

Summer Term 2015

Institute of Mathematical Finance Prof. Dr. Alexander Lindner Dirk Brandes

Financial Mathematics II

Exercise Sheet 8

Discussion: Thursday 25/06/2015, 16:00-17:30, He18, E60, and Friday 26/06/2015, 08:15-09:45, He18, 120.
Handing in: Thursday 18/06/2015, beginning of the lecture.

Exercise 8.1

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a stochastic basis satisfying Convention 5.9. For $X, Y \in \mathbb{D}$ or $X, Y \in \mathbb{L}$,

$$(X - Y)^* := \sup_{t \in [0,T]} |X_t - Y_t|$$
, and

$$d_{\rm ucp}(X,Y) := \mathbf{E}[\min\{1, (X-Y)^*\}]$$

show the following statements:

(a) d_{ucp} is a semi-metric on \mathbb{D} or \mathbb{L} , i.e. satisfies

- (i) $d_{ucp}(X,Y) \in [0,\infty)$
- (ii) $d_{ucp}(X, Z) \le d_{ucp}(X, Y) + d_{ucp}(Y, Z)$
- (iii) $d_{ucp}(X, Y) = d_{ucp}(Y, X)$
- (iv) $d_{ucp}(X, X) = 0.$

(b) $d_{ucp}(X, Y) = 0 \iff X$ and Y are indistinguishable.

(c) For a sequence of processes $X^{(n)}$ in \mathbb{D} or \mathbb{L} and X in \mathbb{D} or \mathbb{L} , it holds $X^{(n)} \to X$, $n \to \infty$, in d_{ucp} if and only if $(X^{(n)} - X)^* \xrightarrow{P} 0, n \to \infty$.

(d) The spaces \mathbb{D} or \mathbb{L} associated with the semi-metric d_{ucp} are complete, i.e. if $(X^{(n)})_{n \in \mathbb{N}}$ is a Cauchy-sequence with respect to d_{ucp} in \mathbb{D} or \mathbb{L} , then there exists a X in \mathbb{D} or \mathbb{L} with $X^{(n)} \to X, n \to \infty$, in d_{ucp} .

Exercise 8.2

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a stochastic basis satisfying Convention 5.9 and $X = (X_t)_{t \in [0,T]}$ be a semimartingale with respect to the filtration \mathbb{F} . Let \mathbb{G} be a sub-filtration of \mathbb{F} such that X is also adapted to \mathbb{G} . Show that then X is a semimartingale with respect to \mathbb{G} .

Exercise 8.3

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a stochastic basis satisfying Convention 5.9 and $X = (X_t)_{t \in [0,T]}$ be a continuous martingale. Let $(\tau_n)_{n \in \mathbb{N}}$ defined by $\tau_n := \inf\{t \in [0,T]: |X_t| \geq n\} \wedge T$ be a sequence of positive random variables increasing to T almost surely. Then X is a semimartingale. To prove this, show first that X^{τ_n} is a square integrable martingale.

Exercise 8.4

Let $(P_k)_{k\geq 1}$ be a sequence of probability measures on the measurable space (Ω, \mathcal{F}) and $(\lambda_k)_{k\geq 1}$ a sequence of real numbers such that $\lambda_k \geq 0$ and $\sum_{k=1}^{\infty} \lambda_k = 1$. Define $P = \sum_{k=1}^{\infty} \lambda_k P_k$ and let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables which converges in P_k -probability for all $k \geq 1$ to a random variable X. Show that then $X_n \xrightarrow{P} X$. What does the above result imply if you assume that $X = (X_t)_{t\in[0,T]}$ is a semimartingale for each $P_k, k \geq 1$.