

Summer Term 2015

Institute of Mathematical Finance Prof. Dr. Alexander Lindner Dirk Brandes

Financial Mathematics II

Exercise Sheet 3

Discussion: Thursday 07/05/2015, 16:00-17:30, He18, E60, and Friday 15/05/2015, 08:15-09:45, He18, 120.
Handing in: Thursday 07/05/2015, beginning of the lecture.

Exercise 3.1

Let $J \in \{[0,\infty), [0,T], [0,T)\}, \mathbb{F} = (\mathcal{F}_t)_{t \in J}$ a filtration on (Ω, \mathcal{F}) and $\tau \colon \Omega \to J \cup \{\infty\}$ an \mathbb{F} -stopping time. Show:

(a) \mathcal{F}_{τ} defined by

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} \colon A \cap \{ \tau \le t \} \in \mathcal{F}_t \; \forall t \in J \}$$

is indeed a σ -algebra.

(b) τ is \mathcal{F}_{τ} -measurable.

(c) If σ is another stopping time such that $\sigma(\omega) \leq \tau(\omega) \ \forall \omega \in \Omega$, then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

- (d) $\mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau} = \mathcal{F}_{\sigma \wedge \tau}$.
- (d) $(\mathcal{F}_{\tau \wedge t})_{t \in J}$ is a filtration in (Ω, \mathcal{F}) .

Exercise 3.2

Let $J \in \{[0,\infty), [0,T], [0,T)\}, (\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in J}, P)$ be a filtered probability space and $X = (X_t)_{t \in J}$ a progressively measurable process. If $\tau \colon \Omega \to J \cup \{\infty\}$ is an arbitrary stopping time, then X_{τ} , the process evaluated at τ , is \mathcal{F}_{τ} -measurable. To do so, show:

- (a) For any product measurable process $(X_t(\omega))_{t\in J}$ and any random time τ , i.e. a mapping $\tau: \Omega \to J \cup \{\infty\}$ which is measurable with respect to \mathcal{F} , the process evaluated at τ , i.e. $X_{\tau(\omega)}(\omega)$ is \mathcal{F} -measurable.
 - (i) Show (a) for $X_t(\omega) = \mathbf{1}_{B \times C}(t, \omega)$ for $B \in \mathcal{B}(\overline{\mathbb{R}}_+)$ and $C \in \mathcal{F}$.
 - (ii) Show for

 $\mathcal{D} := \{ D \in \mathcal{B}(\overline{\mathbb{R}}_+) \otimes \mathcal{F} \colon X_{\tau(\omega)}(\omega) \text{ is } \mathcal{F}\text{-measurable, where } X_t(\omega) = \mathbf{1}_D(t,\omega) \}$ that $\mathcal{D} = \mathcal{B}(\overline{\mathbb{R}}_+) \otimes \mathcal{F}$.

- (iii) Show (a) for general product measurable X.
- (b) Conclude that the assertion of (a) holds true for every progressively measurable process X and every stopping time τ .
- (c) If X is progressively measurable and τ a stopping time, then the stopped process X^{τ} is also progressively measurable.

(d) Conclude that, if X is a progressively measurable process and τ a stopping time, X_{τ} is \mathcal{F}_{τ} -measurable.

Exercise 3.3

Let $J \in \{[0,\infty), [0,T], [0,T)\}$, $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in J}, P)$ be a filtered probability space and $\tau \colon \Omega \to J \cup \{\infty\}$ a stopping time. If

 $\mathcal{G} := \sigma(X_{\tau} \colon X \text{ is strict càdlàg and adapted})$

then $\mathcal{G} = \mathcal{F}_{\tau}$.