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Preface

These are lecture notes for an advanced master's course on the 3D incompressible
Navier-Stokes equations at Universität Ulm in winter term 2018/19. Except for the �rst
and the last chapter, the notes follow the excellent recent textbook [4]. Students are
encouraged to consult further literature, such as the classical books [1,3,5].

Except for the very end of the course, I chose to work exclusively on the three-
dimensional torus such as to simplify the presentation. However all mentioned results
from the �rst four chapters have a straightforward extension to the whole space R3, or
to (su�ciently regular) bounded domains, which certainly represent the physically most
relevant case.

I would like to thank Dr. Jack Skipper for typing considerable parts of these notes.
Corrections and suggestions should be sent to emil.wiedemann@uni-ulm.de.
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CHAPTER 1

Introduction

The Navier-Stokes equations are

∂tu(x, t) + (u ⋅ ∇)u(x, t) +∇p(x, t) = ν∆u(x, t)
divu(x, t) = 0.

Here, (x, t) ∈ Ω × [0, T ], where Ω ⊂ Rd some domain, and we have the unknown velocity
�eld

u∶ Ω × [0, T ]→ Rd;
the unknown pressure �eld

p∶ Ω × [0, T ]→ R;

and the given constant viscosity ν > 0. It can be written in components, for i = 1, . . . , d:

∂tui +
d

∑
j=1

uj∂jui + ∂ip = ν
d

∑
j=1

∂2
xjui

d

∑
j=1

∂juj = 0.

The Navier-Stokes Equations (NSE) describe the time evolution of the velocity and
pressure of a viscous incompressible �uid (e.g. water) without external forces.

1.1. Physical derivation (sketch)

Conservation of mass: At every time a volume element Ω̃ ⊂⊂ Ω should conserve the
mass of �uid (incompressibility). This means that in�ow and out�ow of u into Ω̃ have to
balance: ˆ

∂Ω̃
u(x, t) ⋅ n(x) dS(x) = 0,

where n(x) is the outer unit normal of the surface ∂Ω̃ at the point x. For regular enough

boundary ∂Ω̃ and u by the Gauss-Green theorem, the surface integral is equal toˆ
Ω̃

divu(x, t) dx,

and since this should equal zero for every Ω̃, we conclude divu = 0 everywhere in Ω.
Conservation of momentum/Newton's 2nd law: Consider a �uid particle initially lo-

cated at x ∈ Ω and denote its location at time t by X(x, t) (�Lagrangian description�).
Newton's 2nd law for this particle (point) reads �F = ma�, and by assuming constant

density (�m = 1�) we obtain

Ẍ(x, t) = F (X(x, t), t).
The particle trajectory map is determined by the ODE

Ẋ(x, t) = u(X(x, t), t),
X(x,0) = x,

4
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because the particle moves according to the �ow of u. Therefore, by the chain rule,

Ẍ(x, t) = ∂tu(X(x, t), t) + (Ẋ(x, t) ⋅ ∇)u(X(x, t), t)
= ∂tu(X, t) + (u(X, t) ⋅ ∇)u(X, t)

where the second term represents the phenomenon known as advection.
Even without external forces (like gravity), there are two kinds of �internal� forces:

The pressure: the �uid �pushes� itself due to incompressibility, and a force results called
the pressure gradient −∇p. Example: rotating �uid in a disk, where the pressure gradient
is precisely the centrifugal force so −∇p is the centripetal force, orthogonal to u.

The friction due to viscosity: In a discrete setting, the velocity di�erences between
neighbouring �uid particles would cause a friction force proportional to

u(x + hej , t) − u(x, t).

Summing over all �neighbours� of x, we obtain

d

∑
j=1

u(x + hej , t) − 2u(x, t) + u(x − hej , t)
h2

where 1
h2

is the appropriate scaling; indeed, then this expression is precisely the discrete
Laplacian, which converges, as h→ 0, to ∆u(x, t).

In total, we obtain

∂tu(X, t) + (u ⋅ ∇)u(X, t) +∇p(X, t) = ν∆u(X, t),

i.e. the NSE.

1.2. Elementary mathematical properties

The incompressible NSE

∂tu(x, t) + (u ⋅ ∇)u(x, t) +∇p(x, t) = ν∆u(x, t)
divu(x, t) = 0,

have a �good part� of parabolic nature (i.e. the heat equation ∂tu = ν∆u). The �bad parts�
non-linear advection term (u ⋅ ∇)u and non-local terms ∇p and divu. Note there is no
evolution law for the pressure.

1.2.1. Energy balance. If u is smooth we can multiply the (NSE) by u and integrate
over (space) Ω to obtainˆ

Ω
∂tu ⋅ u dx +

ˆ
Ω
(u ⋅ ∇)u ⋅ u dx +

ˆ
Ω
∇p ⋅ u dx = ν

ˆ
Ω

∆u ⋅ u dx. (1.1)

The �rst term of (1.1) becomes

1

2

d

dt

ˆ
Ω
∣u∣2 dx = 1

2

d

dt
∥u(⋅, t)∥2

L2(Ω).

Further, we note, by integrating by parts, thatˆ
Ω
(u ⋅ ∇)u ⋅ u dx =

ˆ
Ω
∑
i,j

uiuj∂jui dx = −
ˆ

Ω
∑
i,j

∂juiujui dx −
ˆ

Ω
∑
i,j

ui∂jujui dx.

Thanks to incompressibility (divu = 0 or ∑i ∂iui = 0) we see that the last term vanishes,
whereas the remaining one is precisely the negative of the left hand side, henceˆ

Ω
(u ⋅ ∇)u ⋅ u dx = 0.
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For the term involving the pressure in (1.1) we can also integrate by parts to obtainˆ
Ω
∇p ⋅ u dx = −

ˆ
Ω
pdivu dx = 0

again by incompressibility. For the last term on the RHS of (1.1) we integrate by parts
and see that

ν

ˆ
Ω

∆u ⋅ u dx = −ν
ˆ

Ω
∣∇u∣2 dx.

In total, after also integrating in time, we obtain

1

2

ˆ
Ω
∣u(x, t)∣2 dx + ν

ˆ t

0

ˆ
Ω
∣∇u(x, s)∣2 dx ds = 1

2

ˆ
Ω
∣u(x,0)∣2 dx.

This suggests that u ∈ L2
tH

1
x(Ω) ∩ L∞t L2

x(Ω) is a suitable function space for NSE (the
so-called energy space).

1.2.2. Elimination of pressure. Note that, by virtue of incompressibility (divu =
0), the nonlinearity can be written in divergence form (using Einstein's summation con-
vention):

[(u ⋅ ∇)u]i = uj∂jui = ∂j(ujui) = (divu⊗ u)i,

were we wrote (u⊗ u)ij = uiuj and the divergence of a matrix �eld is taken row-wise: Let

A∶Ω × [0, T ]→ Rd×d then divA is a vector �eld given by (divA)i = ∑j ∂jAij .
Hence the NSE can be written in divergence form as

∂tu + div(u⊗ u) +∇p =ν∆u,

divu =0.

Take the divergence of the NSE and we obtain

div ∂tu + div div(u⊗ u) + div∇p = µ∆ divu

and as divu = 0 both the �rst term and the last term vanish. Further, we note that
div∇p = ∆p and so we obtain

−∆p = div div(u⊗ u),

which is a Poisson equation for the pressure. (In the case of a bounded domain this would
be supplemented by a Neumann boundary condition.)

If u ∈ L2 then this can be solved by some distribution p, and we can write this (sym-
bolically) as

p = −∆−1 div div(u⊗ u)

and hence

∂tu + div(u⊗ u) −∆−1 div div(u⊗ u) = ν∆u.

The operator ∆−1 is given as a singular integral operator: E.g. in R3 we have

∆−1f = C
ˆ
R3

f(y)
∣x − y∣

dy.

This is a non-local operator: Even if f is compactly supported, ∆−1f will, in general, not
be. For the NSE this means that �uid particles may interact, through the pressure, even
when they are far away from each other.
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Existence of weak solutions Uniqueness Regularity
d = 2 Yes Yes Yes
d = 3 Yes (We will show) Unknown/no Unknown (Millennium Problem!)

Table 1. State of the Art for incompressible NSE

1.3. Related Models

1.3.1. Ideal �uids, Euler. We can set ν = 0 and thus model �Ideal �uids� without
friction. This gives the Euler equations

∂tu + div(u⊗ u) +∇p = 0

divu = 0.

Here without the parabolic term from the Laplacian, the mathematical theory is very
di�erent.

1.3.2. Compressible �uids. We can study compressible �uids (like air) where we
have an extra non-negative scalar �eld ρ modelling the density:

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = divS(∇u)
∂tρ + div(ρu) = 0,

the (isentropic) compressible Navier-Stokes equations. Here, S denotes the Newtonian
stress tensor, and the pressure is now a constitutively given function of the density (e.g.
the polytropic pressure law p(ρ) = ργ , γ > 1 the adiabatic exponent).

1.3.3. Non-Newtonian �uids. To study non-Newtonian �uids (like blood), we re-
place the ∆u with divS(∇u), where S is non-linear, e.g. the p-Laplacian:

S(∇u) = ∣∇u∣p−2∇u
and we recover the standard NSE for p = 2. (To be precise, one usually uses only the
symmetric part of ∇u.)

The NSE are widely used by physicists, engineers, geo-scientists etc. for atmospheric
and ocean dynamics, weather forecasting, turbulence theory, etc.



CHAPTER 2

Function Spaces and Weak Solutions

We choose as a domain the three dimensional torus T3 = R3/2πZ3; it has the advantages
of being compact and having no physical boundaries at the same time. In other words, we
look for space periodic solutions:

u(x + 2πk, t) = u(x, t) ∀k ∈ Z3.

The analysis of functions on T3 is simpli�ed by the Fourier series: For u ∈ L1(T3), meaningˆ
T3

∣u(x)∣ dx =
ˆ 2π

0

ˆ 2π

0

ˆ 2π

0
∣u(x1, x2, x3)∣ dx1 dx2 dx3 <∞,

we can de�ne the Fourier coe�cients

ûk =
1

(2π)3

ˆ
T3

e−ik⋅xu(x) dx ∈ Ck, k ∈ Z3.

If ∑k∈Z3 ∣uk∣ <∞, then the Fourier inversion formula says that

u(x) = ∑
k∈Z3

ûke
ik⋅x.

We only work with real-valued functions u, which implies that ûk = û−k, for k ∈ Z3.
By Plancherel's Theorem, for u ∈ L2(T3) we have thatˆ

T3

∣u(x)∣2 dx = (2π)3 ∑
k∈Z3

∣ûk∣2,

and in particular u ∈ L2 if and only if û ∈ l2, i.e.

∑
k∈Z3

∣ûk∣2 <∞.

2.1. Fourier Characterisation of Sobolev Spaces

Let s ∈ N, then one usually de�nes, with the multi-index α ∈ Nd0, the Sobolev norm

∥u∥2
Hs(T3) ∶= ∥u∥2

L2(T3) + ∑
∣α∣≤s

∥∂αu∥2
L2(T3) = (2π)3

⎡⎢⎢⎢⎢⎣
∑
k∈Z3

∣ûk∣2 + ∑
∣α∣≤s

∑
k∈Z3

∣∂̂αuk∣2
⎤⎥⎥⎥⎥⎦
,

where we used Plancherel's Theorem in the last equality. Note that the derivatives are
taken in the weak (distributional) sense.

Further, we can integrate by parts to see that

∂̂juk =
1

(2π)3

ˆ
T3

e−ik⋅x∂ju(x) dx = ikj
1

(2π)3

ˆ
T3

e−ik⋅xu(x) dx = ikj ûk

and hence

∣∂̂αuk∣2 = ∣k∣2∣α∣∣ûk∣2

and thus

∥u∥2
Hs(T3) = (2π)3 ∑

k∈Z3

∑
∣α∣≤s

∣û∣∣k∣2∣α∣.

8
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It turns out (exercise!) that this is equivalent to the norm

∥u∥2
Hs(T3) = (2π)3 ∑

k∈Z3

(1 + ∣k∣2s)∣ûk∣2.

Note that this is even well-de�ned when s /∈ N!

Definition 2.1. Let s ≥ 0, then Hs(T3) contains all functions u ∈ L1(T3) such that

∥u∥2
Hs = (2π)3 ∑

k∈Z3

(1 + ∣k∣2s)∣ûk∣2 <∞.

When s ∈ N, this de�nition coincides with the de�nition by weak derivatives. It will be
useful to consider homogeneous Sobolev spaces, where the zero-th Fourier mode is zero.

Definition 2.2. (1) The homogeneous space L̇2(T3) consists of all u ∈ L2(T3)
such thatˆ
T3

u(x)dx = 0 (i.e. û0 = 0).

(2) The homogeneous Sobolev space Ḣs(T3) is de�ned as Hs(T3)∩ L̇2(T3), with the
norm

∥u∥2
Ḣs ∶= (2π)3 ∑

k∈Z3∖{0}

∣k∣2s∣ûk∣2.

(3) For s < 0, we de�ne H−s(T3) as the dual space of Ḣs(T3).

An element v ∈H−s(T3) can be represented as

v(x) = ∑
k∈Z3∖{0}

v̂ke
ikx

with

∥v∥2
H−s(T3) ∶= ∑

k≠0

∣k∣−2s∣v̂k∣2 <∞.

Indeed, as the dual pairing is given by

(v, u) = ∑
k≠0

v̂kûk = ∑
k≠0

v̂kû−k,

using Cauchy-Schwarz we obtain

∣(v, u)∣ ≤ ∑
k≠0

∣v̂k∣∣û−k∣ = ∑
k≠0

∣v̂k∣
∣k∣s

∣û−k∣∣k∣s ≤ (∑
k≠0

∣k∣−2s∣v̂k∣2)
1/2

(∑
k≠0

∣k∣2s∣ûk∣2)
1/2

<∞.

2.2. Helmholtz Decomposition

Consider now vector-valued maps u ∈ L̇2(T3;R3), i.e. u = (u1, u2, u3) with u1, u2, u3 ∈
L̇2(T3;R). Recall the incompressibility (divergence-free) condition divu = 0, which in
terms of Fourier coe�cients reads

0 = d̂ivuk =
3

∑
j=1

∂̂juj = i
3

∑
j=1

kj(ûj)k = ik ⋅ ûk.

(Note that now ûk ∈ C3.) This motivates the following de�nition of �solenoidal� (i.e.
divergence free or incompressible) vector �elds.

Definition 2.3. We de�ne the space H =H(T3) as

{u ∈ L̇2(T3;R3)∶ k ⋅ uk = 0 ∀k ≠ 0} .

Note that H may contain vector �elds that are not in H1 and hence div is not well
de�ned simply by taking derivatives. H is equipped with the L2 norm.
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Lemma 2.4. Every u ∈H(T3) is weakly divergence free in the sense thatˆ
T3

u(x) ⋅ ∇φ(x) dx = 0

for all φ ∈ Ḣ1(T3).
Proof. We can write u as a Fourier series as u(x) = ∑j≠0 ûje

ij⋅x, then using orthogo-

nality in the form
´

eij⋅xe−ik⋅x dx = δjk, we obtainˆ
T3

u(x) ⋅ ∇(e−ik⋅x) dx =
ˆ
T3
∑
j≠0

ûje
ij⋅x ⋅ (−ik)e−ik⋅x dx =

ˆ
T3

−ik ⋅ ûk dx = 0

since u ∈ H(T3). Further, since {e−ik⋅x}k∈Z3∖{0} form an orthonormal basis (ONB) of

Ḣ1(Td), the computation extends to any φ ∈ Ḣ1(T3). �

Definition 2.5. The space G = G(T3) is de�ned as

G = {g ∈ L̇2(T3;R3)∶ g = ∇φ for some φ ∈ Ḣ1(T3)} .

Hence Lemma 2.4 says that G and H are orthogonal subspaces of L̇2.

Theorem 2.6 (Helmholtz decomposition). L̇2 = G⊕H, i.e. for all u ∈ L̇2(T3;R3) there
exist unique g ∈ G and h ∈H such that

u = g + h and

ˆ
T3

g ⋅ h dx = 0.

Moreover, if u ∈ Ḣs(T3) then g = ∇φ for φ ∈ Ḣs+1(T3) and h ∈ Ḣs(T3).
Proof. We can write u as a Fourier series and see that (ûk)k∈Z3 ∈ l2. We can then

write each ûk as a linear combination of k and a vector wk perpendicular to k. Thus for
all k ≠ 0, let ûk = αkk +wk with k ⋅wk = 0 and αk ∈ C. Note that by orthogonality

∣ûk∣2 = ∣αk∣2∣k∣2 + ∣wk∣2 (2.1)

and hence

u(x) = ∑
k≠0

ûke
ik⋅x = ∑

k≠0

(αkk+wk)eik⋅x = ∑
k≠0

−iαk∇eik⋅x+∑
k≠0

wke
ik⋅x = ∇φ(x)+h(x),

where

φ(x) ∶= ∑
k≠0

−iαke
ik⋅x and h(x) ∶= ∑

k≠0

wke
ik⋅x.

Note that

∥φ∥2
Ḣ1 = ∑

k≠0

∣αk∣2∣k∣2 and ∥h∥L̇2 = ∑
k≠0

∣wk∣2

and so, as

∑
k≠0

∣αk∣2∣k∣2 + ∣wk∣2 = ∑
k≠0

∣ûk∣2 <∞,

hence φ ∈ Ḣ1 and h ∈ L̇2 and thus g ∈ G and h ∈H.
Further, suppose that u ∈ Ḣs(T3) and multiply (2.1) by ∣k∣2s to conclude that φ ∈ Ḣs+1

and h ∈ Ḣs.
Finally, we must show uniqueness. Suppose that u = h1 +∇φ1 = h2 +∇φ2 for h1, h2 ∈H

and ∇φ1,∇φ2 ∈ G, then
(h1 − h2) +∇(φ1 − φ2) = 0 implies that ∥h1 − h2 +∇φ1 −∇φ2∥2 = 0

and then we can apply Lemma 2.4 to see that

∥h1 − h2∥2 + ∥∇φ1 −∇φ2∥2 = 0

and so h1 = h2 and ∇φ1 = ∇φ2. �
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Definition 2.7. The orthogonal projection from L̇2(T3) onto H is called the Leray
projection: If u = h + g with h ∈H and g ∈ G, then Pu = h.

In Fourier series (exercise!)

Pu(x) = ∑
k≠0

(ûk −
ûk ⋅ k
∣k∣2

k) eik⋅x.

Note that the following useful lemma only holds true when the spatial domain has no
physical boundaries.

Lemma 2.8. P commutes with derivatives, i.e. P∂xj = ∂xjP.

Proof. In Fourier series we see that

P̂∂juk = ∂̂juk −
∂̂juk ⋅ k

∣k∣2
k = ikj ûk − ikj

ûk ⋅ k
∣k∣2

k = ikj (ûk −
ûk ⋅ k
∣k∣2

k) = ∂̂jPuk.

�

2.3. The Stokes Operator

Definition 2.9. The space V = V (T3) is given by V =H ∩H1(T3;R3), with the Ḣ1-
norm.

That is, V consists of weakly divergence-free vector �elds with �extra regularity� H1.

Definition 2.10 (Stokes operator). The Stokes operator is de�ned as −P∆, in the
domain V ∩H2(T3;R3).

We notice that from Lemma 2.8 that if u ∈ V ∩H2, then

−P∆u = −∆Pu = −∆u

since u ∈ H. Hence the Stokes operator is simply −∆. However, on bounded domains this
is no longer true in general � we cannot necessarily commute derivatives with the Leray
projector. (On a bounded domain one includes information on the boundary condition in
the de�nition of the space H; this amounts to a weak formulation of the slip condition
u ⋅ n = 0 on ∂Ω.)

Theorem 2.11. There exists a family {wk}k∈N of smooth vector �elds on T3 such that

(1) {wk} is an orthonormal basis of H,
(2) wk are eigenfunctions of the Stokes operator with eigenvalues 0 < λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤

λj ↗∞,
(3) {wk} form an orthogonal basis of V .

Proof. For each k ∈ Z3 ∖ {0} choose vectors mk,m−k ∈ R3 such that

● mk ⊥ k, m−k ⊥ k, mk ⊥m−k,
● ∥mk cos(k ⋅ x)∥L2(T3) = ∥mk sin(k ⋅ x)∥L2(T3) = 1,
● m(−k) =m−k.

Then {mk cos(k ⋅ x)} ∪ {mk sin(k ⋅ x)} ⊂H: Indeed,ˆ
T3

mk cos(k ⋅ x) dx = 0,

ˆ
T3

mk sin(k ⋅ x) dx = 0,

and k ⋅mk cos(k ⋅ x), k ⋅mk sin(k ⋅ x) = 0 by choice of mk. Hence, we have an orthonormal
family in H whose members are also in the domain of the Stokes operator (because they
are smooth). Moreover,

−∆mk cos(k ⋅ x) = −mk∑∂2
j cos(k ⋅ x) = +mk∣k∣2 cos(k ⋅ x) = ∣k∣2mk cos(k ⋅ x),
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so we can de�ne ∣k∣2 ∶= λk, and similar for sin(k ⋅x), whence (2) is proved after re-labelling
indices from Z3 ∖ {0} to N. To show that these functions form a Hilbert basis of H, let
u ∈H and write

u(x) = ∑
k≠0

ûke
ik⋅x = 1

2
∑
k≠0

ûke
ik⋅x + 1

2
∑
k≠0

û−ke
−ik⋅x

= 1

2
∑
k≠0

(ûk + û−k) cos(k ⋅ x) + 1

2
∑
k≠0

i(ûk − û−k) sin(k ⋅ x),

and we see that both (ûk + û−k) and i(ûk − û−k) are in R3 and perpendicular to k. This
becomes, for some ak, bk, ck, dk, αk, βk ∈ R,

∑
k≠0

(akmk + bkm−k) cos(k ⋅ x) +∑
k≠0

(ckmk + dkm−k) sin(k ⋅ x)

= ∑
k≠0

(akmk + b−kmk) cos(k ⋅ x) +∑
k≠0

(ckmk − d−kmk) sin(k ⋅ x)

= ∑
k≠0

αkmk cos(k ⋅ x) +∑
k≠0

βkmk sin(k ⋅ x).

Finally, show orthogonality in V : Indeed, if wk,wl are two of the given eigenfunctions of
the Stokes operator with eigenvectors λk, λl (k ≠ l), then using integration by parts,

(∇wk,∇wl) = (wk,−∆wl) = λl(wk,wl) = 0

by orthogonality in H. �

Remark 2.12. The Ḣ1-norm of wk is
√
λk, because

∥wk∥2
Ḣ1 =

ˆ
T3

∣∇wk∣2 dx =
ˆ
T3

∇wk ∶ ∇wk dx = −
ˆ
T3

wk ⋅∆wk dx

= λk
ˆ
T3

∣wk∣2 dx = λk∥wk∥2
H = λk.

2.4. Weak Solutions

Suppose that (u, p) is a smooth solution of the NSE. Then

∂tu + (u ⋅ ∇)u − ν∆u = −∇p ∈ G.

The requirement of v ∈ G is equivalent, by the Helmholtz decomposition, toˆ
T3

v ⋅ φ dx = 0

for all φ ∈H. It will be convenient to choose φ from the smooth class of functions

Dσ ∶= {φ ∈ C∞
c (T3 × [0,∞)∶ divφ(t) = 0 ∀t ≥ 0}.

So if φ ∈ Dσ, then the NSE implyˆ ∞

0

ˆ
T3

∂tu ⋅ φ dx dt +
ˆ ∞

0

ˆ
T3

(u ⋅ ∇)u ⋅ φ dx dt − ν
ˆ ∞

0

ˆ
T3

∆u ⋅ φ dx dt = 0

where the term involving the pressure has been �projected away� by the choice of test
function. Integration by parts in the ∂t and the ∆ terms gives

−
ˆ ∞

0

ˆ
T3

u ⋅ ∂tφ dx dt +
ˆ ∞

0

ˆ
T3

(u ⋅ ∇)u ⋅ φ dx dt

+ ν
ˆ ∞

0

ˆ
T3

∇u ∶ ∇φ dx dt =
ˆ
T3

u0 ⋅ φ(0) dx. (2.2)
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On the other hand, we have already derived the energy equality:

1

2

ˆ
Ω
∣u(x, t)∣2 dx + ν

ˆ t

0

ˆ
Ω
∣∇u(x, s)∣2 dx ds = 1

2

ˆ
Ω
∣u0∣2 dx,

which suggests that u ∈ L2(0,∞;V )∩L∞(0,∞;H) is the appropriate function space. Note
that for φ ∈ Dσ and u ∈ L∞H ∩L2V , (2.2) is well-de�ned. Thus, we have the following:

Definition 2.13 (Weak solution of the NSE). A vector �eld u ∈ L∞(0,∞;H) ∩
L2(0,∞;V ) is called a weak (Leray-Hopf) solution of the NSE if (2.2) holds for all φ ∈ Dσ.

It will be convenient to check that this de�nition can actually be tested on a smaller
class of test functions than Dσ. Therefore, set

D̃σ ∶= {φ =
N

∑
k=1

dk(t)wk(x)∶ dk ∈ C∞
c ([0,∞))} ,

where {wk} is the eigenbasis of the Stokes operator from Theorem 2.11. Clearly we have

that D̃σ ⊂ Dσ.

Lemma 2.14. If u ∈ L∞(0,∞;H) ∩ L2(0,∞;V ) satis�es (2.2) for all φ ∈ D̃σ, then it
even satis�es (2.2) for all φ ∈ Dσ, i.e. it is a weak solution.

Proof. Let φ ∈ Dσ, then for every t ≥ 0, φ(t) ∈H, and we can write

φ(x, t) =
∞

∑
k=1

dk(t)wk(x)

since {wk} form a Hilbert basis of H. Set

φN ∶=
N

∑
k=1

dk(t)wk(x) ∈ D̃σ.

Then φN → φ in C([0,∞);V ). Indeed,

sup
t

∥φ(t) − φN(t)∥2
V = sup

t
∥

∞

∑
k=N+1

dk(t)wk(⋅)∥2
V = sup

t

∞

∑
k=N+1

λkd
2
k(t),

as {wk} are orthogonal in V and ∥wk∥V =
√
λk (from remark after Theorem 2.11). This

then becomes, as λk increases to ∞,

sup
t

∞

∑
k=N+1

λ2
kd

2
k(t)
λk

≤ 1

λN
sup
t

∞

∑
k=N+1

λ2
kd

2
k(t)

= 1

λN
sup
t

∞

∑
k=N+1

(−∆wk(x)dk(t),−∆wk(x)dk(t))L2

by orthogonality. We then see that we can bound this above by

1

λN
sup
t

∥ −∆φ∥L2(T3) ≤
1

λN
sup
t

∥φ(t)∥H2(T3) → 0

as N →∞, since supt ∥φ(t)∥H2(T3) is independent of N .

Furthermore, ∂tφN → ∂tφ in L2(0, T ;L2(T3)) because
ˆ ∞

0
∥∂tφ − ∂tφN∥2

L2(T3) dt =
ˆ ∞

0
∥

∞

∑
k=N+1

d′k(t)wk(x)∥
2
L2(T3) dt

=
ˆ ∞

0

∞

∑
k=N+1

(d′k(t))
2 dt → 0

as N →∞, where the latter convergence follows from

∂tφ ∈ C∞
c (T3 × [0,∞)) ⊂ C∞

c ([0,∞);H)
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and hence

sup
t

∞

∑
k=1

(d′k(t))
2 = sup

t
∥∂tφ∥2

L2(T3) <∞.

It follows thatˆ ∞

0

ˆ
∂tφN ⋅ u dx dt→

ˆ ∞

0

ˆ
∂tφ ⋅ u dx dt,

ˆ ∞

0

ˆ
∇φN ∶ ∇u dx dt→

ˆ ∞

0

ˆ
∇φ ∶ ∇u dx dt,

ˆ ∞

0

ˆ
φN(0) ⋅ u0(x)∇u dx dt→

ˆ ∞

0

ˆ
φ(0) ⋅ u0(x) dx dt.

For the remaining term
´ ´

(u ⋅∇u) ⋅φN dx dt, we will use the Sobolev embedding H1(T3) ⊂
L6(T3), so it follows that

sup
t

∥φN − φ∥L6(T3) ≤ C sup
t

∥φN − φ∥V → 0

as N →∞. Thus, by Hölders's inequality,

∣
ˆ ˆ

(u ⋅ ∇u) ⋅ (φN − φ) dx dt∣ ≤
ˆ ˆ

∣u∣∣∇u∣∣φN − φ∣ dx dt

≤ ∥u∥L2
tL

3
x
∥∇u∥L2

tL
2
x
∥φN − φ∥L∞t L6

x
→ 0

as N → ∞. (We note that using again the same embedding theorem we have ∥u∥L2
tL

3
x
≤

C∥u∥L2
tL

6
x
≤ C∥u∥L2

tH
1
x
and so ∥u∥L2

tL
3
x
< ∞.) So if we consider the equation for a weak

solution to the NSE (2.2) with φN used as a test function, then we see that every term
will converge to the corresponding one with φ ∈ Dσ and so (2.2) follows for φ ∈ Dσ. �

For later reference, we prove another lemma which allows us to test a weak solution
with functions of the form χ[t1,t2]φ for φ ∈ Dσ, for almost every t1 < t2, where χ denotes the
indicator function of a set. This is a consequence of the Lebesgue di�erentiation theorem,
which we recall without proof:

Theorem 2.15 (Lebesgue di�erentiation theorem). Let Ω ⊂ Rn be measurable and
f ∈ L1

loc(Ω), then for almost every x ∈ Ω we have

lim
ε→0

1

∣Bε(x)∣

ˆ
Bε(x)

∣f(y) − f(x)∣ dy = 0.

A point x for which the statement of the di�erentiation theorem is true is called a
Lebesgue point of f ; the theorem thus says that, given a locally integrable function on a
domain, almost every point in that domain is a Lebesgue point.

Lemma 2.16. Let u be a weak (Leray-Hopf) solution of NSE. Then

−
ˆ t2

t1

ˆ
T3

u ⋅ ∂tφ dx dt +
ˆ t2

t1

ˆ
T3

(u ⋅ ∇)u ⋅ φ dx dt

+ ν
ˆ t2

t1

ˆ
T3

∇u ∶ ∇φ dx dt =
ˆ
T3

u(t1) ⋅ φ(t1) dx −
ˆ
T3

u(t2) ⋅ φ(t2) dx (2.3)

for every φ ∈ Dσ and almost all 0 ≤ t1 < t2, including t1 = 0.

Remark 2.17. Later we will see that this is even true for all (and not just almost all)
times.

Proof. We prove only the case t1 = 0 in detail. So let t2 > 0 and consider a smooth
(cut-o�) function ζ ∶ R→ R such that

● ζ ≥ 0,
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● ζ(t) = 1 for t ≤ −1 and ζ(t) = 0 for t ≥ 1,
● ζ is monotone decreasing.

Then, for every ε > 0, set

ζε(t) ∶= ζ (
t − t2
ε

) .

Thus, ζε (restricted to t ≥ 0) is a smooth approximation of the indicator function χ[0;t2].
If φ ∈ Dσ, then the product ζφ is still in Dσ, so using it as a test function in the weak

formulation of NSE gives

−
ˆ ∞

0

ˆ
T3

u ⋅ ∂t(ζεφ) dx dt +
ˆ ∞

0

ˆ
T3

(u ⋅ ∇)u ⋅ (ζεφ) dx dt

+ ν
ˆ ∞

0

ˆ
T3

∇u ∶ ∇(ζεφ) dx dt =
ˆ
T3

u0 ⋅ φ(0) dx

(for the term involving u0, note that ζε(0) = 1 for su�ciently small ε). The two integrals
including space derivatives are easily seen to converge as ε→ 0: Indeed, ζε converges almost
everywhere to χ[0,t2], and the integrand (u ⋅∇)u ⋅(ζεφ) is bounded pointwise by ∣(u ⋅∇)u∣∣φ∣,
uniformly in ε, which is of course integrable. Hence, by the dominated convergence theorem,ˆ ∞

0

ˆ
T3

(u⋅∇)u⋅(ζεφ) dx dt→
ˆ ∞

0

ˆ
T3

(u⋅∇)u⋅(χ[0,t2]φ) dx dt =
ˆ t2

0

ˆ
T3

(u⋅∇)u⋅φ dx dt

as ε→ 0, and likewiseˆ ∞

0

ˆ
T3

∇u ∶ ∇(ζεφ) dx dt→
ˆ t2

0

ˆ
T3

∇u ∶ ∇φ dx dt

(of course the space derivative does not hit ζε, which depends only on time).
The �rst integral, which contains the time derivative, is a bit more delicate. We

compute ˆ ∞

0

ˆ
T3

u ⋅ ∂t(ζεφ) dx dt =
ˆ ∞

0

ˆ
T3

u ⋅ ζ ′εφ dx dt +
ˆ ∞

0

ˆ
T3

u ⋅ ζε∂tφ dx dt,

and the latter integral is seen, as before, to converge toˆ t2

0

ˆ
T3

u ⋅ ∂tφ dx dt.

For the integral involving ζ ′ε, observe that by de�nition,

ζ ′ε(t) =
1

ε
ζ ′ ( t − t2

ε
) ,

which also implies
´∞

0 ζ ′ε(t) dt = −1 for every ε > 0. Note also that ζ ′ε is supported in Bε(t2).
Therefore,

∣
ˆ ∞

0

ˆ
T3

u ⋅ ζ ′εφ dx dt +
ˆ
T3

u(t2) ⋅ φ(t2) dx∣

≤
ˆ t2+ε

t2−ε
∣ζ ′ε(t)∣ ∣

ˆ
T3

u(t) ⋅ φ(t) − u(t2) ⋅ φ(t2) dx∣ dt

≤ ∥ζ∥C1
1

ε

ˆ t2+ε

t2−ε
∣
ˆ
T3

u(t) ⋅ φ(t) − u(t2) ⋅ φ(t2) dx∣ dt→ 0

as ε→ 0, provided t2 is a Lebesgue point of the map

t↦
ˆ
T3

u(t) ⋅ φ(t) dx.

Since, by Lebesgue's theorem, this is the case for almost every t2 > 0, by collecting all
terms we �nally arrive at (2.3) in the case t1 = 0.
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In the general case, we would use the test function ζε(t)ξε(t)φ(x, t), where ζε is as
before and

ξε(t) ∶= ζ (
t1 − t
ε

) .

The passage to the limit ε→ 0 can then be achieved in exactly the same way as above. �



CHAPTER 3

Existence of Weak Solutions

3.1. Galerkin Approximation

3.1.1. A toy example: the heat equation. To illustrate the Galerkin method in
the simplest possible setting, let us consider the Cauchy problem for the heat equation on
the torus:

∂tu = ∆u on T3,

u(t = 0) = u0.
(3.1)

Let {wk}k∈N be an eigenbasis of −∆ and �project� the problem to the �nite dimensional
subspace PNH ∶= span{w1, . . . ,wN}: If u(t) is in this space for every t, then so is ∂tu(t),
and thanks to the eigenfunction property also −∆u(t) ∈ PNH. The projected version of
the heat equation therefore simply reads

∂tuN = ∆uN on T3,

uN(t = 0) = PNu0.
(3.2)

This equation is known as the Galerkin equation of order N , and we want to solve it in
PNH. To this end, take the ansatz uN(x, t) = ∑Nl=1 d

N
l (t)wl(x), insert it into (3.2), multiply

by wk (k = 1, . . .N), and integrate in space:

(dNk )′(t) + λkdNk (t) = 0,

dNk (0) = (u0,wk)L2 ,

where we used orthonormality and the eigenfunction property of the wl. This is a system
(actually a decoupled one in this simple case) of linear ordinary di�erential equations,
which has a global smooth solution by standard ODE theory.

We wish to let N → ∞ and hope to obtain a solution to the original problem in the
limit. To this end, observe that multiplication of (3.2) with its solution uN and integration
in space yields (in analogy to NSE) the energy equality

1

2

ˆ
T3

∣uN(x, t)∣2 dx+
ˆ t

0

ˆ
T3

∣∇uN(x, s)∣2 dx ds = 1

2

ˆ
T3

∣PNu0(x)∣ dx ≤ 1

2

ˆ
T3

∣u0(x)∣ dx,

and thus a uniform (inN) bound of the Galerkin sequence in L∞L2∩L2H1. By the Banach-
Alaoglu Theorem, we may therefore a weakly*-convergent subsequence (not relabelled), so

that uN
∗⇀ u ∈ L∞L2. Hence for every φ ∈ C∞

c (T3 × [0,∞)), we haveˆ ∞

0

ˆ
T3

uN∂tφ dx dt→
ˆ ∞

0

ˆ
T3

u∂tφ dx dt,

ˆ ∞

0

ˆ
T3

uN∆φ dx dt→
ˆ ∞

0

ˆ
T3

u∆φ dx dt,

and �nallyˆ
T3

PNu
0φ(t = 0)dx→

ˆ
T3

u0φ(t = 0)dx,

17
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because PNu
0 → u0 in L2. It thus follows that u is a weak solution of (3.1). Note that we

did not make any use of the L2H1-bound.

3.1.2. Galerkin for NSE. Recall the basis of eigenfunctions of −∆ (now viewed as
the Stokes Operator) from Theorem 2.11. Let PNH ∶= span{w1, . . . ,wN} and consider the

projection operator PN ∶ L̇2 → PNH given by

PN(u) =
N

∑
j=1

(u,wj)wj

using the L2 inner product. Clearly, for all u ∈ H we have PNu → u in H (i.e. in the
L2-norm.) Indeed,

∥PNu − u∥2
L2 = ∥

∞

∑
j=N+1

(u,wj)wj∥2 =
∞

∑
j=N+1

∣(u,wj)∣2 → 0

as N →∞.

Definition 3.1. The N -th order Galerkin approximation of the NSE with initial data
u0 ∈H is the solution of the equation

∂tuN + PN [(uN ⋅ ∇)uN ] = ν∆uN , (3.3)

uN(0) = PNu0.

Note we have not yet proved that such uN exists! Again we have �projected away� the
pressure. Like for the heat equation, we want to take N →∞.

From the energy estimate, we expect a uniform bound of the form

sup
t

ˆ
Ω
∣uN(x, t)∣2 dx + 2ν

ˆ t

0

ˆ
Ω
∣∇uN(x, s)∣2 dx ds ≤ C <∞, (3.4)

so by the Banach-Alaoglu Theorem we will be able to pass to weak limits:

uN ⇀ u, ∇uN ⇀ ∇u

weakly in L2.
So far, the general strategy seems similar as for the heat equation. However, for NSE,

there are two main issues to solve:
First, the Galerkin approximation (3.3) and thus the resulting system of ODEs now

feature a quadratic term, so that the ODE solution is prima facie only obtained up to
a possibly �nite blow-up time; indeed, the simplest quadratic ODE, ẋ = x2, does exhibit
�nite-time blow-up. Even worse, the existence interval [0, TN) might depend on N and
could therefore, in the worst case, converge to zero as N → ∞, so that in the limit, we
would be left with nothing. It turns out, luckily, that such blow-up scenarios can rather
easily be ruled out by virtue of the �nite dimensional energy equality (3.4).

Once we have globally existing Galerkin approximants {uN}N∈N which satisfy the uni-
form bound (3.4), we need to establish that the weak limit u is a weak solution. For the
heat equation (and more generally for linear equations), this was trivial. However, for the
NSE, in the weak formulation we have the nonlinear termˆ ∞

0

ˆ
T3

(uN ⋅ ∇)uN ⋅ φ dx dt

and it is not clear whether

(uN ⋅ ∇)uN ⇀ (u ⋅ ∇)u!

For example in 1D we see that

uN(x) = sin(Nx)⇀ 0 but u2
N(x) = sin2(Nx) /⇀ 0,
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meaning that weak limits and nonlinearities do, in general, not converge. However, if
we knew uN ⇀ u strongly and ∇uN ⇀ ∇u weakly, then it would follow (uN ⋅ ∇)uN ⇀
(u ⋅ ∇)u weakly. The strong convergence of uN will be obtained by means of the following
compactness result, which can be seen as a time-dependent version of the classical Rellich
compactness theorem:

Lemma 3.2 (Aubin-Lions). Let 0 < T <∞ and assume for some 1 < p, q ≤∞ that

∥uN∥Lq(0,T ;V ) + ∥∂tuN∥Lp(0,T ;V ′) ≤ C,

for a constant C ≠ C(N). Here, V ′ is the dual space of V . Then there exists a subsequence
{uNj}j∈N such that uNj → u strongly in Lq(0, T ;H), for some u ∈ Lq(0, T ;H).

Proof. Consider for k ∈ N the map t ↦ (uN(t),wk)L2 . It is not di�cult to see
(exercise!) that this map is weakly di�erentiable with weak derivative (∂tuN(t),wk), which
is a well-de�ned Lp function since ∂tuN ∈ LptV ′ and wk ∈ V , and so (cf. exercise) s ↦
(uN(s),wk) is (absolutely) continuous and

(uN(s),wk) = (uN(s∗),wk) +
ˆ s

s∗
(∂tuN ,wk) dt

for all s, s∗ ∈ [0, T ]. Again by continuity we may invoke the mean value theorem for
integrals to conclude there exists an s∗ ∈ [0, T ] such that

(uN(s∗),wk) =
1

T

ˆ T

0
(uN ,wk) dt.

Hence,

sup
0≤s≤T

∣(uN(s),wk)∣ ≤ ∣(uN(s∗),wk)∣ + ∣
ˆ s

s∗
(∂tuN ,wk) dt∣

≤ 1

T

ˆ T

0
∥uN∥L2(T3)∥wk∥L2(T3) dt +

ˆ T

0
∥∂tuN∥V ′∥wk∥V dt.

We can now use Hölder's inequality combined with the facts that ∥wk∥L2(T3) = 1 and

∥wk∥V =
√
λk to obtain the bound

≤ 1

T
T

1− 1
q ∥uN∥Lq(0,T ;H) + T

1− 1
p ∥∂tuN∥Lp(0,T ;V ′)

√
λk ≤ C1 +

√
λkC2

where we have used that ∥∂tuN∥Lp(0,T ;V ′) is uniformly bounded and by Poincaré's inequality
we have ∥u∥H ≤ C∥u∥V , which gives a uniform bound on ∥uN∥Lq(0,T ;H). It follows that

PkuN ∶= ∑kj=1(uN ,wj)wj is in C([0, T ];H) and

sup
s∈(0,T )

∥PkuN(s)∥H ≤
k

∑
j=1

(C1 +C2

√
λj) ≤ k(C1 +C2

√
λk)

as λj is increasing.
Claim 1: For every k, {PkuN}N∈N has a subsequence converging in C([0, T ];H). For

this, we will use the Arzelà-Ascoli Theorem. As PkH is �nite-dimensional, it su�ces to
check that the sequence is uniformly bounded and equicontinuous. From the previous
estimate we already have uniform boundedness, so all we need to check is equicontinuity.
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Since PkH is �nite-dimensional, ∥ ⋅ ∥H and ∥ ⋅ ∥V ′ are equivalent in PkH, and so

∥PkuN(t2) − PkuN(t1)∥H = ∥
ˆ t2

t1

∂tPkuN(s) ds∥H

≤
ˆ t2

t1

∥∂tPkuN(s)∥H ds

≤ Ck
ˆ t2

t1

∥∂tPkuN(s)∥V ′ ds

≤ Ck (
ˆ t2

t1

∥∂tPkuN(s)∥pV ′ ds)
1
p

(
ˆ t2

t1

ds)
1− 1

p

≤ C̃k∣t2 − t1∣1−
1
p

where we used Hölder's inequality and that ∥∂tPkuN∥Lp(t1,t2;V ′) is uniformly bounded in
N . Thus we may apply the Arzelà-Ascoli theorem, which proves the claim.

Claim 2: {uN} has a subsequence that is Cauchy in Lq(0, T ;H). Clearly Claim 2
implies the theorem. By a diagonal argument (exercise), we can select a subsequence (still
denoted {uN}) so that {PkuN} is convergent in Lq(0, T ;H) for all k ∈ N (see Claim 1).
We will show this sequence is Cauchy in Lq(0, T ;H).

Claim 2a: For every δ > 0 there exists k ∈ N such that
ˆ T

0
∥PkuN(s) − uN(s)∥qH ds < δ

for all N ≥ k. Indeed, we know that C ≥ ∥uN∥Lq(0,T ;V ) and as (∇wj ,∇wk) = (−∆wj ,wk) =
λj(wj ,wk) = λjδjk, then

C ≥
ˆ T

0
∥∇uN(s)∥q

L2 ds =
ˆ T

0

⎛
⎝

∞

∑
j=1

λj ∣(uN(s),wj)L2 ∣2
⎞
⎠

q
2

ds

≥
ˆ T

0

⎛
⎝

∞

∑
j=k+1

λj ∣(uN(s),wj)L2 ∣2
⎞
⎠

q
2

ds,

so as λj are increasing we obtain

≥ λ
q
2

k+1

ˆ T

0

⎛
⎝

∞

∑
j=k+1

∣(uN(s),wj)L2 ∣2
⎞
⎠

q
2

ds = λ
q
2

k+1

ˆ T

0
∥PkuN(s) − uN(s)∥q

L2 ds,

and now Claim 2a follows from the fact that λ↗∞.
Next, recall that (for the k from Claim 2a) PkuN is Cauchy in Lq(0, T ;H), so there is

an N0 ∈ N such thatˆ T

0
∥PkuN(s) − PkuM(s)∥q ds < δ

for all N,M > N0. By the triangle inequality,

∥uN − uM∥Lq(0,T ;H) ≤ ∥uN − PkuN∥Lq(0,T ;H) + ∥PkuN − PkuM∥Lq(0,T ;H)

+ ∥uM − PkuM∥Lq(0,T ;H) ≤ 3δ
1
q

and since δ > 0 was arbitrary, Claim 2 follows and we are done. �

Only one ingredient is missing before we can embark on the existence proof for weak
solutions:
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Lemma 3.3 (Lp interpolation). Let Ω be a measure space and u ∈ Lp(Ω) ∩ Lq(Ω) for
some 1 ≤ p ≤ q ≤ ∞. Then u ∈ Lr(Ω) for all p ≤ r ≤ q, and ∥u∥Lr ≤ ∥u∥αLp∥u∥1−α

Lq , where
1
r =

α
p +

1−α
q .

Proof. Using Hölder's inequality with p
αr ,

q
(1−α)r we see that

ˆ
Ω
∣u∣r dx =

ˆ
Ω
∣u∣αr ∣u∣(1−α)r dx ≤ (

ˆ
Ω
∣u∣p dx)

αr
p

(
ˆ

Ω
∣u∣q dx)

(1−α)r
p

= [∥u∥αLp∥u∥1−α
Lq ]r

and so we are done. �

3.2. The Existence Proof

Theorem 3.4 (Existence of weak solutions). For every u0 ∈H there exists a weak so-

lution of the NSE with initial data u0. Moreover, this solution satis�es ∂tu ∈ L4/3
loc (0, T ;V ′).

Proof. Step 1: Existence of Galerkin approximations, locally in time. Recall the
N -th order Galerkin equation:

∂tuN + PN [(uN ⋅ ∇)uN ] = ν∆uN ,

uN(0) = PNu0.

We take the ansatz

uN(x, t) =
N

∑
j=1

dNj (t)wj(x)

and multiply the Galerkin equation by wk, and integrate:

∂t

ˆ
T3

N

∑
j=1

dNj (t)wj(x)wk(x) dx+
ˆ
T3

PN(
N

∑
j,l=1

dNj (t)dNl (t)wj(x) ⋅∇)wl(x) ⋅wk(x) dx

= ν
N

∑
j=1

ˆ
T3

dNj (t)∆wj(x) ⋅ wk(x) dx.

By orthogonality of {wk} in L2 and the eigenfunction property, this gives

(dNk )′(t) + νλkdNj (t) +
N

∑
j,l=1

dNj (t)dNl (t)Bkjl = 0,

with k = 1, . . . ,N and

Bkjl ∶=
ˆ
T3

(wj(x) ⋅ ∇)wl(x) ⋅wk(x) dx.

Indeed, (PNv,wk)L2 = (v,wk)L2 for all v ∈ L2 by a simple linear algebra argument.
This is a system of N ODEs for the N unknown functions dNk (k = 1, . . . ,N), with

initial condition

dNk (0) =
ˆ
T 3

u0(x)wk(x) dx.

(The latter is obtained by multiplying

uN(x,0) =
N

∑
j=1

dNj (0)wj(x)

by wk and employing the initial condition uN(x,0) = PNu0(x). Note again (PNu0(x),wk(x)) =
(u0,wk(x)).)
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By classical ODE theory (Picard-Lindelöf/Cauchy-Lipschitz) there exists a time TN > 0
and a solution {dNk }k=1,...,N ∈ C1((0, TN)) of this system.

Step 2: Show TN = ∞ for all N , via energy estimates. Let s ∈ (0, TN). Multiply the
Galerkin equation at time s with uN(s) and integrate in x to get

ˆ
T3

∂tuN(s) ⋅ uN(s) dx +
ˆ
T3

PN(uN(s) ⋅ ∇)uN(s) ⋅ uN(s) dx

= ν
ˆ
T3

∆uN(s) ⋅ uN(s) dx.

Observe each integral in order: for the �rst we see thatˆ
T3

∂tuN(s) ⋅ uN(s) dx = 1

2

d

dt

ˆ
T3

∣uN(s)∣2 dx,

for the second,ˆ
T3

PN(uN(s) ⋅ ∇)uN(s) ⋅ uN(s) dx =
ˆ
T3

(uN(s) ⋅ ∇)uN(s) ⋅ uN(s) dx

=
3

∑
j,l=1

ˆ
T3

ujN(s)∂xju
l
N(s)ulN(s) dx

= −
3

∑
j,l=1

ˆ
T3

∂xju
j
N(s)(ulN(s))2 dx

−
3

∑
j,l=1

ˆ
T3

∂xju
j
N(s)ulN(s)∂xju

l
N(s) dx = 0

using incompressibility, and for the last term we see that

ν

ˆ
T3

∆uN(s) ⋅ uN(s) dx = −ν
ˆ
T3

∣∇uN(s)∣2 dx.

Hence for all s ∈ (0, TN) we obtain the (�nite-dimensional) energy equality

1

2

d

dt
∥uN(s)∥2

L2(T3) + ν∥∇uN(s)∥2
L2(T3) = 0.

We note that this equality implies (after integration in s) that

sup
t

1

2
∥uN(t)∥2

L2 ≤
1

2
∥u0∥2

L2 and

ˆ ∞

0
∥∇uN(s)∥2

L2 ds ≤ 1

2ν
∥u0∥2

L2 ,

thus {uN} are uniformly bounded in L∞(0,∞;H) ∩L2(0,∞;V ).
In particular, since uN(x, s) = ∑Nk=1 d

N
k (s)wk(x) and since {wk} is an ONB in L2,

∥uN(s)∥2
L2 =

d

∑
k=1

∣dNk (s)∣2

and this is bounded in s. It follows that {dNk (s)}k=1,...,N is uniformly bounded in s and
hence TN =∞.

Step 3: Bound ∂tuN in an appropriate norm (in order to apply Aubin-Lions).
Let φ ∈ V and take the L2-inner product with the Galerkin equation:

(∂tuN , φ) = ν(∆uN , φ) − (PN(uN ⋅ ∇)uN , φ)
= ν(∆uN , φ) − ((uN ⋅ ∇)uN , PNφ),

where for the last equality we used the self-adjointness of the projection PN . For the �rst
term

∣ν(∆uN , φ)∣ = ν∣(∇uN ,∇φ)∣ ≤ ν∥∇uN∥L2∥φ∥V ,
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and for the second

∣((uN ⋅∇)uN , PNφ)∣ ≤ ∥uN∥L3∥∇uN∥L2∥PNφ∥L6 ≤ ∥uN∥
1
2

L2∥uN∥
1
2

L6∥∇uN∥L2∥PNφ∥L6

using interpolation (Lemma 3.3). Now we can use the Sobolev embedding ∥v∥L6 ≤ C∥v∥Ḣ1 =
C∥v∥V = C∥∇v∥L2 and the projection property ∥PNφ∥V ≤ ∥φ∥V to obtain

∣((uN ⋅ ∇)uN , PNφ)∣ ≤ C∥uN∥
1
2

L2∥∇uN∥
3
2

L2∥φ∥V .

It follows from the de�nition of the dual/operator norm

∥∂tuN∥V ′ ≤ ν∥∇uN∥L2 +C∥uN∥
1
2

L2∥∇uN∥
3
2

L2

and thus for any 0 < T <∞ˆ T

0
∥∂tuN∥

4
3
V ′ ds ≤ Cν

ˆ T

0
∥∇uN(s)∥

4
3 ds +C

ˆ T

0
∥uN∥

2
3

L2∥∇uN(s)∥2
L2 ds.

Using Hölder's inequality in time on both terms (�rst L3(on 1), L3/2 second L∞, L1) we
obtain

≤ CνT
1
3

⎡⎢⎢⎢⎢⎣
(
ˆ T

0
∥∇uN(s)∥2 ds)

1
2
⎤⎥⎥⎥⎥⎦

4
3

+C∥uN∥
2
3

L∞(0,T ;H)
∥uN(s)∥2

L2(0,T ;V )

which becomes

≤ CνT
1
3 ∥uN(s)∥

4
3

L2(0,T ;V )
+C∥uN∥

2
3

L∞(0,T ;H)
∥uN(s)∥2

L2(0,T ;V )

which is bounded uniformly in N (for �xed ν and T !) owing to the energy estimates from
Step 2.

Step 4: Extract a convergent subsequence.
By Banach-Alaoglu, there is a subsequence {uNj}j such that

uNj
∗⇀ u

weak-∗ in L∞(0,∞;H), and another subsequence {uNj,l}l such that

∇uNj,l ⇀ w in L2(0,∞;L2(T3)).

It is easy to show that (exercise!) w = ∇u. For any �xed 0 < T <∞, extracting yet another
subsequence if necessary (not relabelled), the uniform bound on ∂tuN gives

∂tuN
∗⇀ ∂tu in L4/3(0, T ;V ′).

Even better, by a diagonal argument we obtain a subsequence such that

∂tuN
∗⇀ ∂tu in L

4/3
loc (0,∞;V ′).

Choosing yet another subsequence and applying again a diagonal argument, we obtain
by Lemma 3.2 (Aubin-Lions)

uN → u

strongly in L2
loc(0,∞;H).

Step 5: Show the limit is a solution of NSE.
By Lemma 2.14, it su�ces to choose a test function of the form

φ(x, t) =
m

∑
k=1

dk(t)wk(x) ∈ D̃σ.
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Let T be so large that supp(dk) ⊂ [0, T ) for all k = 1, . . . ,m. By the Galerkin equation,
for any N ≥m we have

−
ˆ ∞

0

ˆ
T3

uN ⋅ ∂tφ dx dt + ν
ˆ ∞

0

ˆ
T3

∇uN ∶ ∇φ dx dt

+
ˆ ∞

0

ˆ
T3

(uN ⋅ ∇)uN ⋅ φ dx dt =
ˆ
T3

u0 ⋅ φ(0) dx.

Weak convergence uNj
∗⇀ u in L∞(0, T ;L2(T3)) gives

−
ˆ ∞

0

ˆ
T3

uN ⋅ ∂tφ dx dt→ −
ˆ ∞

0

ˆ
T3

u ⋅ ∂tφ dx dt

and ∇uN ⇀ ∇u in L2(0, T ;L2(T3)) givesˆ ∞

0

ˆ
T3

∇uN ∶ ∇φ dx dt→
ˆ ∞

0

ˆ
T3

∇u ∶ ∇φ dx dt.

Only the non-linear term needs some more attention, we see that

(uN ⋅ ∇)uN − (u ⋅ ∇)u = ((uN − u) ⋅ ∇)uN − (u ⋅ ∇)(uN − u).
Firstly,

∣
ˆ ∞

0

ˆ
T3

((uN − u) ⋅ ∇)uN ⋅ φ dx dt∣ ≤ Cφ
ˆ T

0
∥uN − u∥L2∥∇uN∥L2 dt

≤ Cφ∥uN − u∥L2(0,T ;L2)∥∇uN∥L2(0,T ;L2)

and we see that this converges to zero as ∥∇uN∥L2(0,T ;L2) is bounded and ∥uN −u∥L2(0,T ;L2)

converges to zero as N →∞. Secondly,ˆ ∞

0

ˆ
T3

(u ⋅ ∇)(uN − u) ⋅ φ dx dt→ 0

as N →∞ as u ∈ L2
t,x and ∇(uN − u) converges to zero weakly in L2

t,x. It follows thatˆ ∞

0

ˆ
T3

(uN ⋅ ∇)uN ⋅ φ dx dt→
ˆ ∞

0

ˆ
T 3

(u ⋅ ∇)u ⋅ φ dx dt

and so

−
ˆ ∞

0

ˆ
T3

u ⋅ ∂tφ + ν∇u ∶ ∇φ + (u ⋅ ∇)u ⋅ φ dx dt =
ˆ
T3

u0 ⋅ φ(0) dx.

Hence u is a weak solution. �

The bound on the time derivative allows us to obtain a useful continuity property in
time, typical for balance equations in continuum mechanics:

Proposition 3.5. The solution constructed in Theorem 3.4 is (after alteration on a
set of times of measure zero, if necessary) contained in the space C([0,∞);V ′), and it
satis�es the statement of Lemma 2.16 even for all (and not just almost all) 0 ≤ t1 < t2.

Proof. This will be proved in the exercises, based on the property ∂tu ∈ L4/3
loc (0,∞;V ′).

�

In fact, one can show that this proposition is true for every Leray-Hopf solution, not
just the (possibly particular) one constructed in Theorem 3.4. Of course, if Leray-Hopf
solutions are unique, this distinction is unnecessary, but uniqueness is still unknown in
three dimensions.



CHAPTER 4

Strong Solutions

4.1. Some More on Bochner Spaces

For this entire chapter, let 0 < T <∞ be arbitrary but �xed. We collect a few technical
results to be used later.

Proposition 4.1. Let X Banach and suppose u,w ∈ L1(0, T ;X). Then the following
are equivalent:

(1) ∂tu = w in the weak sense;
(2) There exists ξ ∈X such that, for a.e. t ∈ (0, T ),

u(t) = ξ +
ˆ t

0
w(s) ds;

(3) For every v ∈X ′, in the weak sense it holds that

d

dt
(u, v) = (w, v).

Moreover, if one (and thus all) of these conditions holds, then u can be altered on a nullset
of times so that it belongs to C([0, T ];X).

Proof. Exercise. �

Proposition 4.2. Let u ∈ L2(0, T ; Ḣ1(T3)) and ∂tu ∈ L2(0, T ;H−1(T3)). Then,
(1) u ∈ C([0, T ]; L̇2(T3));
(2) the map t↦ 1

2∥u(t)∥
2
L̇2 is weakly di�erentiable with

d

dt

1

2
∥u(t)∥2

L̇2 = (u(t), ∂tu(t)) for a.e. t ∈ (0, T );

(3)

max
t∈[0,T ]

∥u(t)∥L̇2 ≤ C (∥u∥L2Ḣ1 + ∥∂tu∥L2H−1) .

Proof. Let η ∈ C∞
c (R) be a standard molli�er (in the time variable), that is, η ≥ 0,´

R η(θ) dθ = 1, suppη ⊂ B1(0), and η = η(∣θ∣). Set ηε(t) ∶= 1
ε
( t
ε
) and, for any f ∈ L1

loc(R),
fε ∶= f ∗ ηε, i.e.

fε(t) =
ˆ ε

−ε
f(t − τ)ηε(τ) dτ.

Consider now u as given in the statement and extend it to t ∈ R by zero, so that its
molli�cation is well-de�ned on all of [0, T ]. For ε, δ > 0, uδ and uε are smooth in time, and
we may thus use the standard Leibniz rule to compute

d

dt
∥uε(t) − uδ(t)∥2

L2 = 2

ˆ
T3

(uε(t) − uδ(t)) ⋅ (∂tuε(t) − ∂tuδ(t)) dx. (4.1)

Observe that for a.e. s ∈ (0, T ), uε(s)→ u(s) in H1(T3) and ∂tuε(s)
∗⇀ ∂tu(s) in H−1(T3)

(exercise). Pick such an s and integrate (4.1) from s to t to obtain

∥uε(t) − uδ(t)∥2
L2 ≤ ∥uε(s) − uδ(s)∥2

L2 +
ˆ T

0
∣(uε(τ) − uδ(τ), ∂tuε(t) − ∂tuδ(t))∣ dτ

25
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By choice of s, the �rst expression on the right hand side converges, as ε, δ → 0, to zero,
and so does the dual pairing under the integral, for almost every τ . But then the integral
itself converges by dominated convergence (exercise).

It follows that {uε}ε>0 is Cauchy in C([0, T ];L2(T3)), and since this space is Banach,
it follows uε → u ∈ C([0, T ];L2(T3)), whence (1) is established.

For (2), again by the classical Leibniz rule,

d

dt
∥uε(t)∥2

L2 = 2

ˆ
T3

uε(t) ⋅ ∂tuε(t) dx

and hence, after integration from s to t,

∥uε(t)∥2
L2 = ∥uε(s)∥2

L2 + 2

ˆ t

s

ˆ
T3

uε(τ) ⋅ ∂tuε(τ) dτ dx, (4.2)

and the same equality follows for u instead of uε by similar convergence arguments as
before. Application of Proposition 4.1 (2) then gives the desired characterisation of the
weak time derivative.

Finally, for (3), integrate (4.2) in s over (0, T ) to arrive at

T ∥uε(t)∥2
L2 ≤
ˆ T

0
∥uε(s)∥2

L2 ds + T (∥u∥2
L2Ḣ1 + ∥∂tu∥2

L2H−1),

and thus (3) follows because t is arbitrary and the right hand side is independent of t. �

Corollary 4.3. Let u, v ∈ L2(0, T ; Ḣ1(T3)) and ∂tu, ∂tv ∈ L2(0, T ;H−1(T3)). Then
the map t↦ (u, v) is absolutely continuous with weak derivative

d

dt
(u, v) = (∂tu, v) + (u, ∂tv).

Proof. This follows from the polarisation identity

(u, v) = 1

2
(∥u + v∥2 − ∥u∥2 − ∥v∥2)

and the preceding proposition. �

The following can be seen as an extension of Proposition 4.2 to higher order Sobolev
spaces:

Proposition 4.4. Let n ∈ N0 and suppose u ∈ L2(0, T ; Ḣn+2(T3)) and ∂tu ∈ L2(0, T ; Ḣn(T3)).
Then, u ∈ C([0, T ]; Ḣn+1(T3)), and

max
t∈[0,T ]

∥u(t)∥Ḣn+1 ≤ C (∥u∥L2Ḣn+2 + ∥∂tu∥L2Ḣn) .

Proof. We indicate only the formal argument and remark that the rigorous proof
proceeds exactly as in Proposition 4.2 by time molli�cation.

So assume u is smooth and take for simplicity n = 0, then we compute

d

dt
∥u(t)∥2

Ḣ1 =
d

dt
∥∇u(t)∥2

L2

= 2

ˆ
T3

∇u ∶ ∂t∇u dx

= −2

ˆ
T3

∆u ⋅ ∂tu dx ≤ ∥u(t)∥2
H2 + ∥∂tu(t)∥2

L2 ,

and the estimate

sup
t∈[0,T ]

∥u(t)∥Ḣn+1 ≤ C (∥u∥L2Ḣn+2 + ∥∂tu∥L2Ḣn)

follows, as before, by integrating �rst from s to t and then by integrating in s from 0 to
T . �
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4.2. Properties of Strong Solutions

Definition 4.5 (Strong solutions). A strong solution of NSE is a weak solution with
additional regularity

u ∈ L∞(0, T ;H1(T3)) ∩L2(0, T ;H2(T3)).

Strong solutions have very nice properties, like energy conservation, uniqueness, and
smoothness; however, given initial data u0 ∈ V , a strong solution is known to exist only on
a possibly �nite time interval (whether or not the existence time can actually be �nite is
precisely the Navier-Stokes Millennium Problem).

Lemma 4.6. Let u be a strong solution, then ∂tu, (u ⋅ ∇)u,∆u ∈ L2(0, T ;L2(T3)).

Proof. From the assumption u ∈ L2(0, T ;H2) it follows immediately that ∆u ∈
L2(0, T ;L2). For the nonlinear term, note that H2 embeds continuously into L∞, so
that ˆ T

0

ˆ
T3

∣u∣2∣∇u∣2 dx dt ≤
ˆ T

0
∥u(t)∥2

L∞

ˆ
T3

∣∇u(x, t)∣2 dx dt ≤ C∥u∥2
L∞H1∥u∥2

L2H2 .

It remains to estimate the time derivative. In view of Lemma 2.16 and the remark after
Proposition 3.5, for every smooth divergence-free vector �eld φ ∈ C∞(T3) and every t ∈
[0, T ] we have

ˆ
T3

u(t) ⋅ φ dx =
ˆ
T3

u0 ⋅ φ dx −
ˆ t

0

ˆ
T3

∇u ∶ ∇φ + (u ⋅ ∇)u ⋅ φ dx ds

=
ˆ
T3

u0 ⋅ φ dx +
ˆ t

0

ˆ
T3

∆u ⋅ φ − (u ⋅ ∇)u ⋅ φ dx ds,

as u has weak second space derivatives. Proposition 4.1 allows us to take the time derivative
of this equality to obtain, for every t ∈ [0, T ],ˆ

T3

∂tu ⋅ φ dx =
ˆ
T3

ν∆u ⋅ φ − (u ⋅ ∇)u ⋅ φ dx.

Let ψ ∈ C∞(T3) be any smooth vector �eld and ψ = φ + ∇π its Helmholtz decomposition,
so that divφ = 0. Then, as u(t) ∈H,ˆ

T3

∂tu ⋅ ψ dx =
ˆ
T3

∂tu ⋅ ψ(t) dx

=
ˆ
T3

ν∆u ⋅ Pφ − (u ⋅ ∇)u ⋅ Pψ dx

=
ˆ
T3

P(ν∆u − (u ⋅ ∇)u) ⋅ ψ dx,

and since ψ was arbitrary, it follows that ∂tu = P(∆u−(u ⋅∇)u). By the previous estimates,
this is indeed in L2(0, T,L2).

�

Lemma 4.7. Let u be a strong solution. Then, for any w ∈ L2(0, T ;H),
ˆ T

0

ˆ
T3

(∂tu + (u ⋅ ∇)u − ν∆u) ⋅w dx dt = 0.

Note that the integral in fact is well-de�ned by the previous lemma.

Proof. By similar arguments as in the proof of Lemma 2.14, the space D̃σ is dense
in L2(0, T ;H), and therefore it su�ces to consider w ∈ D̃σ. But such w may be used as a
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test function in the weak formulation, so that
ˆ
T3

u(T ) ⋅w(T ) dx −
ˆ
T3

u0 ⋅w(0) dx =
ˆ T

0

ˆ
T3

u ⋅ ∂tw − ν∇u ∶ ∇w − (u ⋅ ∇)u ⋅w dx dt.

But clearly, since u is a strong solution,
ˆ T

0

ˆ
T3

∇u ∶ ∇w dx dt = −
ˆ T

0

ˆ
T3

∆u ⋅w dx dt,

and by Proposition 4.1 and Corollary 4.3 also
ˆ
T3

u(T ) ⋅w(T ) dx−
ˆ
T3

u0 ⋅w(0) dx−
ˆ T

0

ˆ
T3

u ⋅∂tw dx dt =
ˆ T

0

ˆ
T3

∂tu ⋅w dx dt.

Putting everything together, we arrive at the conclusion. �

Lemma 4.8. For any u ∈ V , we haveˆ
T3

(u ⋅ ∇)u ⋅ u dx = 0.

Proof. Write b(u,u, u) ∶=
´
T3(u ⋅ ∇)u ⋅ u dx = 0, then this is a trilinear form. For

smooth vector �elds, we have already established b(u,u, u) = 0 (in the formal derivation of
the energy equality). Therefore, if uε = u ∗ ηε denotes a standard molli�cation, we have

∣b(u,u, u)∣ ≤ ∣b(u,u, u)−b(uε, u, u)∣+∣b(uε, u, u)−b(uε, uε, u)∣+∣b(uε, uε, u)−b(uε, uε, uε)∣.

But the �rst term is estimated asˆ
T3

∣u − uε∣∣∇u∣∣u∣ dx→ 0

as ε → 0: This follows from the embedding H1 ⊂ L6 ⊂ L3 and Hölder's inequality with
1
6 ,

1
2 ,

1
3 . The other two terms are estimated in the same way. �

Theorem 4.9 (Energy equality). A strong solution satis�es the energy equality, i.e.
for every s < t we have

1

2

ˆ
T3

∣u(t)∣2 dx + ν
ˆ t

s

ˆ
T3

∣∇u(x, τ)∣2 dτ = 1

2

ˆ
T3

∣u(s)∣2 ds.

Proof. In Lemma 4.7, we may take w ∶= χ[s,t]u and thus obtain

0 =
ˆ T

0

ˆ
T3

(∂tu+(u⋅∇)u−ν∆u)⋅uχ[s,t] dx dτ =
ˆ t

s

ˆ
T3

(∂tu+(u⋅∇)u−ν∆u)⋅u dx dτ.

By Proposition 4.2, u ⋅ ∂tu = 1
2

d
dt∥u∥

2
L2 , and

ˆ t

s

ˆ
T3

u ⋅ ∂tu dx dτ = 1

2

ˆ
T3

∣u(t)∣2 dx − 1

2

ˆ
T3

∣u(s)∣2 ds,

whereas (by a very simple approximation argument)ˆ
T3

∆u ⋅ u dx = −
ˆ
T3

∣∇u∣2 dx,

and �nallyˆ
T3

(u ⋅ ∇)u ⋅ u dx = 0

thanks to Lemma 4.8. This completes the proof. �
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Lemma 4.10. Let u be a weak solution of NSE and U ∈ L2(0, T ;H2 ∩ V ) a vector �eld
with ∂tU ∈ L2(0, T ;L2). Then U is a valid test function in the de�nition of weak solution
for u, that is,

ˆ
T3

u(t) ⋅U(t) dx −
ˆ
T3

u0 ⋅U(0) dx =
ˆ t

0

ˆ
T3

u ⋅ ∂tU − ν∇u ∶ ∇U − (u ⋅ ∇)u ⋅U dx ds

(4.3)

for every t ∈ [0, T ].
Proof. We only give a sketch. As before (e.g. in the proof of Lemma 2.14), we

approximate U by �elds in D̃σ by means of the projection operator PN onto the span of
the �rst N Stokes eigenfunctions. For every thus obtained UN , (4.3) is valid. One then
takes the limit N →∞. The only term requiring some care is

´
T3 u(t) ⋅U(t) dx, as we need

to converge pointwise in t. But by Proposition 4.4 (with n = 0), we have

sup
t∈[0,T ]

∥(UN −UM)(t)∥Ḣ1 ≤ C (∥UN −UM∥L2Ḣ2 + ∥∂t(UN −UM)∥L2L̇2) ,

meaning that {UN} is Cauchy, and thus convergent, in C([0, T ];H1). The proof now
proceeds as in Proposition 4.4. �

Theorem 4.11 (Weak-strong uniqueness). Let U be a strong solution and u a weak
solution that satis�es the energy inequality, and assume both solutions share the same initial
data u0 ∈H. Then u ≡ U almost everywhere.

Proof. The proof relies on an estimate of the relative energy between u and U , de�ned
as

Erel(t) =
1

2

ˆ
T3

∣u(x, t) −U(x, t)∣2 dx.

In the course of the computation, we use three ingredients:

(1) The weak formulation for u, tested with U , as justi�ed by Lemma 4.10:
ˆ
T3

u(t) ⋅U(t) dx −
ˆ
T3

u0 ⋅U(0) dx =
ˆ t

0

ˆ
T3

u ⋅ ∂tU − ν∇u ∶ ∇U − (u ⋅ ∇)u ⋅U dx ds;

(2) The pointwise solution property of U , integrated against u, as justi�ed by Lemma 4.7:ˆ T

0

ˆ
T3

(∂tU + (U ⋅ ∇)U − ν∆U) ⋅ u dx dt = 0;

(3) The energy (in)equalities for u and U , as justi�ed by assumption and by Theo-
rem 4.9, respectively:

1

2

ˆ
T3

∣u(t)∣2 dx + ν
ˆ t

s

ˆ
T3

∣∇u(x, τ)∣2 dτ ≤ 1

2

ˆ
T3

∣u(s)∣2 ds

and similar for U .

Using (1), we obtain

Erel(t) =
1

2

ˆ
T3

∣u(x, t) −U(x, t)∣2 dx

= 1

2

ˆ
T3

∣u(x, t)∣2 dx + 1

2

ˆ
T3

∣U(x, t)∣2 dx −
ˆ
T3

u(t) ⋅U(t) dx

= 1

2

ˆ
T3

∣u(x, t)∣2 dx + 1

2

ˆ
T3

∣U(x, t)∣2 dx

−
ˆ t

0

ˆ
T3

u ⋅ ∂tU − ν∇u ∶ ∇U − (u ⋅ ∇)u ⋅U dx ds −
ˆ
T3

u0 ⋅U0 dx.
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By (3) and the assumption u0 = U0, the sum of the inital terms is non-positive and can
thus be neglected in the estimate, so that

Erel(t) ≤ −
ˆ t

0

ˆ
T3

u⋅∂tU−ν∇u ∶ ∇U−(u⋅∇)u⋅U dx ds−ν
ˆ t

0

ˆ
T3

∣∇u∣2 dx ds−ν
ˆ t

0

ˆ
T3

∣∇U ∣2 dx ds.

Integrating by parts and using (2), we can write this as

Erel(t) ≤ −
ˆ t

0

ˆ
T3

u ⋅ ∂tU − νu ⋅∆U + (U ⋅ ∇)U ⋅ u dx ds − ν
ˆ t

0

ˆ
T3

∣∇u −∇U ∣2 dx ds +R

= −ν
ˆ t

0

ˆ
T3

∣∇u −∇U ∣2 dx ds +R,

where

R = −
ˆ t

0

ˆ
T3

(U ⋅ ∇)U ⋅ u + (u ⋅ ∇)u ⋅U dx ds.

Similar arguments as in Lemma 4.8 yieldˆ
T3

(U ⋅ ∇)u ⋅ u dx = 0,

ˆ
T3

(u ⋅ ∇)U ⋅U dx = 0,

whence

R = −
ˆ t

0

ˆ
T3

(U ⋅ ∇)(U − u) ⋅ u − (u ⋅ ∇)(U − u) ⋅U dx ds,

and �nally an application of the formula
´
T3(U ⋅ ∇)(U − u) ⋅ (U − u) dx = 0 gives

R = −
ˆ t

0

ˆ
T3

((U − u) ⋅ ∇)(U − u) ⋅U dx ds.

We thus obtain the estimate

∣R∣ ≤
ˆ t

0

ˆ
T3

∣U − u∣∣∇U −∇u∣∣U ∣ dx ds

≤ ν
ˆ t

0

ˆ
T3

∣∇U −∇u∣2 dx ds +C(ν)
ˆ t

0
∥U(s)∥2

L∞

ˆ
T3

∣U − u∣2 dx ds,

where we used the inequality ab ≤ a2

2δ2
+ δ2 b2

2 for suitable δ, depending on ν.
In total we obtain

Erel(t) ≤
ˆ t

0
∥U(s)∥2

L∞Erel(s) ds,

and since U is a strong solution, ∥U∥2
L∞ ∈ L1(0, T ), and we may then use Grönwall's

inequality to conclude Erel ≡ 0, which implies the theorem. �

Theorem 4.12 (Weak-strong stability). Let U be a strong solution and u a weak solu-
tion that satis�es the energy inequality, with initial data U0 ∈ H and u0 ∈ H, respectively.
Then there exists a constant, depending only on the norm of U in L∞H1 ∩ L2H2 and on
the viscosity ν, such that for all t ∈ [0, T ]

∥u(t) −U(t)∥L2(T3) ≤ eCt∥u0 −U0∥L2(T3).

Proof. The proof is almost identical to the one of the preceding theorem, only that
the initial terms do not cancel. It is left as an exercise. The reader might also want to give
an explicit formula for the constant C in terms of U and ν. �
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4.3. Local Existence of Strong Solutions

Lemma 4.13 (Agmon's inequality). Let u ∈ Ḣ2(T3), then, for some constant C,

∥u∥L∞ ≤ C∥u∥1/2

H1∥u∥
1/2

H2 .

Proof. We split the Fourier series of u into low and high frequencies, with M > 0 to
be chosen later:

u(x) = ∑
k≠0

ûke
ik⋅x

= ∑
∣k∣≤M

ûke
ik⋅x + ∑

∣k∣>M

ûke
ik⋅x

= ∑
∣k∣≤M

ûke
ik⋅x∣k∣∣k∣−1 + ∑

∣k∣>M

ûke
ik⋅x∣k∣2∣k∣−2

≤ ∥u∥Ḣ1

⎛
⎝ ∑∣k∣≤M

1

∣k∣2
⎞
⎠

1/2

+ ∥u∥Ḣ2

⎛
⎝ ∑∣k∣>M

1

∣k∣4
⎞
⎠

1/2

It is easy to see that

⎛
⎝ ∑∣k∣≤M

1

∣k∣2
⎞
⎠

1/2

≤ C (
ˆ
BM (0)∖B1(0)

1

∣x∣2
dx)

1/2

= C (
ˆ M

1

r2

r2
dr)

1/2

≤ CM1/2,

and similarly

⎛
⎝ ∑∣k∣>M

1

∣k∣4
⎞
⎠

1/2

≤ C (
ˆ
R3∖BM (0)

1

∣x∣4
dx)

1/2

= C (
ˆ ∞

M

r2

r4
dr)

1/2

≤ CM−1/2,

so that in total

∥u∥L∞ ≤ C (M1/2∥u∥Ḣ1 +M−1/2∥u∥Ḣ2) .

The choice M = ∥u∥Ḣ2

∥u∥Ḣ1
now yields the result. �

Theorem 4.14 (Existence of strong solutions). Let u0 ∈ V . There exists a constant
C > 0, depending only on the viscosity ν, such that there exists a strong solution at least
on the interval [0, T ], where T = C∥∇u0∥−4.

Proof. Recall the Galerkin equation (3.3),

∂tuN + PN [(uN ⋅ ∇)uN ] = ν∆uN ,

uN(0) = PNu0,

which we have seen to have global smooth solutions. Multiply this equation by −∆uN and
integrate in space to obtain

−
ˆ
T3

∂tuN ⋅∆uN dx + ν
ˆ
T3

∣∆uN ∣2 dx −
ˆ
T3

(uN ⋅ ∇)uN ⋅∆uN dx = 0.

This means

1

2

d

dt
∥∇uN∥2

L2 + ν∥∆uN∥2
L2 dx =

ˆ
T3

(uN ⋅ ∇)uN ⋅∆uN dx, (4.4)
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and we wish to estimate the right-hand side. For this, we use Agmon's inequality and the
estimate ∥uN∥H2 ≤ C∥∆uN∥L2 (which is trivial to show in Fourier):

∣
ˆ
T3

(uN ⋅ ∇)uN ⋅∆uN dx∣ ≤ ∥uN∥L∞∥∇uN∥L2∥∆uN∥L2

≤ C∥u∥1/2

H1∥u∥
1/2

H2∥∇uN∥L2∥∆uN∥L2

≤ C∥∇uN∥3/2

L2 ∥∆uN∥3/2

L2 .

Young's inequality ab ≤ ap

p + bq

q for 1
p +

1
q = 1, applied here with p = 4 and q = 4

3 , gives

∣
ˆ
T3

(uN ⋅ ∇)uN ⋅∆uN dx∣ ≤ C(ν)∥∇uN∥6
L2 +

1

2
ν∥∆uN∥2

L2 ,

so that (4.4) becomes

d

dt
∥∇uN∥2

L2 + ν∥∆uN∥2
L2 ≤ C(ν)∥∇uN∥6

L2 . (4.5)

Setting aside the Laplacian term for the moment, we see that Y ∶= ∥∇uN∥2
L2 satis�es the

ordinary di�erential inequality

Y ′(t) ≤ CY (t)3, Y (0) = ∥PN∇u0∥2
L2

and hence Y (t) ≤ X(t) for the solution of the corresponding equation X ′ = CX3, X(0) =
∥∇u0∥2

L2 ≥ Y (0). It is not di�cult to compute X(t) explicitly as

X(t) =
∥∇u0∥2

L2√
1 − 2Ct∥∇u0∥4

L2

.

If we set T = 3
8C∥∇u0∥4

L2
, we obtain X(T ) = 2∥∇u0∥2

L2 and therefore Y (t) is uniformly

bounded in [0, T ], which in turn means that the uN are bounded in L∞(0, T ;V ), uniformly
in N .

Coming back to (4.5) and integrating from 0 to T , we observe (recalling that ∥∇uN∥2
L2

is bounded, on [0, T ], by 2∥∇u0∥2
L2)

ν

ˆ T

0
∥∆uN∥2

L2 dt ≤ ∥∇PNu0∥2
L2 − ∥∇uN(T )∥2

L2 +C
ˆ T

0
∥∇uN∥6

L2 dt

≤ ∥∇u0∥2
L2 +C

ˆ T

0
∥∇uN∥6

L2 dt

≤ ∥∇u0∥2
L2 + 2CT ∥∇u0∥6

L2

= 7

4
∥∇u0∥2

L2

by choice ot T . It follows that the uN are also bounded, uniformly in N , in the space
L2(0, T ;H2(T3)).

We know already that a subsequence of {uN}N∈N converges to a weak solution of
NSE. Selecting from this sequence another subsequence that converges additionally in
L∞(0, T ;V )∩L2(0, T ;H2(T3)) (this exists by the Banach-Alaoglu theorem, and the bounds
just derived), we see that the weak solution is in fact in L∞(0, T ;V ) ∩ L2(0, T ;H2(T3)),
and is thus a strong solution up to time T . �

4.4. Regularity of Strong Solutions

It turns out that even when only u0 ∈ V , the strong solution of NSE will automatically
be C∞ smooth on the (open!) time interval (0, T ), for any T up to which the solution
exists in the strong sense. This is an e�ect of parabolic regularisation.

First we need a crucial Banach algebra property:
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Theorem 4.15. Let s > 3
2 , then H

s(T3) embeds continuously into L∞(T3) and forms
a Banach algebra, that is,

∥uv∥Hs ≤ C∥u∥Hs∥v∥Hs ,

where the constant depends only on s.

Proof. We give the proof only for u, v ∈ Ḣs, as this is the situation we shall need.
However the general statement follows very similarly (replacing ∣k∣s by (1 + ∣k∣)s). So let
x ∈ T3, then

∣u(x)∣ = ∣∑
k≠0

ûke
ik⋅x∣ ≤ ∑

k≠0

∣ûk∣ = ∑
k≠0

∣ûk∣∣k∣s∣k∣−s ≤ (∑
k≠0

∣ûk∣2∣k∣2s)
1/2

(∑
k≠0

∣k∣−2s)
1/2

.

But the �rst factor is precisely the homogeneous Hs-norm of u, and for the second factor
we compute

∑
k≠0

∣k∣−2s ≤ C
ˆ
R3∖B0(1)

1

∣x∣2s
dx = C

ˆ ∞

1
r2−2s dr,

which is �nite if and only if 2−2s < −1, i.e. s > 3
2 . Thus we obtain the embedding assertion

as required.
Let now u, v ∈ Ḣs(T3), then by the above computation the Fourier series of u and v

are absolutely convergent, and thus we may form the Cauchy product to calculate

u(x)v(x) = (∑
k≠0

ûke
ik⋅x)

⎛
⎝∑j≠0

v̂je
ij⋅x⎞

⎠
= ∑
k∈Z3

⎛
⎝∑l∈Z3

ûk−lv̂l
⎞
⎠
eik⋅x, (4.6)

so that ûvk = ∑l∈Z3 ûk−lv̂l.
As another ingredient we recall the inequality ∣k∣s ≤ C(∣k − l∣s + ∣l∣s), where C depends

only on s > 0.
We can now estimate

∥uv∥2
Hs = ∑

k≠0

(1 + ∣k∣2s)∣ûvk∣2

= ∑
k∈Z3

(1 + ∣k∣2s)
RRRRRRRRRRR
∑
l∈Z3

ûk−lv̂l

RRRRRRRRRRR

2

≤ C ∑
k∈Z3

RRRRRRRRRRR
∑
l∈Z3

((1 + ∣k − l∣s) + (1 + ∣l∣s))ûk−lv̂l
RRRRRRRRRRR

2

≤ C ∑
k∈Z3

RRRRRRRRRRR
∑
l∈Z3

(1 + ∣k − l∣s)ûk−lv̂l
RRRRRRRRRRR

2

+C ∑
k∈Z3

RRRRRRRRRRR
∑
l∈Z3

(1 + ∣l∣s)ûk−lv̂l
RRRRRRRRRRR

2

.

Let us de�ne the function (1 + ∣∇∣s)u(x) ∶= ∑k≠0(1 + ∣k∣s)ûkeik⋅x, then obviously

∥(1 + ∣∇∣s)u∥L2 ≤ C∥u∥Hs ,

and similarly for v. By (4.6), then, we see that

∑
l∈Z3

(1+∣k−l∣s)ûk−lv̂l = [((1 + ∣∇∣s)u)v]∧k and ∑
l∈Z3

(1+∣l∣s)ûk−lv̂l = [u((1 + ∣∇∣s)v)]∧k ,

so that (using Plancherel's Theorem)

∥uv∥2
Hs ≤ C∑

k≠0

∣[((1 + ∣∇∣s)u)v]∧k ∣
2 +C∑

k≠0

∣[u((1 + ∣∇∣s)v)]∧k ∣
2

= C (∥((1 + ∣∇∣s)u)v∥2
L̇2 + ∥u((1 + ∣∇∣s)v)∥2

L̇2)

≤ C (∥v∥2
L∞∥u∥2

Ḣs + ∥u∥2
L∞∥v∥2

Ḣs)

≤ C (∥v∥2
Ḣs∥u∥2

Ḣs) ,
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where in the �nal step we used the embedding Hs ⊂ L∞. �

Theorem 4.16 (Higher regularity). Let m ≥ 2 and u0 ∈ V ∩Hm(T3). Then the strong
solution of NSE with existence interval [0, T ] even satis�es

u ∈ L∞(0, T ;Hm) ∩L2(0, T ;Hm+1).

Proof. Let (uN) denote the smooth Galerkin approximations, as usual. The existence
proof for strong solutions yielded uniform (in N) bounds for

∥uN∥L∞H1 + ∥uN∥L2H2 .

By induction, we will deduce such an estimate for m instead of 1. So let us assume the
induction hypothesis

sup
N

(∥uN∥L∞Hm−1 + ∥uN∥L2Hm) .

Taking the Hm inner product of the Galerkin equation with uN and then using Theo-
rem 4.15, we obtain

1

2

d

dt
∥uN∥2

Hm + ν∥∇uN∥2
Hm = −((uN ⋅ ∇)uN , uN)Hm

≤ ∥(uN ⋅ ∇)uN∥Hm∥uN∥Hm

≤ ∥uN∥Hm∥∇uN∥Hm∥uN∥Hm

≤ 1

2
ν∥∇uN∥2

Hm +C(ν)∥uN∥4
Hm .

Note that in the last step, we made use of the Cauchy-Schwarz inequality with ε (ab ≤
εa2 +C(ε)b2).

This results in
d

dt
∥uN∥2

Hm + ν∥∇uN∥2
Hm ≤ (C(ν)∥uN∥2

Hm)∥uN∥2
Hm = g(t)∥uN∥2

Hm , (4.7)

where g ∶= C(ν)∥uN∥2
Hm ∈ L1(0, T ) uniformly in N , by virtue of the induction hypothesis.

Grönwall's inequality therefore yields

∥uN(t)∥2
Hm ≤ ∥u0∥2

Hm exp(
ˆ t

0
g(s) ds) .

Since the right hand side is �nite and independent of N , we obtain the bound

sup
N

∥uN∥L∞Hm <∞.

Going back to estimate (4.7) and integrating in time, we get (using the bound just derived)

∥uN(T )∥2
Hm − ∥u0∥2

Hm + ν∥∇uN∥2
Hm ≤

ˆ T

0
g(t) dt ⋅ T ∥uN∥L∞Hm ,

which entails

∥∇uN∥2
Hm ≤ 1

ν
(∥u0∥2

Hm +
ˆ T

0
g(t) dt ⋅ T ∥uN∥L∞Hm) .

As the right hand side is �nite and independent of N , we obtain the desired bound

sup
N

∥uN∥L2Hm+1 <∞.

The sequence {uN} converges to the strong solution u of NSE, but by the bounds just
obtained and the Banach-Alaoglu Theorem, it also converges weakly* in L∞Hm and weakly
in L2Hm+1. It follows that u is contained in these spaces, as claimed. �

Theorem 4.17 (Space regularity). Let u be a strong solution of NSE on [0, T ]. Then,
for every 0 < ε < T and every m ∈ N, u ∈ C([0, T ];Hm(T3)).
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Proof. By de�nition, u ∈ L2(0, T ;H2), and therefore for almost every s1 ∈ (0, ε),
u(s1) ∈ H2. Choosing such s1 and using u(s1) as initial data, and keeping in mind the
uniqueness of strong solutions, we obtain from Theorem 4.16 u ∈ L2(s1, T ;H3), and so
we may choose an s2 ∈ (s1, ε) such that u(s2) ∈ H3. In this way we obtain a sequence
0 < s1 < s2 < s3 < . . . < ε such that u ∈ L∞(sm, T ;Hm+1) ∩L2(sm, T ;Hm+2).

Observe that this implies ∂tu ∈ L2(ε, T ;Hm−1), because

∂tu = −P((u ⋅ ∇)u) + ν∆u.

Clearly, the last term is in L2(ε, T ;Hm−1), but also the nonlinear one: Since u ∈ L∞(ε, T ;Hm+1)
and ∇u ∈ L2(ε, T ;Hm+1), by the Banach Algebra property also (u ⋅ ∇)u ∈ L2(ε, T ;Hm+1)
(so this is actually better than required).

But by virtue of Proposition 4.4, this implies

u ∈ C([ε, T ];Hm).

�

Theorem 4.18 (Time regularity). Let u be a strong solution, ε > 0, and j, k ∈ N. Then
∂jt u ∈ L∞(ε, T ;Hk(T3)).

Proof. We proceed by induction over j.
We use once more

∂tu = −P((u ⋅ ∇)u) + ν∆u. (4.8)

Similarly as in the previous proof, we bound ∥P((u⋅∇)u)∥Hk at each time by ∥u∥Hk∥u∥Hk+1 ,
and ∥∆u∥Hk ≤ ∥u∥Hk+2 . But both these are bounded, uniformly in t, in the respective
Sobolev norms by virtue of Theorem 4.17.

For the induction step, di�erentiate (4.8) j − 1 times with respect to t to obtain

∂jt u = −
j−1

∑
i=0

(j − 1

i
)P((∂itu ⋅ ∇)∂j−1−i

t u) + ν∆∂j−1
t u.

But by induction hypothesis, the �rst j − 1 time derivatives are in L∞(0, T ;Hm) for every
m, and so we can apply similar arguments as in the induction base to conclude. �

Recalling that a function which is contained in Sobolev spaces of arbitrary order is in
fact smooth, we obtain:

Corollary 4.19. Let u be a strong solution of NSE on [0, T ]. Then, for every ε > 0,
u ∈ C∞(T3 × [ε, T ]).

4.5. Blowup and the Beale-Kato-Majda Criterion

It can not be excluded that a strong solution ceases to be strong after �nite time. There
is a rich theory of possible blow-up scenarios, although it might turn out that blowup can
actually not happen (this is the Millennium Problem).

4.5.1. Vorticity. Let u be a strong solution on [0, T ], then it is smooth (in space) for
any t ∈ (0, T ]. De�ne the curl operator, which acts on smooth vector�elds u ∈ C∞(T3;R3)
and yields another such vector�eld, by

(curlu)i ∶= εijk∂juk,

where εijk is the Levi-Civita symbol, i.e. εijk = 1 if (i, j, k) is an even permutation of
(1,2,3), εijk = −1 if (i, j, k) is an odd permutation, and εijk = 0 otherwise. Note we applied
the summation convention.
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It is easy to see that div curlu = 0 for any choice of u, and also curl∇p = 0 for any scalar
�eld p. Taking the curl of NSE and denoting ω = curlu (which is known as the vorticity of
the �ow), we obtain

∂tω + curl((u ⋅ ∇)u) = ν∆ω.

A short computation shows curl((u ⋅∇)u) = (u ⋅∇)ω−(ω ⋅∇)u, so we arrive at the vorticity
equation

∂tω + (u ⋅ ∇)ω − ν∆ω = (ω ⋅ ∇)u.

The right hand side is called the vortex stretching term; in 2D it is not present, and the
vorticity equation is simply a linear transport-di�usion equation1 that satis�es a maximum
principle in any Lp norm (including L∞). This is another very important way to see why
2D NSE are so much better behaved than 3D NSE.

Lemma 4.20. Let u ∈ C∞(T3;T3) be divergence-free, then

∥ω∥L2 = ∥∇u∥L2 .

Proof. The computation goes like this:ˆ
∣ω∣2 =

ˆ
(εijk∂juk)(εimn∂mun)

=
ˆ

(δjmδkn − δjnδkm)∂juk∂mun

=
ˆ
∂juk∂juk − ∂juk∂kuj =

ˆ
∂juk∂juk =

ˆ
∣∇u∣2,

where we used
´
∂juk∂kuj = 0 owing to an integration by parts and the divergence-free

property. �

4.5.2. Blowup.

Definition 4.21. Let u0 ∈ V and u be a corresponding Leray-Hopf solution of NSE. A
time T ∗ > 0 is called the blowup time for the solution if u is a strong solution on [0, T ∗ − ε]
for any ε > 0, but it is not a strong solution on [0, T ∗].

A few remarks are in order. First, it is possible that no blowup occurs and hence no
(�nite) blowup time exists � this is trivially so e.g. for the zero solution. Secondly, if there
is a blowup, then the blowup time is uniquely determined by u0: Indeed, as long as the
strong solution exists, it is unique in the class of Leray-Hopf solutions (Theorem 4.11).

A more substantial remark is that T ∗ is the smallest time at which ∥∇u∥L2(T ∗) =∞.
Indeed, the proof of Theorem 4.14 shows that u ∈ L2(0, T ;H2) as long as u ∈ L∞(0, T ;H1),
so that a solution that exits the former space will thereby also exit the latter.

Theorem 4.22 (Beale-Kato-Majda). Let u0 ∈ V and u be a corresponding Leray-Hopf
solution of NSE. If T > 0 is such that

ˆ T

0
∥ω∥L∞ dt <∞,

then u is a strong solution on [0, T ].

1Of course to solve this equation, the nonlocal coupling between u and ω needs to be taken into
account. The coupling law is known by the name of Biot-Savart and is a Fourier multiplier operator of
order −1.
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Proof. We multiply the vorticity equation by ω and integrate to obtainˆ
∂tω ⋅ ω + (u ⋅ ∇)ω ⋅ ω + ν∣ω∣2 dx =

ˆ
(ω ⋅ ∇)u ⋅ ω dx.

The �rst term equals d
dt

´
∣ω∣2 dx, the second one is zero by the usual computation involving

the divergence-free property, and the third is non-negative and can thus be dropped. Hence,
using Lemma 4.20,

d

dt
∥ω∥2 ≤

ˆ
∣ω∣∣∇u∣∣ω∣ dx ≤ ∥ω∥L∞∥∇u∥L2∥ω∥L2 ≤ ∥ω∥L∞∥ω∥2

L2 ,

and so by Grönwall's inequality,

∥∇u(T )∥2
L2 ≤ ∥u0∥2

V exp(
ˆ T

0
∥ω(t)∥L∞ dt) .

Since, by assumption, the right hand side is �nite, then so is ∥∇u(T )∥L2 , and following the
remark after De�nition 4.21, we conclude. �



CHAPTER 5

The Vanishing Viscosity Limit

So far we kept ν > 0 constant. It has become clear that virtually all estimates during
this course have crucially relied on ν > 0, and blow up as ν ↘ 0. In fact, except for the
Beale-Kato-Majda criterion, all the results presented so far are false or, in case of existence
of weak solutions, completely unknown for ν = 0, in which case the resulting system is
known as the Euler equations.

An obvious question that arises in the study of turbulent �ows (for which a dimension-
less number proportional to ν−1, the Reynolds number, is typically very large) is whether
the (Leray-Hopf) solutions of NSE converge, as ν ↘ 0, to a solution of Euler, if the lat-
ter exists. This is known as the viscosity limit problem. It turns out there is a crucial
di�erence between the cases with and without physical boundaries.

5.1. The Periodic Case

We give here a particularly elegant way to handle the viscosity limit, due to P.-L. Li-
ons [3, Chapter 4.4].

5.1.1. Dissipative Solutions of the Euler Equations. We consider now the Euler
equations,

∂tu + (u ⋅ ∇)u +∇p = 0

divu = 0,

whose energy 1
2

´
T3 ∣u∣2 dx is formally conserved by a similar computation as for NSE.

Therefore the function space L∞(0, T ;H) appears suitable for the study of solutions.
For the following formal computation, suppose u is a smooth solution with data u0,

and let U ∈ C∞(T3 × [0, T ];R3) be any divergence-free �eld. Denote

E(U) = −∂tU − P((U ⋅ ∇)U),

which in a sense measures how far U is from being a solution of Euler.
Then, subtracting the equations for u and U , we get

(∂t + u ⋅ ∇) (u −U) + (u −U) ⋅ ∇U +∇π = E(U)

for some scalar �eld π. Next, multiply this by u −U and integrate to obtain

1

2

d

dt

ˆ
T3

∣u −U ∣2 dx +
ˆ
T3

(u ⋅ ∇)(u −U) ⋅ (u −U) dx +
ˆ
T3

(u −U) ⋅ ∇symU(u −U) dx

=
ˆ
T3

E(U) ⋅ (u −U) dx,

where ∇sym = 1
2(∇ + ∇t) denotes the symmetric gradient. Note that the second integral

vanishes by the usual integration by parts argument, so we can estimate

1

2

d

dt

ˆ
T3

∣u −U ∣2 dx ≤ ∥∇symU∥L∞
ˆ
T3

∣u −U ∣2 dx +
ˆ
T3

E(U) ⋅ (u −U) dx.

38
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Grönwall's inequality then leads to

1

2

ˆ
∣u −U ∣(t)2 dx ≤ exp(

ˆ t

0
∥∇symU∥L∞ ds)

ˆ
∣u0 −U(0)∣2 dx

+
ˆ t

0

ˆ
exp(

ˆ t

s
∥∇symU∥L∞ dτ)E(U) ⋅ (u −U) dx ds.

(5.1)

Recall from the exercises that C([0, T ];L2
w) is the space of functions in L∞(0, T ;L2)

that are weakly continuous in the sense that, for every t ∈ [0, T ], u(s) ⇀ u(t) weakly in
L2, as s→ t.

Our formal computation motivates the following de�nition:

Definition 5.1 (dissipative solutions). Let u ∈ L∞(0, T ;H) ∩ C([0, T ];L2
w), with

u(0) = u0. Then u is a dissipative solution of Euler if (5.1) holds for every U ∈ C([0, T ];H)
such that E(U) ∈ L1(0, T ;L2) and ∇symU ∈ L1(0, T ;L∞).

Remark 5.2. (1) The function spaces in this de�nition are chosen precisely such
that each term in (5.1) is well-de�ned.

(2) Choosing U ≡ 0, we obtain simply

1

2

ˆ
∣u(t)∣2 dx ≤ 1

2

ˆ
∣u0∣2 dx ∀t ≥ 0, (5.2)

meaning that energy is not produced (but preserved or dissipated). This explains
the terminology.

(3) It can be shown that every solution in the sense of distributions that satis�es the
weak energy inequality (5.2) is also a dissipative solution in the sense of the given
de�nition. Conversely, there exist dissipative solutions that are not solutions in
the sense of distributions. As we shall see, however, dissipative solutions are
useful regardless of any ontological debates as to whether dissipative solutions are
�really� solutions of the Euler equations.

Proposition 5.3 (Weak-strong uniqueness). Suppose U ∈ C([0, T ];H) is such that
∇symU ∈ L1(0, T ;L∞), and is a solution of Euler in the sense that E(U) = 0 almost every-
where. Then any dissipative solution with u(0) = U(0) is equal to U almost everywhere.

Proof. This is a direct consequence of (5.1). �

Note that dissipative solutions coincide, in particular, with the smooth solution as long
as the latter exists.

Lemma 5.4. Let u ∈ L∞(0, T ;H)∩C([0, T ];L2
w), with u(0) = u0. Then u is a dissipative

solution of Euler if (5.1) holds for every smooth divergence-free U ∈ C∞(T3 × [0, T ]).

Proof. Let U be as in De�nition 5.1. First we observe that then ∂tU ∈ L1(0, T ;L2).
Indeed,

∂tU = −P((U ⋅ ∇)U) −E(U).
By assumption, E(U) has the required regularity.

Moreover, a simple calculation yields

(U ⋅ ∇)U = 2(∇symU)U − 1

2
∇∣U ∣2,

so that

P((U ⋅ ∇)U) = 2P((∇symU)U).

But since the latter is the product of a matrix �eld in L1L∞ and a vector �eld in L∞L2,
we see that P((U ⋅ ∇)U) ∈ L1L2.
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Next, let η a standard molli�er in x and set, as usual, ηε(x) = 1
ε3
η (xε ), so that Uε ∶=

U ∗ ηε is a smooth function in the space variables. Moreover, by the integrability of
∂tU just shown, ∂tU ∈ L1(0, T ;Ck) for every k ∈ N, and by Proposition 4.1 this entails
U ∈ C([0, T ];Ck) for every k ∈ N.

Thus, we may compute

E(Uε) = −∂tUε − P((Uε ⋅ ∇)Uε)
= [−∂tU − P((U ⋅ ∇)U)]ε + [P((U ⋅ ∇)U)ε − P((Uε ⋅ ∇)Uε)]
= E(U)ε + 2P((∇symU)U)ε − 2P((∇symUε)Uε)
= E(U)ε + 2P[((∇symU)U)ε − (∇symUε)Uε].

(5.3)

On the one hand, E(U)ε → E(U) in L1L2 as ε → 0. On the other hand, since ∇symU ∈
L1L∞ and U ∈ L∞L2, both ((∇symU)U)ε and (∇symUε)Uε converge to (∇symU)U in L1L2,
so the second expression in the last line of (5.3) converges to zero in L1L2. Hence, E(Uε)
converges to E(U) in L1L2.

Therefore, all the integrals in (5.1) converge appropriately as ε → 0, so that (5.1) is
valid for U if it was valid for each Uε.

Time regularity can be guaranteed by regularising also in t, which however poses little
problem since there is no nonlinearity of ∂tU . �

5.1.2. The Viscosity Limit.

Theorem 5.5. Suppose U ∈ C([0, T ];H) is such that ∇symU ∈ L1(0, T ;L∞), and is a
solution of Euler in the sense that E(U) = 0 almost everywhere. Let (uν)ν>0 be a family
of Leray-Hopf solutions, satisfying the weak energy inequality, with uν(0) = U(0) for every
ν > 0. Then,

lim
ν→0

uν = U strongly in L∞(0, T ;H).

Proof. First we show that a subsequence of {uν} converges weakly to a dissipative
solution of Euler. It su�ces to use smooth test �elds, as shown in Lemma 5.3. So let
v ∈ C∞

c (T3 × [0, T ];R3) be divergence-free. Then, using v as a test �eld in the de�nition
of weak solution of NSE, for every t ∈ [0, T ] we have

−
ˆ t

0

ˆ
T3

uν ⋅ ∂tv dx ds +
ˆ t

0

ˆ
T3

(uν ⋅ ∇)uν ⋅ v dx ds

+ ν
ˆ t

0

ˆ
T3

∇uν ∶ ∇v dx ds =
ˆ
T3

U(0) ⋅ v(0) dx −
ˆ
T3

uν(t) ⋅ v(t) dx.

By de�nition of E(v) and the divergence-free property of both �elds (see Lemma 4.8), we
thence get

ˆ t

0

ˆ
T3

uν ⋅E(v) dx ds −
ˆ t

0

ˆ
T3

((uν − v) ⋅ ∇)v ⋅ (uν − v) dx ds

+ ν
ˆ t

0

ˆ
T3

∇uν ∶ ∇v dx ds =
ˆ
T3

U(0) ⋅ v(0) dx −
ˆ
T3

uν(t) ⋅ v(t) dx.

We recall the energy inequality for uν ,

1

2

ˆ
T3

∣uν(t)∣2 dx + ν
ˆ t

0

ˆ
T3

∣∇uν(x, τ)∣2 dτ ≤ 1

2

ˆ
T3

∣U(0)∣2 ds,
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and further observe that

1

2

ˆ
T3

∣v(t)∣2 dx = 1

2

ˆ
T3

∣v(0)∣2 dx +
ˆ t

0

ˆ
T3

v ⋅ ∂tv dx ds

= 1

2

ˆ
T3

∣v(0)∣2 dx −
ˆ t

0

ˆ
T3

v ⋅ (E(v) + (v ⋅ ∇)v) dx ds

= 1

2

ˆ
T3

∣v(0)∣2 dx −
ˆ t

0

ˆ
T3

v ⋅E(v) dx ds.

Using these ingredients (and simply dropping the H1-term in the energy inequality for uν),
we can estimate

1

2

ˆ
T3

∣uν(t) − v(t)∣2 dx ≤1

2

ˆ
T3

∣U(0) − v(0)∣2 dx −
ˆ t

0

ˆ
T3

((uν − v) ⋅ ∇)v ⋅ (uν − v) dx ds

+ ν
ˆ t

0

ˆ
T3

∇uν ∶ ∇v dx ds +
ˆ t

0

ˆ
T3

E(v) ⋅ (uν − v) dx ds

and further

1

2

ˆ
T3

∣uν(t) − v(t)∣2 dx ≤1

2

ˆ
T3

∣U(0) − v(0)∣2 dx +
ˆ t

0
∥∇symv∥

ˆ
T3

∣uν − v∣2 dx ds

+Cν
ˆ t

0
∥∇uν∥L2 ds +

ˆ t

0

ˆ
T3

E(v) ⋅ (uν − v) dx ds.

But note that, by virtue of the energy inequality,

∥∇uν∥L1L2 ≤ C(T )∥∇uν∥L2L2 ≤ C(T )ν−1/2∥U(0)∥L2 ,

and hence Grönwall's inequality yields

1

2

ˆ
∣uν − v∣2(t) dx ≤ exp(

ˆ t

0
∥∇symv∥L∞ ds)

ˆ
∣U(0) − v(0)∣2 dx

+
ˆ t

0

ˆ
exp(

ˆ t

s
∥∇symv∥L∞ dτ)E(v) ⋅ (uν − v) +C(T )ν1/2∥U(0)∥L2 dx ds.

As ν → 0, the last term vanishes, and the uniform bounds on uν in L∞H give weak*-
convergence in that space, so that on the right hand side, uν can be replaced by the
weak* limit u. For the left hand side, one can show that uν even converges in the space
C([0, T ];L2

w), and since the functional u↦
´
∣u−v(t)∣2 dx is weakly lower semicontinuous,

the left hand side can only decrease in the limit. �

5.2. Bounded Domains

As soon as physical boundaries are involved, the viscosity limit gets much more di�cult.
While the theory of NSE as presented in these notes carries over to smooth bounded
domains in a rather straightforward way, the limit ν → 0 behaves very di�erently. The
reason is as follows: NSE are usually equipped with Dirichlet boundary conditions (u = 0
on ∂Ω), which in the context of �uid mechanics are called �no-slip boundary conditions�.
Since the passage ν → 0 formally turns a second-order system into one of �rst order,
we cannot impose the same conditions on Euler. The most common choice are the �slip
boundary conditions� u ⋅n = 0 on ∂Ω, where n denotes the outer unit normal. This change
of boundary conditions causes the formation of a boundary layer.

As an analogy, consider the 1D heat equation ∂tu = ν∆u on [0,1]×[0, T ] with Dirichlet
boundary condition and initial data u0 ≡ 1. The boundary condition will instantaneously
lead the (smooth) solution to attain u(0) = u(1) = 0, and for small times the solution will
be approximately 1 in the interior and decay to zero steeply in a neighbourhood of the
boundary points of size ∼

√
νt. The same is expected for NSE.
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Definition 5.6. Let Ω ⊂ R3 be a smooth bounded domain, then u ∈ C([0, T ];L2
w(Ω))∩

L2(0, T ;H1
0(Ω)) is said to be a weak solution of NSE if it is weakly divergence-free and

satis�es

−
ˆ ∞

0

ˆ
Ω
u ⋅ ∂tφ dx dt +

ˆ ∞

0

ˆ
Ω
(u ⋅ ∇)u ⋅ φ dx dt

+ ν
ˆ ∞

0

ˆ
Ω
∇u ∶ ∇φ dx dt =

ˆ
Ω
u0 ⋅ φ(0) dx −

ˆ
Ω
u(T ) ⋅ φ(T ) dx

for every divergence-free φ ∈ C1(Ω × [0, T ]) such that φ = 0 on ∂Ω.

The last condition � that the test function has to vanish on the boundary � is decisive.

Theorem 5.7 (Kato 1984 [2]). Let Ω ⊂ R3 be a smooth bounded domain, and {uν}ν>0

a family of weak solutions of NSE satisfying the energy inequality, with initial u0. Suppose
there exists a smooth solution u of Euler with initial datum u0. Then, uν → u strongly in
L∞(0, T ;L2(Ω)) if and only if

lim
ν→0

ν

ˆ T

0

ˆ
Ων

∣∇uν ∣2 dx dt = 0, (5.4)

where Ων ∶= {x ∈ Ω ∶ dist(x, ∂Ω) < ν}.

Proof. We only give a proof sketch. The di�cult direction is to show that (5.4)
implies the desired convergence. We haveˆ

Ω
∣uν − u∣2 dx =

ˆ
Ω
∣uν ∣2 dx +

ˆ
Ω
∣u∣2 dx − 2

ˆ
Ω
uν ⋅ u dx

≤ 2

ˆ
Ω
∣u0∣2 dx − 2

ˆ
Ω
uν ⋅ u dx.

(5.5)

For the last integral, we would like to use u as a test function in the weak formulation of
NSE. However, this is not allowed since only u ⋅ n = 0 at the boundary, and it may well be
that the tangential component of u is non-zero.

Kato's idea is now to cuto� u near the boundary. To this end, let η ∈ C∞(0,∞)
such that η(0) = 0, η(x) = 1 for every x ≥ 1, and η is monotone non-decreasing. Set
d(x) ∶= dist(x, ∂Ω) and let

ην(x) ∶= η (
d(x)
ν

) .

It is now tempting to use ηνu as a test function, as this now satis�es the correct boundary
condition. However this function will, in general, not be divergence-free!

By Poincaré's Lemma, however, since divu = 0, there exists a smooth potential φ ∶ Ω→
R3 such that curlφ = u and φ = 0 at ∂Ω. Set

vν ∶= curl (ηνφ) ,
then vν is divergence-free, is zero on the boundary, and agrees with u except on Ων .
Moreover one can show various estimates such as

∥∇vν∥L2 ≤ Cν−1/2. (5.6)

In particular, ∥u − vν∥L2 = o(1) as ν → 0, and therefore, (5.5) turns intoˆ
Ω
∣uν − u∣2 dx ≤ 2

ˆ
Ω
∣u0∣2 dx − 2

ˆ
Ω
uν ⋅ vν dx + 0(1).

Using vν as a test function and following a computation similar to the proof of Theo-
rem 4.11, we arrive at

∥uν(t) − u(t)∥2
L2 ≤ o(1) +

ˆ t

0
(C∥uν − u∥2 +R(s)) ds,
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where

Rν(t) =
ˆ

Ω
(uν ⋅ ∇)(uν − vν) ⋅ uν + ν∇uν ∶ ∇vν dx.

It remains to show
´ t

0 Rν ds→ 0.
We consider only the second term, using (5.6):

∣
ˆ

Ω
ν∇uν ∶ ∇vν dx∣ ≤ ν∥∇uν∥L2∥∇u∥L2 + ν∥∇uν∥L2(Ων)∥∇u −∇vν∥L2(Ων)

≤ Cν∥∇uν∥L2 +Cνν−1/2∥∇uν∥L2(Ων).

The time integral of the second term goes to zero by assumption, and so does the integral
of the �rst term by virtue of the energy inequality:

ν

ˆ t

0
∥∇uν∥L2 ds ≤ CT ν1/2 (ν

ˆ t

0
∥∇uν∥2

L2 ds)
1/2

≤ CT v1/2 → 0.

�
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