

Summer Term 2015

Institute of Mathematical Finance Prof. Dr. Alexander Lindner Dirk Brandes

Financial Mathematics II

Exercise Sheet 10

Discussion: Thursday 09/07/2015, 16:00-17:30, He18, E60, and Friday 10/07/2015, 08:15-09:45, He18, 120.
Handing in: Thursday 09/07/2015, beginning of the lecture.

Exercise 10.1

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a stochastic basis satisfying Convention 5.9 and $(B_t)_{t \in [0,T]}$ be a standard Brownian motion with respect to \mathbb{F} . Find with use of Itô's formula stochastic differential equations (SDE) for the following processes

- (1) $X_t = B_t^3$, $t \in [0, T]$,
- (2) $Y_t = tB_t$, $t \in [0, T]$.

Find further a representation of [X, Y] as SDE.

Exercise 10.2

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a stochastic basis satisfying Convention 5.9. Let $H = (H_t)_{t \in [0,T]}$ be a càglàd adapted process which is bounded in $L^2(\Omega)$, i.e.

$$K := \left\| \sup_{t \in [0,T]} |H_t| \right\|_2^2 < \infty.$$

Let $X = (X_t)_{t \in [0,T]}$ be a càdlàg square integrable martingale. Show that then

$$Y_t = \int_0^t H_s \,\mathrm{d}X_s \,, \quad t \in [0,T] \,,$$

is a martingale.

Exercise 10.3

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a stochastic basis satisfying Convention 5.9 and $(B_t)_{t \in [0,T]}$ be a standard Brownian motion with respect to \mathbb{F} . Define

$$X_t = \int_0^t s^2 dB_s$$
 and $Y_t = \int_0^t (1-s) dB_s$.

- (a) Define $h(t) = \frac{1}{5}t^5 + \frac{t^3}{3} t^2 + t$ and show that $\mathbf{E}(X_t^2 + Y_t^2) = h(t)$.
- (b) Show that $M = (M_t)_{t \in [0,T]}$ defined by $M_t = X_t^2 + Y_t^2 h(t)$ is a martingale.
- (c) Find the set of all $t \in [0,T]$ such that X and Y are negative correlated, i.e. $\mathbf{Cov}(X_t, Y_t) \leq 0$