ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p5∣)
5
4

≤ C (ρ
r
)

5
4

A
5
8
∗ (ρ)δ

5
8
∗ (ρ). (10.23)

Given (10.22) and (10.23) we conclude

K∗(r) =
1

r
13
4

ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p∣)
5
4

≤ 1

r
13
4

ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p4∣ +
ˆ
Br

∣p5∣)
5
4

≤ C
⎛
⎜
⎝

1

r
13
4

ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p4∣)
5
4

+ 1

r
13
4

ˆ r2

8

− 7
8
r2

(
ˆ
Br

∣p5∣)
5
4 ⎞
⎟
⎠

≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
2

K∗(ρ) + (ρ
r
)

5
4

A
5
8
∗ (ρ)δ

5
8
∗ (ρ)

⎫⎪⎪⎬⎪⎪⎭
.

�

10.4. Proof of the main proposition

Proof. Let r ≤ 1
4ρ. Recall that the statement imposes the condition δ∗(ρ) ≤ 1. We

bound G
2
3
∗ (r),H∗(r), J∗(r) and K∗(r) seperately in terms of M∗ and δ∗. Again, we use C

to denote a generic constant which we possibly have to increase after each estimate.
Step 1: Estimating G∗. First we can use (10.8) with input parameters r̃ ∶= r and

ρ̃ ∶= ρ
2 to obtain

G
2
3
∗ (r) ≤

(10.8)

⎧⎪⎪⎨⎪⎪⎩
( r
ρ/2)

3

A
3
2
∗ (ρ2) + (

ρ/2
r

)
3

A
3
4
∗ (ρ2)δ

3
4
∗ (ρ2)

⎫⎪⎪⎬⎪⎪⎭

2
3

≤ C
⎧⎪⎪⎨⎪⎪⎩
( r
ρ/2)

2

A∗(ρ2) + (
ρ/2
r

)
2

A∗(ρ2)
1
2 δ∗(ρ2)

1
2

⎫⎪⎪⎬⎪⎪⎭
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≤ C {4(r
ρ
)

2

A∗(ρ2) +
1

4
(ρ
r
)

2

A∗(ρ2)
1
2 δ∗(ρ2)

1
2 }

≤ C {(r
ρ
)

2

A∗(ρ2) + (ρ
r
)

2

A∗(ρ2)
1
2 δ∗(ρ2)

1
2 }

≤
(10.4)

{(r
ρ
)

2

M∗(ρ) + (ρ
r
)

2

M∗(ρ)
1
2 δ∗(ρ2)

1
2 }

≤
Remark 10.6

{(r
ρ
)

2

M∗(ρ) + (ρ
r
)

2

M∗(ρ)
1
2 δ∗(ρ)

1
2 } . (10.24)

Step 2: Estimating H∗.

H∗(r) ≤
Remark 10.5

C(G
2
3
∗ (r) +A∗(r)δ∗(r)) ≤

Remark 10.6
C {G

2
3
∗ (r) + (ρ

r
)A∗(r)δ∗(ρ)}

≤
(10.4)

C {G
2
3
∗ (r) + (ρ

r
)

2

M∗(ρ)δ∗(ρ)}

≤
(10.24)

C {(r
ρ
)

2

M∗(ρ) + (ρ
r
)

2

[M∗(ρ)δ∗(ρ) +M
1
2
∗ (ρ)δ

1
2
∗ (ρ)]} .

We can merge the estimates in Step 1 and Step 2 to get

G
2
3
∗ (r) +H∗(r) ≤ C {(r

ρ
)

2

M∗(ρ) + (ρ
r
)

2

[M∗(ρ)δ∗(ρ) +M
1
2
∗ (ρ)δ

1
2
∗ (ρ)]}

≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2

[M∗(ρ)δ∗(ρ) +M
1
2
∗ (ρ)δ

1
2
∗ (ρ)]

⎫⎪⎪⎬⎪⎪⎭
, (10.25)

where we used in the last estimate that r
ρ ≤ 1.

Step 3: Estimating J∗. By Lemma 10.19 and similar techniques as in the first three
estimates of Step 1 we obtain

J∗(r) ≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

A∗(ρ2)
1
5G∗(r)

1
5K∗(ρ2)

4
5 + (ρ

r
)

2

A∗(ρ2)
1
2 δ∗(ρ2)

⎫⎪⎪⎬⎪⎪⎭

≤
(10.4),Remark 10.6

C

⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

A∗(ρ2)
1
5G∗(r)

1
5K∗(ρ2)

4
5 + (ρ

r
)

2

M∗(ρ)
1
2 δ∗(ρ)

⎫⎪⎪⎬⎪⎪⎭

≤
δ∗(ρ)≤1

C

⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

A∗(ρ2)
1
5G∗(r)

1
5K∗(ρ2)

4
5 + (ρ

r
)

2

M∗(ρ)
1
2 δ∗(ρ)

1
2

⎫⎪⎪⎬⎪⎪⎭
. (10.26)

We can now use the generalized Young inequality abc ≤ C(ap1 + bp2 + cp3) whenever 1
p1
+

1
p2
+ 1
p3

= 1 to estimate A∗(ρ2)
1
5G∗(r)

1
5K∗(ρ2)

4
5 . Here the choice p1 = 5, p2 = 10

3 , p3 = 2 yields

A∗(ρ2)
1
5G∗(r)

1
5K∗(ρ2)

4
5 ≤ C (A∗(ρ2) +G

2
3
∗ (r) +K

8
5
∗ (ρ2))

≤ C (M∗(ρ) +K
8
5
∗ (ρ) +G

2
3
∗ (r))

where we have used (10.4) and Remark 10.6 in the last step. Notice that one can also

estimate K
8
5
∗ (ρ) ≤M∗(ρ) to simplify

A∗(ρ2)
1
5G∗(r)

1
5K∗(ρ2)

4
5 ≤ C (M∗(ρ) +G

2
3
∗ (r)) .
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Plugging this into (10.26) we obtain

J∗(r) ≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

M∗(ρ) + (r
ρ
)

1
5

G
2
3
∗ (r) + (ρ

r
)

2

M∗(ρ)
1
2 δ∗(ρ)

1
2

⎫⎪⎪⎬⎪⎪⎭

≤
(10.24)

C

⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

M∗(ρ) + (r
ρ
)

1
5

((r
ρ
)

2

M∗(ρ) + (ρ
r
)

2

M∗(ρ)
1
2 δ∗(ρ)

1
2 )

+(ρ
r
)

2

M∗(ρ)
1
2 δ∗(ρ)

1
2 }

≤
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
(r
ρ
)

1
5

+ (r
ρ
)

11
5 ⎞
⎠
M∗(ρ) +

⎛
⎝
(ρ
r
)

2

+ (ρ
r
)

9
5 ⎞
⎠
M∗(ρ)

1
2 δ∗(ρ)

1
2

⎫⎪⎪⎬⎪⎪⎭
.

Using that r < ρ we can determine which power of rρ or ρ
r respectively dominates and infer

J∗(r) ≤
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2

M∗(ρ)
1
2 δ∗(ρ)

1
2

⎫⎪⎪⎬⎪⎪⎭
. (10.27)

Step 4: Estimating K
8
5
∗ . By Lemma 10.20 and (a + b) 8

5 ≤ C(a 8
5 + b 8

5 ) we obtain that

K
8
5
∗ (r) ≤

⎛
⎝
C

⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
2

K∗(ρ2) + (ρ
r
)

5
4

A
5
8
∗ (ρ2)δ

5
8
∗ (ρ2)

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

8
5

≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

4
5

K
8
5
∗ (ρ2) + (ρ

r
)

2

A∗(ρ2)δ∗(
ρ
2)

⎫⎪⎪⎬⎪⎪⎭

≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

4
5

K
8
5
∗ (ρ) + (ρ

r
)

2

A∗(ρ2)δ∗(ρ)
⎫⎪⎪⎬⎪⎪⎭

We can use that by definition of M∗ one has K
8
5
∗ (ρ) ≤M∗(ρ) as well as (10.7) to obtain

K
8
5
∗ (r) ≤ C

⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

4
5

M∗(ρ) + (ρ
r
)

2

M∗(ρ)δ∗(ρ)
⎫⎪⎪⎬⎪⎪⎭

≤ C
⎧⎪⎪⎨⎪⎪⎩
(r
ρ
)

1
5

M∗(ρ) + (ρ
r
)

2

M∗(ρ)δ∗(ρ)
⎫⎪⎪⎬⎪⎪⎭
, (10.28)

where the last step uses again that r < ρ.
Step 5: The claim follows now by adding up (10.25), (10.27) and (10.28), all of which

consist only of terms that appear on the right hand side of the desired inequality. �



CHAPTER 11

Talk 9: Estimating the Singular Set and Estimates for u and
p in Weighted Norms

By Dennis Gallenmüller

This talk splits into two independent sections. On the one hand, we prove the main
theorem subject to this seminar, namely Theorem B in [CKN82], which corresponds to
section 6 in the paper. On the other hand, this talk will prepare the proof of Theorems C
and D in [CKN82], which corresponds to section 7 of the paper. For this we provide two
lemmas concerning estimates of the velocity field u and the pressure p of a suitable weak
solution in some specific weighted norms.

11.1. Estimating the Singular Set

11.1.1. Completing the Proof of the Main Theorem. For convenience we recall
the main theorem and Proposition 2 from [CKN82].

Theorem 11.1 (Caffarelli, Kohn, Nirenberg (Theorem B)). For any suitable weak
solution of the Navier-Stokes system on an open set in space-time, the associated singular
set satisfies P1(S) = 0.

Proposition 11.2 (Caffarelli, Kohn, Nirenberg (Proposition 2)). There is an absolute
constant ε3 > 0 with the following property. If (u, p) is a suitable weak solution of the
Navier-Stokes system near (x, t) and if lim supr→0

1
r

´
Q∗
r(x,t)

∣∇u∣2 ≤ ε3, then (x, t) is a
regular point.

The idea of the proof of Theorem 11.1 is to use Proposition 11.2 (cf. Proposition 1.6 in
talk 1) and a variant of Vitali’s covering lemma for parabolic cylinders (see Lemma 11.3)
to estimate the one-dimensional parabolic Hausdorff measure of S.
First, let us state and prove this variant of Vitali’s covering lemma for parabolic cylin-
ders. The classical Vitali lemma considers balls, but cylinders are more convenient for our
discussion due to the structure of the Navier-Stokes equations.

Lemma 11.3. Let C = (Q∗
ri(xi, ti))i∈I be any collection of parabolic cylinders contained

in a bounded subset of R3 ×R. Then there exists a finite or countable sub-collection

C′ = (Q∗
rij

(xij , tij))
j∈I′

i.e. I ′ ⊂ I, which is disjoint and has the property that for all Q∗ ∈ C there is a j ∈ I ′ such
that Q∗ ⊂ Q∗

5rij
(xij , tij).

Remark 11.4. As in the other talks we use the notation

Q∗
r(x, t) ∶= {(y, τ) ∶ ∣y − x∣ < r, t − 7

8
r2 < τ < t + 1

8
r2} .

Proof. Set C0 ∶= C. Moreover, since (Q∗
ri
) is contained in a bounded subset, we have

sup
i∈I

ri < ∞. Hence, we can choose Q∗
1 ⊂ C0 such that 3

2rQ∗
1
≥ sup

i∈I
ri. Note that this is

possible, since by the definition of the supremum and 1
3sup
i∈I

ri > 0 we find some r such that

52
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r ≥ sup
i∈I

ri − 1
3sup
i∈I

ri = 2
3sup
i∈I

ri.

Let us choose a countable sub-collection of C inductively as follows:
Assume for n ∈ N we have already chosen (Q∗

k)
n

k=1
. Then set

Cn ∶= {Q∗ ∈ C ∶ Q∗ ∩Q∗
k = ∅, k = 1, ..., n}.

Moreover, as long as Cn ≠ ∅ choose Q∗
n+1 ∈ Cn such that sup

Q∗∈Cn
rQ∗ ≤ 3

2rQ∗
n+1

. This is again

possible by the definition of the supremum as above.
Thus, the subcollection C′ ∶= (Q∗

k)k is disjoint and countable or finite by construction. The
latter case is considered if Cn = ∅ for some n ∈ N.
Now, we claim that given a Q∗ ∈ C/C′ there exists a n ∈ N0 such that Q∗ ∈ Cn but Q∗ ∉ Cn+1.
In the case that C′ is finite this is obvious, since Cn+1 = ∅ for some n ∈ N0. In the case that
C′ is countably infinite, the pairwise distjointness of C′ and the fact that C is contained in
a bounded set imply that rQ∗

n
tend to zero as n→∞. Now, given a Q∗ ∈ C/C′ by the same

reasoning as just mentioned there are only finitely many pairwise disjoint cylinders Q̃∗ ∈ C
such that 3

2rQ̃∗ ≥ rQ∗ . Assume now that Q∗ would not be deleted by intersecting one of
these Q̃∗. Then eventually after finitely many, say n ∈ N many, selection processes holds

rQ∗ > 3

2
rQ′∗

for all Q′∗ ∈ Cn. As Q∗ has not yet been deleted, we have Q∗ ∈ Cn. Therefore, we have
to make the selection Q∗ = Q∗

n+1 contradicting the fact that Q∗ ∉ C′. Thus, Q∗ has to be
deleted after finitely many steps yielding the claim.
The claim implies by definition of the selection process, that for every Q∗ ∈ C/C′ there is a
n ∈ N0 such that Q∗ ∩Q∗

n+1 ≠ ∅ and rQ∗ ≤ 3
2rQ∗

n+1
.

Let us write rn+1 ∶= rQ∗
n+1

. Therefore, the diameter of Q∗ in space direction is at most 3rn+1

and in time direction at most (3
2rn+1)

2. Hence, the maximal distance of a point (x, t) ∈ Q∗

to the parabolic center of Q∗
n+1 in space is 4rn+1. In time direction the maximal distance

of (x, t) to the parabolic center of Q∗
n+1 has to be considered for forewards and backwards

direction seperately, since the definition of the Q∗ involves different scaling forewards and
backwards in time. To be precise, the maximal distance backwards in time is

7

8
r2
n+1 +

9

4
r2
n+1

!
≤ 7

8
(arn+1)2. (11.1)

Here, we introduced some a ∈ R to be chosen such that the cylinder Q∗
arn+1

contains Q∗.

From (11.1) it follows that a ≥
√

25
7 , where the latter is less than 2.

For the forewards time direction we have to ensure that
1

8
r2
n+1 +

9

4
r2
n+1 ≤

1

8
(arn+1)2.

Thus, a ≥
√

19, which is less than 5. All in all, we showed that Q∗ ⊂ Q∗
5rn+1

for all Q∗ ∈ C
as the latter is obviously true for Q∗ ∈ C′, as 5 > 1. �

We have collected all tools needed to prove Theorem 11.1.

Proof. Let (u, p) be a suitable weak solution of the Navier-Stokes system. It suffices
to assume that (u, p) is only defined on an open bounded subset of R3 × R. Indeed, let
(Di)∞i=0 be a countable open covering of the potentially unbounded domain of definition of
(u, p). Then (u, p) is also a suitable weak solution on S ∩Di for all i by restricting the set
of testfunctions to those with support in Di. Assume we have already shown the theorem
for bounded domains, then P1(S ∩Di) = 0 for all i. Let δ > 0 and ε > 0. Now, for all

i choose a countable collection of parabolic cylinders (Q∗
rij

(xij , tij)) covering S ∩Di with
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rij < δ such that ∑j rij < P1
δ (S∩Di)+ ε

2i
. Then ⋃

i
⋃
j
Q∗
rij

(xij , tij) = ⋃
i,j
Q∗
rij

(xij , tij) is a countable

collection covering S. Thus,

P1
δ (S) ≤∑

i,j

rij =∑
i
∑
j

rij ≤∑
i

(P1
δ (S ∩Di) +

ε

2i
) =∑

i

P1
δ (S ∩Di) + ε.

We can let ε → 0 to infer the countable subadditivity of P1
δ for all δ > 0. By definition of

P1
δ and the infimum, we know that P1

δ′(S∩Di) ≤ P1
δ (S∩Di) for δ ≤ δ′. Thus, by monotone

convergence

P1(S) = lim
δ→0
P1
δ (S) ≤ lim

δ→0
∑
i

P1
δ (S∩Di) =∑

i

lim
δ→0
P1
δ (S∩Di) =∑

i

P1(S∩Di) =∑
i

0 = 0.

Therefore, we assume (u, p) to be defined on the open bounded set D ⊂ R3 ×R.
By Proposition 11.2 there is a constant ε3 > 0 such that for all (x, t) ∈ S holds

lim sup
r→0

1

r

ˆ
Q∗
r(x,t)

∣∇u∣2 > ε3. (11.2)

Now, let δ > 0 and V ⊂ D be a neighborhood of S. By the strictness of the inequality in
(11.2) for every (x, t) ∈ S we can choose a parabolic cylinder Q∗

r(x, t) with 0 < r < δ such
that

1

r

ˆ
Q∗
r(x,t)

∣∇u∣2 > ε3 (11.3)

and Q∗
r(x, t) ⊂ V .

Now the covering Lemma for parabolic cylinders (Lemma 11.3) yields a disjoint countable
subcollection (Q∗

ri(xi, ti))i such that

S ⊂ ⋃
(x,t)∈S

Q∗
r(x, t) ⊂⋃

i

Q∗
5ri(xi, ti).

Moreover, since Q∗
ri ⊂ V are disjoint and by (11.3) we obtain

∑
i

ri ≤∑
i

1

ε3

ˆ
Q∗
ri
(xi,ti)

∣∇u∣2 ≤ 1

ε3

ˆ
V
∣∇u∣2, (11.4)

where the right hand side is independend of the choice of ri and hence independent of δ.
Therefore, we estimate the Lebesgue measure of the singular set by using r < δ

∣S ∣ ≤ ∣⋃
i

Q∗
5ri(xi, ti)∣ ≤∑

i

∣Q∗
5ri(xi, ti)∣ =∑

i

Cr5
i ≤ Cδ4∑

i

ri ≤ C
1

ε3

ˆ
V
∣∇u∣2 ⋅ δ4,

where in the last inequality we used (11.4). Since δ > 0 was arbitrary, we conclude that
∣S ∣ = 0.
Also (11.4) and ri < δ imply that

P1
δ (S) ≤∑

i

5ri ≤
5

ε3

ˆ
V
∣∇u∣2

for all δ > 0, hence also the limit for δ → 0, i.e. the parabolic Hausdorff measure P1(S), is
less or equal than 5

ε3

´
V ∣∇u∣2.

Still the neighborhood V is arbitrary. Thus, we can choose a sequence Vn for example by

Vn ∶=D ∩ {(y, s) ∶ dist(S, (y, s)) < 1

n
} .

We need to show that the indicator function of Vn tends pointwise almost everywhere in
D to zero as n→∞. Indeed, S is closed, since its complement R, defined as

R ∶= {(x, t) ∶ ∃ neighborhood U of (x, t) such that u ∈ L∞(U)},
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is obviously an open set, because every point in R has an open neighborhood that contains
again only points in R by definition. Now, let (x, t) ∈R. Then, there is some ball Bε(x, t)
around this point lying in R. Hence, for all n ∈ N large enough such that 1

n < ε
2 we

achieve (x, t) ∉ Vn, because else Bε(x, t) ∩ S ≠ ∅ would be a contradiction. Since, Rc = S
is a Lebesgue null set, we infer that the indicator of Vn tends to zero as n → ∞ almost
everywhere.
We also have

´
Vn

∣∇u∣2 ≤
´
D ∣∇u∣2 <∞. So, dominated convergence implies that

P1(S) ≤ 5

ε3

ˆ
Vn

∣∇u∣2 n→∞→ 0,

finishing the proof. �

11.1.2. Some Corollaries. In general, Theorem 11.1 is not strong enough to imply
the uniqueness or strong time-continuity for suitable weak solutions, since still S could be
non-empty. On the other hand, there are interesting direct consequences, some of them
listed in the following.

Corollary 11.5. On T3 holds H 1
2 (T ) = 0, where T denotes the set of positive singular

times.

Proof. From Lemma 16.3 in [RRS16] we know that on T3 holds T = prt(S), where
the latter denotes the projection of S onto the time coordinate. Thus, it is sufficient to
prove the inequality

H
1
2 (prtX) ≤ CP1(X) (11.5)

for all X ⊂ R3 ×R.
Indeed, for every covering by parabolic cylinders (Qri(xi, ti))∞i=0 of X holds in particular
that prtX ⊂ ⋃

i
prtQri . Thus, for all δ > 0 holds

P1
δ (X) = inf {∑

i

ri ∶ X ⊂⋃
i

Qri , ri < δ}

≥ inf {∑
i

ri ∶ prtX ⊂⋃
i

prtQri , ri < δ}

= inf {∑
i

ri ∶ prtX ⊂⋃
i

(ti − r2
i , ti), ri < δ}

= inf {∑
i

√
si ∶ prtX ⊂⋃

i

(ti − si, ti), si < δ2}

≥ inf {∑
i

√
diam([ti − si, ti]) ∶ prtX ⊂⋃

i

[ti − si, ti], si < δ2}

≥ C ⋅H
1
2

δ2(prtX).
Passing to the limit δ → 0 on both sides yields the desired inequality (11.5), completing
the proof. �

Corollary 11.6. Let
´
(
´
∣∇u∣2 dx)2

dt <∞ for a suitable weak solution (u, p) defined
on D ⊂ R3 ×R. Then (u, p) is regular on D.

Proof. Let (x, t) ∈D be any point. We estimate using Hölder in the time-integration

lim sup
r→0

1

r

ˆ
Q∗
r(x,t)

∣∇u∣2 = lim sup
r→0

1

r

ˆ t+ 1
8
r2

t− 7
8
r2

1 ⋅
ˆ
Br(x)

∣∇u∣2 dy ds
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≤ lim sup
r→0

1

r

⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
Br(x)

∣∇u∣2 dy)
2

ds
⎞
⎠

1
2

⋅
√
r2

≤ lim sup
r→0

⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
D∩{s=t}

∣∇u∣2 dy)
2

ds
⎞
⎠

1
2

= 0,

where in the last step we used dominated convergence as clearly the indicator of the time
interval χ[t− 7

8
r2,t+ 1

8
r2](s)→ 0 for all s ≠ t and

⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
D∩{s=t}

∣∇u∣2 dy)
2

ds
⎞
⎠
≤
⎛
⎝

ˆ
prtD

(
ˆ
D∩{s=t}

∣∇u∣2 dy)
2

ds
⎞
⎠

which is bounded by assumption.
Thus, Proposition 11.2 implies that (x, t) is regular. �

A similar result follows by Proposition 1 in the paper.

Corollary 11.7. Let
´
(
´
∣u∣s + ∣p∣ s2 dx)

s′
s dt <∞ for a suitable weak solution (u, p)

defined on D ⊂ R3 ×R and 3 < s ≤ s′ satisfying 3
s +

2
s′ = 1. Then (u, p) is regular on D.

Proof. Let (x, t) ∈D be any point. We estimate using Hölder with exponents s′
3 and

1
1− 3

s′
in the time-integration, but first we Hölder in space in both summands with Hölder

exponents s
3 and 1

1− 3
s

= s′
2 .

lim sup
r→0

1

r2

ˆ
Q∗
r(x,t)

∣u∣3 + ∣p∣
3
2

=lim sup
r→0

1

r2

ˆ t+ 1
8
r2

t− 7
8
r2

ˆ
Br(x)

1 ⋅ ∣u∣3 + 1 ⋅ ∣p∣
3
2 dy dτ

≤lim sup
r→0

1

r2

ˆ t+ 1
8
r2

t− 7
8
r2

⎛
⎝
(
ˆ
Br(x)

∣u∣s dy)
3
s

+ (
ˆ
Br(x)

∣p∣
s
2 dy)

3
s⎞
⎠
⋅ ∣Br(x)∣

2
s′ dτ

≤lim sup
r→0

1

r2
2

ˆ t+ 1
8
r2

t− 7
8
r2

(
ˆ
Br(x)

∣u∣s + ∣p∣
s
2 dy)

3
s

⋅ 1 dτ ⋅ ∣Br(x)∣
2
s′

≤lim sup
r→0

2

r2

⎛
⎝

ˆ t+ 1
8
r2

t− 7
8
r2

(∣u∣s + ∣p∣
s
2 dy)

s′
s

dτ
⎞
⎠

3
s′

(r2)1− 3
s′ ∣Br(x)∣

2
s′ .

Now the second factor involving the time integral over the measure of the ball Br(x) is
proportional to r(2−

6
s′ )+

6
s′ = r2. Hence, this factors cancelles the prefactor of 1

r2 and infer
that the limit r → 0 tends to zero on the right hand side by dominated convergence similarly

as in the previous proof, which is valid due to
´
(
´
∣u∣s + ∣p∣ s2 dx)

s′
s dt being bounded by

assumption. �

Corollary 11.8. Let (u, p) be a suitable weak solution of the Navier-Stokes system
which has cylindrical symmetry about some axis. Then singularities can only occur on the
symmetry axis.

Proof. Assume there would be an off-axis singularity. Then, due to symmetry, this
would give rise to a whole circle on which the solution would be singular. But this contra-
dicts the fact that H1(S) ≤ CP1(S) = 0. So, possible singularities can only lie on the axis
of symmetry. �



11.2. ESTIMATES FOR u AND p IN WEIGHTED NORMS 57

11.2. Estimates for u and p in Weighted Norms

In the following we will prove two lemmas that play an important role in the proof of
Theorems C and D, which are subject to the subsequent talk.
The first lemma provides a weighted interpolation estimate.

Lemma 11.9. Let α,β, γ, r, s be such that:
(i) r ≥ 2, γ + 3

r > 0, α + 3
2 > 0, β + 3

2 > 0, and s ∈ [1
2 ,1],

(ii) γ + 3
r = s (α +

1
2
) + (1 − s) (β + 3

2
),

(iii) s(α − 1) + (1 − s)β ≤ γ ≤ sα + (1 − s)β.
Then there exists a constant C = C(α,β, γ, r, s) such that for all ε ≥ 0 holds the inequality

∥(ε + ∣x∣2)
γ
2 u∥

Lr(R3)
≤ C ∥(ε + ∣x∣2)

α
2 ∣∇u∣∥

s

L2(R3)
∥(ε + ∣x∣2)

β
2 u∥

1−s

L2(R3)
(11.6)

for all u ∈H1(R3) with ∥(ε + ∣x∣2)α−1
2 u∥

L2(R3)
<∞.

Remark 11.10. Note that for functions u ∈ H1(R3) with compact support of course
we do not need to assume the weighted L2-norm of u with exponent α − 1 to be finite.
Also in the original paper, this assumption is not stated even for non compactly supported
functions u. Nevertheless, it is not clear to us how to relax this condition or even skip it.
Hence, we kept this assumption for completeness of the present notes.

Proof. Suppose we have already proven the lemma for ε = 1, then for ε > 0 we have
by rescaling

∥(ε + ∣x∣2)
γ
2 u∥

Lr

=
XXXXXXXXXXXX
(1 + ∣x∣2

ε
)
γ
2

u(x)
XXXXXXXXXXXXLr

ε
γ
2

= ∥(1 + ∣y∣2)
γ
2 u(

√
εy)∥

Lr
ε
γ
2
+ 3

2r

≤C ∥(1 + ∣y∣2)
α
2 ∣∇y(u(

√
εy))∣2∥

s

L2
∥(1 + ∣y∣2)

β
2 u(

√
εy)∥

1−s

L2
ε
γ+ 3
r

2

=C ∥(1 + ∣y∣2)
α
2 ∣∇√

εy(u(
√
εy))

√
ε∣2∥

s

L2
∥(1 + ∣y∣2)

β
2 u(

√
εy)∥

1−s

L2
ε

1
2
(s(α+ 1

2
)+(1−s)(β+ 3

2
))

=C ∥(ε + ∣
√
εy∣2)

α
2 ∣∇√

εy(u(
√
εy))∣2∥

s

L2
∥(ε + ∣

√
εy∣2)

β
2 u(

√
εy)∥

1−s

L2
ε

1
2
(s 3

2
+(1−s) 3

2
)

=C ∥(ε + ∣x∣2)
α
2 ∣∇u∣2∥

s

L2
∥(ε + ∣x∣2)

β
2 u∥

1−s

L2
,

where we used assumption (ii) from the lemma. So, the case ε > 0 follows from ε = 1. For
ε = 0 we let ε → 0 in the inequality for ε > 0. To do so, we use dominated convergence,
which is valid as the pointwise almost everywhere convergence (ε + ∣x∣2)

γ
2
r ∣u∣r → ∣x∣rγ ∣u∣r

is clear and for ε small enough and γ ≥ 0 holds (ε + ∣x∣2)
γ
2
r ∣u∣r ≤ (1 + ∣x∣2)

γ
2
r ∣u∣r. This last

function is integrable because

∥(1 + ∣x∣2)
γ
2 u∥

Lr
≤ C ∥(1 + ∣x∣2)

α
2 ∣∇u∣2∥

s

L2
∥(1 + ∣x∣2)

β
2 u∥

1−s

L2

≤M +C ∥∣x∣α∣∇u∣2∥s
L2 ∥∣x∣βu∥

1−s
L2 <∞

for some number M < ∞, and we assume the right hand side of (11.6) to be finite for
ε = 0, since else the statement of the lemma is trivially true. For γ < 0, we simply estimate
(ε + ∣x∣2)

γ
2
r ∣u∣r ≤ ∣u∣r ∈ L1 and respecting (11.9). The convergence ε → 0 on the right hand

side of (11.6) is treated similarly.
We now want to simplify the proof in terms of which functions u need to be considered.
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Again, without loss of generality, we assume that both weighted norms of u on the right
hand side of (11.6) are finite, since else the inequality is trivially satisfied.
Assume further that we have shown the inequality (11.6) already for all functions in H1

with compact support. Then for a general u ∈ H1(R3) we define ϕ ∈ C∞
0 (R3) to be a

radially-symmetric function with 0 ≤ ϕ ≤ 1, ϕ = 1 on B1(0) and ϕ = 0 outside B2(0), and
∣∇ϕ∣ ≤ 2. Then, the sequence of smooth functions (ϕn)n ∶= (ϕ ( ⋅

n
))
n
tends to 1 a.e. on R3

and (∇ϕn)n tends to zero almost everywhere. So, ϕnu ∈H1(R3) has compact support and
we can estimate

∥(1 + ∣x∣2)
γ
2ϕnu∥

Lr(R3)
≤ C ∥(1 + ∣x∣2)

α
2 ∣∇(ϕnu)∣∥

s

L2(R3)
∥(1 + ∣x∣2)

β
2 (ϕnu)∥

1−s

L2(R3)

≤ C ∥(1 + ∣x∣2)
α
2 ∣∇ϕn∣u∥

s

L2(R3)
∥(1 + ∣x∣2)

β
2ϕnu∥

1−s

L2(R3)

+C ∥(1 + ∣x∣2)
α
2 ϕn∣∇u∣∥

s

L2(R3)
∥(1 + ∣x∣2)

β
2ϕnu∥

1−s

L2(R3)
.(11.7)

All norms in (11.7) involving ϕn tend to the desired norm by monotone convergence, e.g.

∥(1 + ∣x∣2)
γ
2ϕnu∥

Lr(R3)
n→∞→ ∥(1 + ∣x∣2)

γ
2 u∥

Lr(R3)
.

The only problematic term is ∥(1 + ∣x∣2)α2 ∣∇ϕn∣u∥L2(R3) as (∇ϕn)n is not a monotonically
increasing sequence of functions. But here (and in fact only here) the assumption discussed
in Remark 11.10 comes into play and we have

∣(1 + ∣x∣2)
α
2 ∣∇ϕn∣u∣

2
≤ ∣(1 + ∣x∣2)

α
2

2

n
u ⋅ χB2n(0)/Bn(0)∣

2

= ∣(1 + ∣x∣2)
α
2

4
√

2√
22n

u ⋅ χB2n(0)/Bn(0)∣
2

≤
RRRRRRRRRRR

4
√

2(1 + ∣x∣2)α2√
1 + ∣x∣2

u ⋅ χB2n(0)/Bn(0)

RRRRRRRRRRR

2

≤ ∣4
√

2(1 + ∣x∣2)
α−1

2 u∣
2
∈ L1(R3),

since
√

∣x∣2 + 1 ≤
√

2∣x∣2 ≤
√

22n for all n ∈ N. By dominated convergence we infer that all
terms in (11.7) converge to the desired norms.
Now it suffices to show the inequality (11.6) only for smooth compactly supported func-
tions. Indeed, assume u is supported in BM(0), i.e. u ∈ H1(BM(0)). Clearly, for all
1 ≤ q ≤∞ and all measurable functions f holds

∥f∥Lq(BM (0)) ≤ ∥(1 + ∣x∣2)
δ
2 f∥

Lq(R3)
≤ (1 +M2)

δ
2 ∥f∥Lq(BM (0)).

Thus, the weighted norm and the unweighted norm on Lq(BM(0)) are equivalent. Note
that by (11.9) (see below) and assumption (i) we have r ∈ [2,6]. So by the continuous
Sobolev embedding H1(BM(0)) ↪ L6(BM(0)) and the fact that u ∈ H1

0(BM(0)) we can
choose a sequence un ∈ C∞

0 (BM(0)) with un → u in H1 as n →∞. Note that the conver-
gence in H1 implies the convergence in L6 and hence in Lr and L2 by Hölder. Thus,

∥(1 + ∣x∣2)
γ
2 u∥

Lr(BM (0))
← ∥(1 + ∣x∣2)

γ
2 un∥

Lr(BM (0))

≤ C ∥(1 + ∣x∣2)
α
2 ∣∇un∣∥

s

L2(BM (0))
∥(1 + ∣x∣2)

β
2 un∥

1−s

L2(BM (0))

→ C ∥(1 + ∣x∣2)
α
2 ∣∇u∣∥

s

L2(BM (0))
∥(1 + ∣x∣2)

β
2 u∥

1−s

L2(BM (0))
,
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hence the lemma follows for u compactly supported.
To sum up, it suffices to prove the lemma for ε = 1 and u ∈ C∞

0 (R3).
We introduce the notation τ ∶= (1 + ∣x∣2) 1

2 , A ∶= ∥τα∣∇u∣∥L2 , and B ∶= ∥τβu∥L2 .
We first consider the case r = 2:
Assumption (i) implies γ > −3

2 and assumption (ii) implies

γ = s(α + 1

2
) + (1 − s) (β + 3

2
) − 3

2
= s(α − 1) + (1 − s)β.

We now introduce spherical coordinates (ρ, θ) on R3 to obtainˆ
R3

τ2γ ∣u∣2 dx =
ˆ
S2

ˆ ∞

0
τ2γ ∣u∣2ρ2 dρ dθ

=
ˆ
S2

ˆ ∞

0
τ2γ ∣u∣2τρ dρ dθ +

ˆ
S2

ˆ ∞

0
τ2γ ∣u∣2(ρ2 − τρ) dρ dθ.

By partial integration in ρ, while recalling u ∈ C∞
0 and the triviality ρ∣

ρ=0
= 0, we get

ˆ
S2

ˆ ∞

0
τ2γ+1ρ∣u∣2 dρ dθ = −

ˆ
S2

ˆ ∞

0

ρ2

2
(u ⋅ ∂ruτ2γ+1 + ∣u∣2(2γ + 1)τ2γ ρ

τ
) dρ dθ

≤ −
ˆ
S2

ˆ ∞

0
ρ3τ2γ−1∣u∣2 (γ + 1

2
) + ρ2τ2γ+1∣u∣∣∇u∣ dρ dθ.

Thus, ˆ
R3

τ2γ ∣u∣2 dx ≤
ˆ
S2

ˆ ∞

0
τ2γ+1ρ2∣u∣∣∇u∣ + ∣u∣2τ2γρ2 (1 − τ

ρ
− (γ + 1

2

ρ

τ
)) dρ dθ.

Now notice that by γ > −3
2 we have γ ≥ −3

2 + C̄ for some constant 1 > C̄ > 0. Hence,

τ

ρ
+ (γ + 1

2
) ρ
τ
≥ (1 − C̄)

√
1 + ∣x∣2
∣x∣ − (1 − C̄) ∣x∣√

1 + ∣x∣2
+ C̄

√
1 + ∣x∣2
∣x∣

≥ C̄
√

1 + ∣x∣2
∣x∣ ≥ C̄.

Using the last estimate and rearranging yieldsˆ
R3

τ2γ ∣u∣2 ≤ 1

C̄

ˆ
S2

ˆ ∞

0
τ2γ+1ρ2∣u∣∣∇u∣ dρ dθ

= 1

C̄

ˆ
R3

τ2γ+1∣u∣∣∇u∣ dx

= 1

C̄

ˆ
R3

τ1+ γ
2 (τγ ∣u∣)2− 1

s ∣∇u∣∣u∣
1
s
−1 dx

= 1

C̄

ˆ
R3

(τγ ∣u∣)2− 1
s (τα∣∇u∣)(τβ ∣u∣)

1
s
−1 dx,

where we used (ii), i.e. 1 + γ
s = α + β (1

s − 1).
Note that 1

s ∈ [1,2] and 1
2 +

1
2
(1
s − 1) + 1

2
(2 − 1

s
) = 1. Thus, we can apply the Hölder

inequality for three factors with exponents 2, 2
1
s
−1
, and 2

2− 1
s

to obtain

ˆ
R3

τ2γ ∣u∣2 ≤ 1

C̄
(
ˆ
R3

(τγ ∣u∣)2 dx)
1− 1

2s

(
ˆ
R3

(τβ ∣u∣)2 dx)
1
2s
− 1

2

(
ˆ
R3

τα∣∇u∣2 dx)
1
2

= 1

C̄
(
ˆ
R3

(τγ ∣u∣)2 dx)
1− 1

2s

B
1
s
−1A.
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Rearranging and taking the whole inequality to the power s yields

(
ˆ
R3

τ2γ ∣u∣2 dx)
1
2

≤ CB1−sAs,

finishing the proof in the case r = 2.

Now consider r > 2:
Define Rk ∶= {2k−1 < ∣x∣ ≤ 2k}. We note that q ∶= 1

1
2
− s

3

= 6
3−2s ∈ [3,6] as s ∈ [1

2 ,1]. Therefore,
by standard Lebesgue space interpolation on Rk with 1

q =
1−s
2 + s

6 and Poincare’s inequality
on balls (cf. section 4.5.2 in [EG92]) holds

∥u∥Lq(Rk) ≤ ∥u − ū∥Lq(Rk) + ∥ū∥Lq(Rk)
≤ ∥u − ū∥1−s

L2(Rk)∥u − ū∥
s
L6(Rk) + ∥ū∥Lq(Rk)

≤ C∥u − ū∥1−s
L2(Rk)∥∇u∥

s
L2(Rk) +Cd

−3+ 3
q

k

ˆ
Rk

∣u∣ dx

≤ C∥u∥1−s
L2(Rk)∥∇u∥

s
L2(Rk) +Cd

−3+ 3
q

k

√
∣Rk∣ ⋅ ∥u∥L2(Rk)

≤ C∥∇u∥sL2(Rk)∥u∥
1−s
L2(Rk) +

C

dsk
∥u∥L2(Rk), (11.8)

where we introduced the shorthand notation dk ∶= diam(Rk) and ū ∶= 1
∣Rk ∣

´
Rk
u dx. We

also used the estimate

∥u − ū∥L2(Rk) =
⎛
⎝

ˆ
Rk

∣u − 1

∣Rk∣

ˆ
Rk

u dy∣
2

dx
⎞
⎠

1
2

≤ C∥u∥L2(Rk) +C
⎛
⎝

ˆ
Rk

∣ 1

∣Rk∣

ˆ
Rk

u dy∣
2⎞
⎠

1
2

≤ C∥u∥L2(Rk) +C (
ˆ
Rk

dx
1

∣Rk∣

ˆ
Rk

∣u∣2 dy)
1
2

= C∥u∥L2(Rk),

which follows from Jensen’s inequality. Note that C does not depend on dk. Another
remark on (11.8) is concerning the use of the Poincare inequality for balls: By Theorem
1 in section 5.4 in [Eva10] there is a continuous linear extension operator E∶H1(Rk) →
H1 (B22k(0)). This means we estimate as follows

∥u − ū∥L6(Rk) = ∥Eu −Eu∥L6(Rk) ≤ ∥Eu −Eu∥L6(B
22k

(0))

≤ C∥∇Eu∥L2(B
22k

(0)) ≤ C∥∇u∥L2(Rk).

Moreover, assumptions (ii) and (iii) yield s (α + 1
2
)+(1−s) (β + 3

2
) = γ+ 3

r ≤ sα+(1−s)β+
3
r .

Hence, s2 +
3
2 −

3s
2 ≤ 3

r , which rearranged gives
1

r
≥ 1

2
− s

3
. (11.9)

Or in other words, r ≤ q. So, Hölder with exponents q
r and q

q−r leads to

∥τγu∥Lr(Rk) ≤ C ∣Rk∣
q−r
qr ∥τγu∥Lq(Rk) ≤ Cd

3( 1
r
− 1
q
)+γ

k ∥u∥Lq(Rk), (11.10)

where we used that dk is comparable to τ on Rk. Indeed, dk = 2 ⋅ 2k, hence

τ =
√

1 + ∣x∣2 ≥ ∣x∣ ≥ 2k−1 = 1

4
dk.
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On the other hand,

τ =
√

1 + ∣x∣2 ≤
√

1 + 22k ≤
√

2 ⋅ 22k =
√

22k =
√

2dk.

Thus, we can combine the non-weighted interpolation estimate (11.8) with the Hölder
estimate (11.10) to obtain

∥τγu∥Lr(Rk) ≤ Cd
3( 1
r
− 1
q
)+γ

k (∥∇u∥sL2(Rk)∥u∥
1−s
L2(Rk) +

1

dsk
∥u∥L2(Rk))

≤ C∥τα∣∇u∣∥sL2(Rk)∥τ
βu∥1−s

L2(Rk) +C∥τ δu∥L2(Rk), (11.11)

where we used the definition δ ∶= γ + 3
r −

3
2 = γ + 3

r +
3
q − s and the identity

3

r
− 3

q
+ γ = s(α + 1

2
) + (1 − s) (β + 3

2
) − 3

q
= sα + (1 − s)β + s

2
+ (1 − s)3

2
− 3

q

= sα + (1 − s)β,

which follows from (ii).
We now take the sum of the inequalities (11.11) over k to obtain the inequality on the
whole R3. Note that then the left hand side is estimated by a

1
r + b 1

r ≤ 21− 1
r (a + b) 1

r for
a, b ≥ 0 by concavity, and by using that Rk ∩Rj = ∅ for k ≠ j the sum over the integrals is
simply the integral over R3. On the right hand side we use Minkowski’s inequality on the
summands with τ δu and for the others we estimate using concavity of the square root and
Hölder with exponents 1

s and 1
1−s in the sum over k to get

∞
∑
k=0

(
ˆ
Rk

τ2α∣∇u∣2dx)
s
2

(
ˆ
Rk

τ2β ∣u∣2dx)
1−s
2

≤
√

2
⎛
⎝
∞
∑
k=0

(
ˆ
Rk

τ2α∣∇u∣2dx)
s

⋅ (
ˆ
Rk

τ2β ∣u∣2dx)
1−s⎞

⎠

1
2

≤
√

2
⎛
⎝
(
∞
∑
k=0

ˆ
Rk

τ2α∣∇u∣2dx)
s

⋅ (
∞
∑
k=0

ˆ
Rk

τ2β ∣u∣2dx)
1−s⎞

⎠

1
2

=
√

2AsB1−s.

We conclude the proof by applying the case r = 2 to the term C∥τ δu∥L2(R3) on the right
hand side with δ playing the role of γ, which is valid since δ = γ + 3

r −
3
2 > −3

2 by (i). This
means, we can estimate

∥τ δu∥L2(R3) ≤ CAsB1−s,

which finishes the proof also for the case r > 2. �

Let us now prove a lemma concerning weighted-norm bounds of the singular integral
operator (−∆)−1 div div, i.e. for later use we want to relate weighted norms of the pressure
and the velocity field of a suitable weak solution.

Lemma 11.11. If p ∈ L3(R3) is the solution of the differential equation

−∆p = div div(u⊗ u) (11.12)

on R3 for a function u ∈ H1(R3). Then for r, γ satisfying 1 < r < ∞ and −3
r < γ < 3 − 3

r
there exists a constant C such that for all ε ≥ 0 holds

∥(ε + ∣x∣2)
γ
2 p∥

Lr(R3)
≤ C ∥(ε + ∣x∣2)

γ
4 u∥

2

L2r(R3)
. (11.13)
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Proof. Without loss of generality assume the right hand side of (11.13) is finite, else
the statement is trivial.
Define the operator Tijf ∶= c∂i∂j ( 1

x
)⋆f for f ∈ C∞

0 (R3). By Theorem B.6 in [RRS16] this
extends to a linear bounded operator from L3(R3) to itself. Note that uiuj ≤ ∣u∣2 ∈ L3(R3)
for all i, j, since u ∈ H1. Thus, for all i, j choose a sequence of testfunctions ϕijn

L3

→ uiuj .
Moreover, define

p ∶= −∣u∣2 +∑
i≠j
Tij(uiuj).

By the above we know p ∈ L3(R3). This is also the unique solution to (11.12) in L3.
Indeed, let p̃ ∈ L3 be another distributional solution. We check that p is a distributional
solution. For that let ψ ∈ C∞

c (R3) and observe

⟨−∆p,ψ⟩ =∑
i

⟨−uiui,−∂i∂iψ⟩ +∑
i≠j

⟨Tij(uiuj),−∆ψ⟩

←∑
i

⟨uiui, ∂i∂iψ⟩ +∑
i≠j

⟨Tij(ϕijn ),−∆ψ⟩

=∑
i

⟨∂i∂iuiui, ψ⟩ +∑
i≠j

⟨ϕijn , ∂i∂j(−∆)−1(−∆)ψ⟩

→∑
i

⟨∂i∂iuiui, ψ⟩ +∑
i≠j

⟨uiuj , ∂i∂jψ⟩

=∑
i

⟨∂i∂iuiui, ψ⟩ +∑
i≠j

⟨∂i∂j(uiuj), ψ⟩

= ⟨div div(u⊗ u), ψ⟩.

Therefore, ∆(p − p̃) = 0 and p − p̃ ∈ L3, hence in particular p − p̃ ∈ L1
loc(R3). By Weyl’s

Lemma (cf. Theorem C.3 in [RRS16]) we obtain that p− p̃ is smooth. But since p− p̃ also
lies in L3 we get by the mean value property for all x ∈ R3 using Hölder

∣(p − p̃)(x)∣ ≤ C

r3

ˆ
Br(x)

∣p − p̃∣ dx ≤ C

r3− 3
2

∥p − p̃∥L3(R3)
r→∞→ 0.

Thus, p defined above is the unique solution in L3.
We show that for i ≠ j holds

∥(1 + ∣x∣2)
γ
2 Tij(f)∥Lr(R3) ≤ C∥(1 + ∣x∣2)

γ
2 f∥Lr(R3) (11.14)

for all f such that the right hand side is finite. This then proves the lemma, since by
scaling we infer for ε > 0

(
ˆ
R3

(ε + ∣x∣2)
rγ
2 (Tijf)r(x) dx)

1
r

= ε
γ
2

⎛
⎜
⎝

ˆ
R3

⎛
⎝

1 + ( ∣x∣√
ε
)

2⎞
⎠

rγ
2

(Tijf)r(x) dx
⎞
⎟
⎠

1
r

= ε
γ
2
+ 3

2r (
ˆ
R3

(1 + ∣y∣2)
rγ
2 (Tijf)r(

√
εy) dy)

1
r

= ε
γ
2
+ 3

2r (
ˆ
R3

(1 + ∣y∣2)
rγ
2 (Tij(f(

√
ε⋅))(y))r dy)

1
r

≤ Cε
γ
2
+ 3

2r (
ˆ
R3

(1 + ∣y∣2)
rγ
2 f r(

√
εy) dy)

1
r
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= Cε
γ
2

⎛
⎜
⎝

ˆ
R3

⎛
⎝

1 + ( ∣x∣√
ε
)

2⎞
⎠

rγ
2

f r(x) dx
⎞
⎟
⎠

1
r

= C (
ˆ
R3

(ε + ∣x∣2)
rγ
2 f r(x) dx)

1
r

.

In the above we used

(Tijf)(
√
εy) = p.v.

ˆ
R3

C (∂i∂j
1

∣ ⋅ ∣) (x −
√
εy)f(x) dx

= p.v.

ˆ
R3

C
(√εyi − xi)(

√
εyj − xj)

∣√εy − x∣5 f(x) dx

= p.v.Cε−
3
2

ˆ
R3

(yi − xi√
ε
) (yj − xj√

ε
)

∣y − x√
ε
∣
5

f(x) dx

= p.v.Cε−
3
2
+ 3

2

ˆ
R3

(yi − zi)(yj − zj)
∣y − z∣5 f(

√
εz) dz

= T (f(
√
ε⋅))(y)

Note that the case ε = 0, i.e.

∥∣x∣γTij(f)∥Lr(R3) ≤ C ∥∣x∣γf∥Lr(R3) ,

is proven in [Ste57], where the bounds on γ stated in the lemma are exactly chosen to fit
into Stein’s theorem. Indeed, using ∂i∂j ( 1

∣x∣) = 3
xixj
∣x∣5 the function H(x,x−y) appearing in

Stein’s theorem, which is defined by

(∂i∂j
1

∣ ⋅ ∣) (x − y) =∶ 1

∣x − y∣3 ⋅H(x,x − y),

satisfies the bound

∣H(x,x − y)∣ = 3
∣xi − yi∣∣xj − yj ∣

∣x − y∣2 ≤ 3.

Thus, all requirements for Stein’s theorem are satisfied.
So, assume (11.14) holds, then for ε ≥ 0 we get

∥(ε + ∣x∣2)
γ
2 p∥

Lr(R3)
=
XXXXXXXXXXX
(ε + ∣x∣2)

γ
2
⎛
⎝
−∣u∣2 +∑

i≠j
Tij(uiuj)

⎞
⎠

XXXXXXXXXXXLr(R3)

≤ ∥(ε + ∣x∣2)
γ
2 u∥

2

L2r(R3)
+∑
i≠j
C ∥(ε + ∣x∣2)

γ
2 uiuj∥

Lr

≤ ∥(ε + ∣x∣2)
γ
2 u∥

2

L2r(R3)
+∑
i≠j
C ∥(ε + ∣x∣2)

γ
2 u∥

2

L2r

≤ ∥(ε + ∣x∣2)
γ
2 u∥

2

L2r(R3)
.

Hence, it is left to prove (11.14). The case γ = 0 corresponds to the classical Calderon-
Zygmund estimate

∥Tij(f)∥Lr ≤ C∥f∥Lr .

Now decompose f into f = f1 + f2, where f1 = χ∣x∣≤1 and f2 = χ∣x∣>1. Note that (1+ ∣x∣2)
γ
2 ≤

1 ≤ 2
γ
2 (1 + ∣x∣γ) for γ ≤ 0 and else for ∣x∣ ≤ 1 holds

(1 + ∣x∣2)
γ
2 ≤ 2

γ
2 ≤ 2

γ
2 (1 + ∣x∣γ),
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whereas for ∣x∣ > 1 holds

(1 + ∣x∣2)
γ
2 ≤ 2

γ
2 ∣x∣γ ≤ 2

γ
2 (1 + ∣x∣γ).

Now using the estimates for γ = 0 and ε = 0 proven before we obtain for positive γ

∥(1 + ∣x∣2)
γ
2 Tijf∥

r

Lr
≤ ∥(1 + ∣x∣2)

γ
2 Tijf1∥

r

Lr
+ ∥(1 + ∣x∣2)

γ
2 Tijf2∥

r

Lr

≤C ∥Tijf1∥rLr +C ∥∣x∣γTijf1∥rLr +C ∥Tijf2∥rLr +C ∥∣x∣γTijf2∥rLr
≤C ∥f1∥rLr +C ∥∣x∣γf1∥rLr +C ∥f2∥rLr +C ∥∣x∣γf2∥rLr

≤C ∥(1 + ∣x∣2)
γ
2 f1∥

r

Lr
+C ∥(1 + ∣x∣2)

γ
2 f1∥

r

Lr

+C ∥(1 + ∣x∣2)
γ
2 f2∥

r

Lr
+C ∥(1 + ∣x∣2)

γ
2 f2∥

r

Lr

=C ∥(1 + ∣x∣2)
γ
2 f∥

r

Lr
.

For γ ≤ 0 we estimate

∥(1 + ∣x∣2)
γ
2 Tijf∥

r

Lr
≤ ∥(1 + ∣x∣2)

γ
2 Tijf1∥

r

Lr
+ ∥(1 + ∣x∣2)

γ
2 Tijf2∥

r

Lr

≤ ∥Tijf1∥rLr + ∥∣x∣γTijf2∥rLr

≤C ∥2

2
⋅ f1∥

r

Lr
+C ∥ 2

2∣x∣−γ f2∥
r

Lr

≤C ∥2(1 + ∣x∣2)
γ
2 f1∥

r

Lr
+C ∥2(1 + ∣x∣2)

γ
2 f2∥

r

Lr

=C ∥(1 + ∣x∣2)
γ
2 f∥

r

Lr
.

This completes the proof of the lemma. �
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