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1 Basic De�nitions

This part introduces the concepts of measure theory and Lebesgue integration.

While the theory is rather demanding, a general understanding of the subject

matter is quite useful when dealing with probability theory. The following text

gives an overview of basic concepts and de�nitions; detailed theory is taught in

the Applied Analysis course. We assume most readers are familiar with basic

set theory and Riemann integration.

1.1 Measure

The language of modeling �nancial markets involves that of probability, which in

turn involves that ofmeasure theory. This originated with Henri Lebesgue (1875-

1941), in his thesis, `Intégrale, longueur, aire'. Measure theory is the study of

measures. It generalises notions such as "length", "area", and "volume", though

not all of its applications have to do with physical sizes.

A measure on a set Ω is a function which assigns a real number to subsets of Ω;

an intuitive way to think about this is that a measure assigns "size" or "volume"

for sets.

Example 1.1. Let C be a �nite set. The counting measure of C is de�ned by

µ(C) = number of elements in C

Example 1.2. Let I be the closed interval [a, b] of real numbers. The measure

(length) of the interval is µ(I) = b − a. The open interval (a, b) has the same

measure, since the points a and b have measure zero.

Example 1.3. The probability measure P is a special kind of measure that tell

us the probability of an event to occur. Probability measures are discussed in

detail in Section 2.
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When we de�ne a measure we want to assign such a size to every subset of Ω but

often this is not possible (i.e. some subsets of Ω are not measurable). Instead

we focus on a speci�c collection of subsets of Ω, which are called measurable

sets, and which are closed under operations that we would expect to preserve

measurability. A σ-algebra is such a collection.

De�nition 1.1. Let A0 be a collection of subsets of Ω such that

• ∅ ∈ A0

• Any union of countably many elements of A0 is an element of A0 (i.e. if

A1, A2, A3, ... are in A0, then so is A = A1 ∪A2 ∪A3 ∪ ...).

• The complement of any element of A0 in Ω is an element of A0 (i.e. if A

is in A0, then so is its complement, Ω/A).

Thus a σ-algebra on Ω is a family of subsets of Ω closed under any countable

collection of set operations. It follows from the de�nition that any σ-algebra A0

in Ω also satis�es:

• Ω ∈ A0.

• Any intersection of countably many elements of A0 is an element of A0.

Elements of the σ-algebra are called measurable sets. An ordered pair (Ω, A0),

where Ω is a set and A0 is a σ-algebra over Ω, is called a measurable space.

Example 1.4. (σ-algebras over Ω)

• The set {∅,Ω}

• The power set of Ω (i.e. the set of all subsets of Ω, see De�nition 4.4)
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• The Borel σ-algebra in R, B = B(R) is the σ-algebra, generated by the open

intervals of R (see De�nition 4.6). In other words, the Borel σ-algebra is

equal to the intersection of all σ-algebras A of R having the property that

every open set of R is an element of A.

As our aim is to de�ne measures on collection of sets we now turn to set func-

tions. In order to qualify as a measure, a function must satisfy a few conditions.

One important condition is countable additivity. This condition states that the

size of the union of disjoint subsets is equal to the sum of the sizes of the subsets.

Intuitively, one may consider any two disjoint subsets [a, b] and [c, d] of R and

their union I = [a, b] ∪ [c, d]; the measure function should guarantee that the

sum of the two subsets' sizes is the same as the size of I. To be more rigorous,

we give the following de�nition:

De�nition 1.2. Let Ω be a set, A a σ-algebra on Ω and µ0 a non-negative set

function µ0 : A → [0,∞] such that µ0(∅) = 0. µ0 is called:

(i) additive, if A,B ∈ A, A ∩B = ∅ ⇒ µ0(A ∪B) = µ0(A) + µ0(B),

(ii) countably additive, if whenever (An)n∈N is a sequence of pairwise disjoint

sets in A with
⋃
An ∈ A then

µ0

( ∞⋃
n=0

An

)
=

∞∑
n=1

µ0(An).

We are ready to de�ne the measure function.

De�nition 1.3. Let (Ω,A) be a measurable space. Let µ be a countably additive Important

map given by

µ : A → [0,∞]

Then µ is called a measure on (Ω,A). The triple (Ω,A, µ) is called a measure

space.

4



In particular we are interested in a special class of measures - probability mea-

sures.

De�nition 1.4. A measure P on a measurable space (Ω,A) is called a proba- Important

bility measure if

P(Ω) = 1.

The triple (Ω,A,P) is called a probability space.

Remark A probability measure P satis�es:

(i) P(∅) = 0, P(Ω) = 1

(ii) P(Ai) ≥ 0∀i

(iii) If A1, A2, ... are disjoint, P(
⋃
iAi) =

∑
i P(Ai)

Probability measure and probability spaces are discussed in detail in section 2.

In section 2, we will de�ne the expected value - a fundamental concept in prob-

ability theory with many practical applications. But in order to de�ne it, we

need to introduce the notion of the Lebesgue integral. In this section we discuss

Lebesgue integration, named after the French mathematician Henri Lebesgue

(1875-1941).

1.2 Lebesgue Integral

The idea of the Lebesgue integral is to extend the class of integrable functions

over those that are not Riemann integrable. For functions that are Riemann

integrable, Lebesgue theory assigns the same numerical value to
∫ b
a
f(x)dx as

Riemann theory. On the other hand, functions that are not Riemann integrable

might still be Lebesgue integrable. In this sense, Lebesgue theory can be thought

of as a kind of completion of the Riemann integration theory.
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Let (Ω,A) be a measurable space and let µ be a measure on (Ω,A). We want

to de�ne integration for a suitable class of real valued functions with respect to

µ. In Lebesgue theory, integrals are de�ned for measurable functions.

De�nition 1.5. Let (Ω,A) be a measurable space and let f : Ω → R. For

A ⊂ R de�ne f−1(X) = {ω ∈ Ω : f(ω) ∈ X}. f is called A-measurable (or

simply measurable) if

f−1(B) ∈ A for all B ∈ B.

First we de�ne the integral for simple functions, which are always measurable.

Then we extend the de�nition for nonnegative measurable functions. In the

following two de�nitions, the function f is always de�ned as in De�nition 1.5.

De�nition 1.6. Let f =

n∑
i=1

ai1A be a nonnegative simple A-measurable func-

tion (1A is the indicator function, see De�nition 4.8). Then the integral of f is

de�ned as ∫
fdµ :=

n∑
i=1

aiµ(A)

We are restricted to nonnegative functions since we admit the case µ(A) =∞.

If we were dealing with a �nite measure µ, the de�nition would work for all

A-measurable simple functions.

Example 1.5. Let (Ω,A,P) be a probability space and let X =

n∑
i=1

ai1A be

a simple random variable. Than the expectation of X is given by E(X) :=∫
XdP . This will be useful later in the probability part, when we want to compute

expectations.

We will give precise de�nition of a random variable and of the expected value

in section 2. For the sake of the example, one can think of random variable
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as the possible outcomes of some random experiment, such as tossing a coin or

a six sided die; the expected value can be regarded as the �average� outcome

of this random experiment. Most importantly, we see that to use fundamental

concepts such as expectation, we need the notion of the Lebesgue integral.

De�nition 1.7. Let f be a nonnegative measurable function (with possible val-

ues ∞ at some points) and let h be a simple function, such that h(ω) ≤ f(ω)

for all ω ∈ Ω. Then the integral of f is de�ned as

∫
fdµ := sup

ω∈Ω
{
∫
hdµ}

Now we have de�ned the integral for every nonnegative measurable function.

The value of the integral may be ∞. In order to de�ne the integral for mea-

surable functions which may take both positive and negative values, we have to

exclude in�nite integrals.

De�nition 1.8. A measurable function f is µ-integrable if
∫
f+dµ < ∞ and∫

f−dµ <∞, where f+ = max(f, 0) and f− = max(−f, 0). If f is µ-integrable

then ∫
fdµ :=

∫
f+dµ−

∫
f−dµ

2 Basic Probability Background

As we remarked in the introduction of this chapter, the mathematical theory of
probability can be traced back to 1654, to correspondence between Pascal (1623�
1662) and Fermat (1601�1665). However, the theory remained both incomplete
and non-rigorous until the 20th century. It turns out that the Lebesgue theory
of measure and integral sketched above is exactly the machinery needed to
construct a rigorous theory of probability adequate for modeling reality (option
pricing, etc.) . This was realised by Kolmogorov (1903-1987), whose classic
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book of 1933, Grundbegri�e der Wahrscheinlichkeitsrechnung (Foundations of
Probability Theory), inaugurated the modern era in probability.

2.1 Fundamentals

Let (Ω,F ,P) be a probability space (recall De�nition 1.4). We use probability
spaces to model a random experiment. To do so, we use a sample space Ω to
describe the set of all possible outcomes. An outcome is the result we get from
running the experiment once, so depending on the experiment we run and on
the set of possible outcomes, we choose di�erent sample spaces .

The σ-algebra F is a set of subsets of Ω. Intuitively, this is the set of events,
containing zero or more outcomes.

The probability measure P is a function, returning the probability of an event
A ∈ F . The probability is a number between 0 (event never happens) and 1
(event happens in every trial).

Example 2.1. Consider tossing a fair coin once. The possible outcomes are
only two: H(heads) and T(tails) and the sample space is Ω = {H,T}. By def-
inition, the σ-algebra contains the empty set and Ω. The other possible events
are getting heads or tails. Therefore F = {∅, H, T,Ω}.
Since the coin is fair, both heads and tails come with 50% probability, i.e.
P(H) = P(T ) = 1

2 . We toss the coin once, so we obtain either heads or tails but
certainly something which is in Ω, thus P(Ω) = 1. Furthermore, since we obtain
something, we cannot get the empty set, namely P(∅) = 0.
Note that P(Ω) is the probability of getting either heads or tails.

Example 2.2. Consider the same experiment as above, but with the coin being
tossed three times. There are 8 possible outcomes: Ω = {HHH, HHT, HTH,
THH, HTT, THT, TTH, TTT}. Note that for example HHT is di�erent from
HTH, due to the order of the outcomes.
A σ-algebra F on Ω can be the set of events, containing all the possible combi-
nations of outcomes:

F = {∅, HHH,HHT, ..., {HHH,HHT}, {HHH,HTH}, ...,
..., {HHH,HHT,HHH}, {HHH,HHT,HHT}, ...,Ω}

This σ-algebra contains all the subsets of Ω or, equivalently, the σ-algebra F is
the power set of Ω (see De�nition 4.4). Since the set Ω contains 8 elements, the
power set F of Ω contains 28 = 256 elements (events).
Now consider the case where we know the number of tails after three tosses.
There can be either 0, 1, 2 or 3 tails. The set of outcomes we obtain is Ω =
{HHH} ∪ {HHT,HTH, THH} ∪ {HTT, THT, TTH} ∪ {TTT}; accordingly
the σ-algebra F has 24 = 16 events.
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For a set of outcomes A1, A2, ... ∈ Ω, we want the probability measure to satisfy:
(i) P(∅) = 0, P(Ω) = 1
(ii) P(Ai) ≥ 0∀i
(iii) If A1, A2, ... are disjoint, P(

⋃
iAi) =

∑
i P(Ai)

These three conditions are known as the Kolmogorov axioms. The reason we
require that from P is the fact that it is a measure and as such it should satisfy all
the conditions for a function to be a measure (recall De�nition 1.2 and De�nition
1.3). But even if we observe the axioms intuitively, their motivation should be
obvious.

As mentioned in the �rst example above, when we run an experiment we always
get some outcome and never the empty set, so we have (i). Furthermore, it
does not make sense for an event to occur with negative probability, hence
(ii). Finally, (iii) comes from the countable additivity property. For example,
consider rolling a six sided die, where every side has the probability 1

6 . Than
the probability assigned to {1, 2, 3} is 1

6 + 1
6 + 1

6 = 1
2 and to {5, 6} is 1

6 + 1
6 = 1

3 .
This means we get 1, 2 or 3 half of the time and 5, 6 only a third of the time -
which is what one would expect.

De�nition 2.1. A probability space, or Kolmogorov triple, is a triple (Ω,F ,P)
satisfying the Kolmogorov axioms (i), (ii) and (iii) above.

2.1.1 Random Variables

Often we want to assign a value to each possible outcome of some random
experiment. Such values can be used for the analysis of the experiment or to
make predictions, based on the obtained data. We quantify outcomes ω by
de�ning a real-valued function X on Ω, i.e. X : Ω → R. If such a function is
measurable it is called a random variable.

Using the de�nition of a measurable function, given in 1.5, we can provide a
precise de�nition of the above statement.

De�nition 2.2. Let (Ω,F ,P) be a probability space. A random variable (vector)
X is a function X : Ω→ R (X : Ω→ Rk) such that X−1(B) = {ω ∈ Ω : X(ω) ∈
B} ∈ F for all Borel sets B ∈ B(R) (B ∈ B(Rk)).

Example 2.3. Consider the most basic experiment - tossing a fair coin (i.e.
the coin has an equal probability of landing �heads� or �tails�). Let us say if it
lands �Heads�, we assign a value of 0 and if it lands �Tails� we assign value of
1. The random variable X is then given by

X =

{
0 if heads
1 if tails
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Here the values 0 and 1 might be the value of a bet, or any other numerical value
used for quantifying the results of the experiment.

There are two types of random variables - discrete and continuous. Intuitively,
discrete data is data we can count. Similarly, the discrete random variables
takes values we can �count�. In example 2.3, the random variable X takes only
two values - 0 and 1. These are values we can count, therefore X is a discrete
random variable.

Continuous random variables take in�nite number of values (or values we cannot
count). For example, the large hand of a clock can take any value between 0
and 60. Let Y be a random variable that takes values y ∈ [0, 60], whenever the
large hand of the clock is at y. We can have Y = 10, when it is ten minutes
past, but also Y = 10.1, or even Y = 10.01. We cannot count the values Y
takes, therefore Y is a continuous random variable.

Perhaps one has a better intuition when dealing with discrete random variables
as they take only �nite number of distinct values. They include outcomes of
simple experiments, such as tossing a coin, rolling a die or drawing a card from a
standard deck. Continuous random variables, on the other hand, take an in�nite
number of possible values. Their value is never an exact point, it is always in
the form of an interval, though the interval can be very small. They are usually
measurements, such as height, weight, temperature, etc.

A discrete random variable maps outcomes to values of countable sets and each
value has a probability greater than or equal to zero. A continuous random
variable maps outcomes to values of uncountable set (see De�nition 4.3). The
probability of any speci�c value is zero, whereas the probability of some set of
values may be positive.

To get an intuition on the types of random variables, consider the following
examples.

Example 2.4. (Discrete)
Again, consider tossing a fair coin. Now consider a bet that pays you 1 if you
toss heads and you pay back 1 if you toss tails. So in case of �heads�, we assign
a value 1 and in the case of �tails� we assign a value -1. The random variable
X is then given by

X =

{
1 if heads
−1 if tails

Example 2.5. (Continuous)
Consider picking a random real number in [0, 1] with all parts in the range being
equally likely. Since there are in�nitely many real numbers in that interval, any
real number has probability zero of being selected and X cannot be a speci�c
value. However, we can assign positive probability to any range of values. For
example choosing the number to be between [0, 0.5] has a probability 1

2 . So in this
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case X = selected interval, unlike the previous example, where X was always
some speci�c value.

2.1.2 Probability Distribution

Random variables are always associated with some probability. As we observed
from the previous examples, in the discrete case each value of X has some
probability of occurring, and in the continuous case the values of X have some
probability of being contained in an interval. In probability theory this is known
as the probability distribution.

The probability distribution identi�es either the probability of each value of
a random variable (discrete) or the probability that the value falls within a
particular interval (continuous). We do distinguish these di�erent cases, but
ultimately our aim is to de�ne a function that gives us the aforementioned
probabilities. For discrete random variables it is called the probability mass
function and for continuous random variables, it is called the probability density
function. Some authors use the latter term to denote both functions, since they
describe relatively similar concepts. In this text, we distinguish between the
two terms. We denote the probability mass function by p(x) and the probability
density function by f(x).

For a discrete random variable, the probability mass function gives the prob-
ability that the variable is exactly equal to some value. So in the example of
tossing a coin and assigning 1 to �heads� and -1 to �tails�, the probability mass
function should tell us that P(X = 1) = 1

2 and P(X = −1) = 1
2 . Essentially,

if other outcomes existed, their probability should also be given by the same
function. Precise de�nition is given below.

De�nition 2.3. Let X be a discrete random variable. The probability mass
function pX : R→ [0, 1] is de�ned as

pX(x) = P(X = x) = P({ω ∈ Ω : X(ω) = x})

In the case where X is a continuous random variable, we interpret the probability
density function as the relative chance ofX taking values within the in�nitesimal
interval [x, x+ dx]. The probability for a random variable to fall within a given
interval is given by the integral of its density over the set.

De�nition 2.4. Let X be a continuous random variable. The random variable
has density function f if

P[a ≤ X ≤ b] =

∫ b

a

f(x)dx

Some important probability distributions
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• Binomial distribution: Number of successes of an experiment with n trials
and success probability p ∈ [0, 1]

P(Sn = k) =

(
n

k

)
pk(1− p)n−k.

• Geometric distribution: Waiting time

P(N = n) = p(1− p)n−1 where n ∈ N.

• Poisson distribution:

P(X = k) = e−λ
λk

k!
where λ ≥ 0.

• Uniform distribution:

f(x) =
1

b− a
1{(a,b)}(x).

• Exponential distribution:

f(x) = λe−λx1{[0,∞)}(x).

• Normal distribution N(µ, σ):

f(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 .

• Standard Normal distribution, N(0, 1) (a special case of the Standard
Normal Distribution with µ = 0 and σ = 1:

f(x) =
1√
2π
e
−x2
2 .

Remark

The normal distribution is often used to describe real-valued random variables
that tend to cluster around a single mean value. The graph of the associated
probability density function is �bell�-shaped, and is known as the Gaussian func-
tion or bell curve (see Figure 1). The normal distribution is one of the most
fundamental continuous probability distribution due to its role in the central
limit theorem, which we discuss in section 2.1.5. The standard normal distri-
bution is a special case of the normal distribution with µ = 0 and σ2 = 1. It is
often used to compare two or more sets of data and to estimate probabilities of
events involving normal distributions.

In probability theory the cumulative distribution function , denoted by FX(x),
gives the probability that a random variable X takes on a value less than or
equal to a number x, that is FX(x) := P(X ≤ x). Intuitively it gives the area
below the density functions, up to point x and thus describes completely the
probability distribution of the random variable.
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Figure 1: Probability Density Function of Normal Distribution

De�nition 2.5. For every real number x, the Cumulative Density Function of
a real-valued random variable X is given by

x 7→ FX(x) := P(X ≤ x)

Example 2.6. Let X be discrete random variable, taking values 0 and 1 with
equal probability. If x < 0, the probability P(X ≤ x) is 0, since X can be either
0 or 1 and therefore it is never less than x. On the other hand, if x > 1, than
P(X ≤ x) = 1, because independent of whether X is 0 or 1, it would always
be less than x. Finally, if x ∈ [0, 1], X would be less x only when X = 0;
that occurs only half of the times, since X takes 0 and 1 with equal probability.
Therefore P(X ≤ x) = 1

2 . The cumulative density function is given by

FX(x) =

 0 if x < 0
1
2 if 0 ≤ x < 1
1 if x ≥ 1

Example 2.7. Let X be a continuous random variable with uniform distri-
bution on the interval [0, 1] (i.e. all intervals of the same length are equally
probable). Let us observe the cumulative density function. For any point x < 0,
the probability P(X ≤ x) is 0, since X only takes value in [0, 1]. If x ∈ [0, 1]
than the probability of X being less or equal to x is equal to the length of the
interval. For example, if x = 1

2 , X takes values between 0 and 1
2 with probability
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1
2 and between (−∞, 0) with probability 0. Finally, if x > 1, than X is smaller,
thus yielding probability of 1. This can be written as

FX(x) =

 0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

Note that regardless of whether X is discrete or continuous, FX(x) is de�ned in
the same way. Also, note that using de�nition 2.5 and de�nition, we can express
FX(x) in terms of f(x).

If X is a discrete random variable that attains values x1, x2, ... with probability
P(xi), then

F (x) = P(X ≤ x) = Σxi≤xP(X = xi) = Σxi≤xp(xi)

where p(xi) is the probability mass function.

If X is a continuous random variable then

F (x) = P(−∞ ≤ X ≤ x) =

∫ x

−∞
f(x)dx

where f is the probability density function.

2.1.3 Expected Value

The term expected value may be confusing in the sense that it is not used to
describe the most probable value. In fact it describes the long-term average
outcome of a given experiment. For example, if we get a 1 every time we toss
heads and pay 1 every time we toss tails with a fair coin, than after having
made 1000 tosses we expect to have about as much heads as tails, i.e. we have
an expected result of around 0. However, having some expected value does not
mean that we will not end up in a situation where we have a result of say 10 or
−23. Intuitively, the more experiments we make, i.e. the larger our data set is,
the closer we should be getting to the expected value.

If we consider the mean value of a large set of realizations, than intuitively the
expected value is the limit of this mean, as the size of the data set increases to
in�nity. This comes from an important theorem (Law of Large Numbers) which
we will state later.

The expected value is not an outcome of the experiment we would expect. For
example, a standard six-sided die has an expected value of 3.5, however we
cannot expect to get 3.5 when rolling! But if we roll long enough, on average
our result would amount to 3.5. Note that we cannot de�ne exactly how long
� long enough� is, as it approaches in�nity.
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As another example, casino games usually have a negative expected value. The
expected winnings from 1$ bet on a roulette is about −0.05 cents. That does
not mean we would always lose; occasionally we can get lucky and win. What
the expected value tells us is that the longer we play, the closer our average
result would be to the negative 5%.

Now that we have the intuition of what expected value is, we move on to give
a proper de�nition.

A measure determines an integral. A probability measure P, being a special
kind of measure determines a special kind of integral, called an expectation or
expected value.

De�nition 2.6. The expectation EX of a random variable X on (Ω,F ,P) is
de�ned by

EX :=

∫
Ω

X(ω)dP(ω), or

∫
Ω

XdP.

If the integral does not exist (does not converge absolutely), than the random
variable does not have an expected value.

If X is a discrete random variable, taking values xn(n = 1, 2, . . .) with proba-
bility mass function p(xn), than EX is given by

EX =

n∑
i=1

xip(xi).

If X is continuous random variable with a density function f , than EX is given
by

EX =

∫
xf(x)dx

Example 2.8. Let the country Fantasyland assume the following family plan-
ning strategy: each family can have children until they either have a girl or two
boys. Let X denote the number of boys. We would like to compute the expected
number of boys per family .
There are three possible outcomes: the �rst child is a girl (happens with prob-
ability 0.5, so P(X = 0) = 0.5); the �rst child is a boy, the second is a girl
(probability is 0.5 × 0.5 = 0.25 and P(X = 1) = 0.25 ); both children are boys
(probability is again 0.5× 0.5 = 0.25 and P(X = 2) = 0.25). Using the distribu-
tion of X, we can compute the expected value as:

EX = 0× 0.5 + 1× 0.25 + 2× 0.25 = 0.75

That means out of 100 children, 75 will be boys.

Example 2.9. Let X have a probability density function

f(x) =

{
1
b−a if a ≤ x ≤ b
0 else
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i.e. X is uniformly distributed on the interval [a, b]. Than the expected value of
X is given by

EX =

∫ b

a

xf(x)dx =

∫ b

a

x

b− a
dx =

x2

2(b− a)

∣∣∣b
a

=
a+ b

2

The expectation - sometimes called the mean - gives the centre of the distribu-
tion of the variable. It describes the location of a distribution (and so is called
a location parameter). Information about how far the values lie from the mean
(the scale of a distribution) is obtained by considering the variance.

V ar(X) := EX(X − E(X))2 = EX2 − (EX)2 (1)

Two variables with the same probability distribution will have the same expected
value and variance.

Some Properties

• Monotonicity: If X and Y are random variables and X ≤ Y almost surely,
than also EX ≤ EY

• Linearity: For a constant a ∈ R, E(aX) = aEX and E(X+Y ) = EX+EY

To empirically estimate the expected value of a random variable, one repeatedly
measures observations of the variable and computes the arithmetic mean of the
results. If the expected value exists, this procedure estimates the true expected
value. The law of large numbers demonstrates that, as the size of the sample
gets larger, the average of the results should be close to the expected value and
will tend to become closer the more trials are performed. We will give a precise
statement of the law of large numbers later, after we introduce the concept of
independence.

2.1.4 Independence

Intuitively, two random events are independent if occurrence of one event does
not make it neither more, nor less probable, that the other event occurs. For
example, getting a 3 on the �rst roll of a six-sided die and getting 6 on the
second roll are independent events. On the other hand, the event of getting a
3 on the �rst roll and the event of getting a total sum of 8 from two rolls are
dependent. The standard de�nitions says two events A and B are independent
if and only if P(A ∩B) = P(A)P(B)

Considering random variables, let X be a real-valued random variable and A be
a set of outcomes of some sort (for example the events {X ≤ a} for a ∈ A). Since
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this set has some probability, it makes sense to refer to events of this sort being
independent of other events of this sort. That means, two random variables X
and Y with outcome sets A1 and A2 are independent if and only if the events
X ∈ A1 and Y ∈ A2 are independent as described above. Mathematically this
is de�ned as follows

De�nition 2.7. The random variables X1, . . . , Xn are independent if whenever
Ai ∈ B (the Borel σ-algebra) for i = 1, . . . n we have

P

(
n⋂
i=1

{Xi ∈ Ai}

)
=

n∏
i=1

P({Xi ∈ Ai}).

Example 2.10. Consider the joint event from two experiments: tossing heads
with a fair coin and rolling 3 with a standard die. Let X and Y be random
variables giving the outcomes of the coin toss and the die roll respectively. Re-
gardless of the order of the experiments, the probability of this event is 1

12 , since
there are 12 possible outcomes in total, and all of them have equal probability,
since both the coin and the die are fair. Separately, each outcome has probability
P(X = heads) = 1

2 and P(Y = 3) = 1
6 respectively, whose product gives exactly

the probability of the joint event. From the de�nition, the random variables X
and Y are independent

Theorem 2.1 (Multiplication Theorem). If X1, . . . , Xn are independent and
E|Xi| <∞, i = 1, . . . , n, then

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E(Xi).

Theorem 2.1 is especially useful in practice, since it allows us to compute the
total expectation as a product of smaller expectations, which should be easier
the compute.

A collection of random variables is said to be independent identically distributed
(often abbreviated i.i.d.) if each random variable has the same probability
distribution as the others and all are mutually independent. A precise de�nition
is given below.

De�nition 2.8. Two random variables X and Y are said to be identically
distributed if they are de�ned on the same probability space (Ω,F ,P) and the
distribution function F of X is the same as the distribution function F of Y .

De�nition 2.9. A collection of random variables Xi is said to be independent
identically distributed if the Xi's are identically distributed and mutually inde-
pendent (every �nite subfamily of X is independent)

Example 2.11. The outcomes of spins of a roulette are i.i.d. If the roulette
ball lands on "red", for example, 20 times in a row, the next spin is no more or
less likely to be "black" than on any other spin.

Example 2.12. The outcomes of coin �ips and die rolls are i.i.d.
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2.1.5 The Central Limit Theorem

In this section we introduce the law of larger numbers and the central limit
theorem. We use advanced concepts such as almost surely convergence and
distribution convergence, which are beyond the scope of this text, therefore we
would not de�ne them.

We already have some intuition on the law of large numbers from the discussion
in the end of section 2.1.3. It is important as it guarantees stable long-term
results for random events. It helps predict the estimation of some random
variable for a long period of trials via the expected value. As the name suggests,
the law of large numbers applies only when a large number of observations are
considered. There is no principle that a small number of observations will
converge to the expected value.

Theorem 2.2 (Strong Law of Large Numbers). If X1, X2, . . . are independent
and identically distributed with mean µ, then the sample average converges al-
most surely to the expected value, that is

1

n

n∑
i=1

Xi → µ (n→∞) almost surely.

An alternative way to state that is

P( lim
n→∞

1

n

n∑
i=1

Xi = µ) = 1

This reads as: there is a 100% probability that the average of the sample ap-
proaches the theoretical mean as the number of observations increases to in�nity.

The main result of this section is the same argument carried one stage further.
The central limit theorem is one of the most important results of the theory of
probability. In its simplest form, it states a remarkable result: given a distribu-
tion with a mean µ and a variance σ2, the distribution of the mean approaches
a normal distribution with a mean µ and a variance σ2/N as the sample size N,
increases. This results holds even when the distribution from which the average
is computed is decidedly non-normal.

For example, suppose an ordinary coin is tossed 100 times and the number of
heads is counted. This is equivalent to scoring 1 for a head and 0 for a tail
and computing the total score. Thus, the total number of heads is the sum of
100 independent, identically distributed random variables. By the central limit
theorem, the distribution of the total number of heads will approximately be
normal. This can be illustrated graphically if one repeats the same experiment
many times (the closer to in�nity, the better) and plotting a histogram of the
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number of heads per trial. After a large number of repetitions, the histogram
curve starts to look like the bell-shaped curve of the normal distribution.

We are now ready to properly state the Central Limit Theorem.

Theorem 2.3 (Central Limit Theorem). If X1, X2, . . . are independent and
identically distributed with mean µ and �nite variance σ2, then

1√
n

n∑
i=1

(Xi − µ)/σ → N(0, 1) (n→∞) in distribution.

where N(0, 1) denotes the standard normal distribution. That is, for all x ∈ R,

P

(
1√
n

n∑
i=1

(Xi − µ)/σ ≤ x

)
→ Φ(x) :=

1√
2π

∫ x

−∞
e−

1
2y

2

dy (n→∞).

Essentially theorem 2.3 states that for a sequence of n i.i.d. random variables, as
the sample size increases, the distribution of the sample average of these random
variables approaches to the normal distribution with mean µ and variance σ2/n
irrespective of the shape of the common distribution of the individual terms Xi.
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3 Statistics Background

3.1 Basics

A major reason for using statistics is to describe and summarize a set of data. A
mass of numbers is usually not very informative and the larger the data set, the
harder it is to interpret. Therefore we need to �nd ways that allow us to present
the data in clear and comprehensible form. We start with a simple example.

One hundred students sit an examination. After the examination, the papers
are marked and given a score between one and a hundred. We are presented
with the following results:

22 65 49 56 59 34 9 56 48 62
55 52 78 61 50 62 45 51 61 60
54 58 59 47 50 62 44 55 52 80
51 49 58 46 32 59 57 57 45 56
90 53 56 53 55 55 41 64 33 0
38 57 62 15 48 54 60 50 54 59
67 58 60 43 37 54 59 63 68 60
46 52 56 32 75 57 58 47 45 52
55 51 50 50 69 63 64 49 56 52
37 60 71 26 30 57 56 55 58 61

We want to interpret the results of the exam. The sort of questions we want to
answer are:

• How can we describe the results

• Is there a single mark that best describes the results?

• How representative of the overall performance is such a mark?

• If we have the results from last year, how does this year's performance
compare?

The answers are not immediately obvious from the raw data we are given. We
need to calculate some statistics in order to make it clearer. One thing we can
easily do is arrange the numbers in ascending order.

20



0 9 15 22 26 30 32 32 33 34
37 37 38 41 43 44 45 45 45 46
46 47 47 48 48 49 49 49 50 50
50 50 50 51 51 51 52 52 52 52
52 53 53 54 54 54 54 55 55 55
55 55 55 56 56 56 56 56 56 56
57 57 57 57 57 58 58 58 58 58
59 59 59 59 59 60 60 60 60 60
61 61 61 62 62 62 62 63 63 64
64 65 67 68 69 71 75 78 80 90

It is now easier to see that the scores are between 0 and 90. What's more, we
can observe the frequency of each mark. For example 3 people scored 49 and
only one scored 71. When we work this out, we see that 56 is the most �popular�
mark with frequency of 7. Also, there are some marks that never appear, such
as 28, so each of these marks has frequency 0.

We can present this information into a graphical form using a histogram, where
the frequency of each mark is represented as a vertical bar.

Figure 2: Histogram of marks distribution

In the histogram shown in Figure 2 we list all the possible marks a student
could get and draw a bar above each mark with length corresponding to the
frequency of the mark. So for mark 56 we draw a bar of length 7 (as 7 students
obtained a mark of 56) and for mark 49 we draw a bar of length 3. This gives
us a better visual representation of the results. Such frequency distributions are
very important in statistical analysis, as they provide the basic representation
of the given information.
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3.1.1 Measures of central tendency

Is there a single mark that best describes the results? A reasonable approach
is to �nd a �central� mark, that is, to �nd the center of our data. What we are
looking for here is a measure for central tendency.

One possible answer is to select the most frequent mark, which corresponds to
the longest bar in the histogram. This measure is called the mode. In our case,
the mode of the distribution is 56 and it appears to be a reasonable estimate of
the central mark. However, mode is rarely used for a number of reasons. It might
be the case that we have two marks appearing with the same frequency - than we
have no way of choosing between them. Also, it is possible that the mode clearly
does not represent the central mark. We go back to the mark distribution from
out example, but this time imagine that the ten weakest students all scored zero
on the exam. The marks would be clustering around 50, still the mode would
be 0. In this case the mode is a poor measure of central tendency.

Another measure of central tendency is called the median. It is the score that
comes up in the middle of the list when we have ordered it from lowest to
highest. For example, if we had only 9 students, the median would have been
the �fth mark in our ordered list. If we had 10 students, we would not have
a central mark; in this case the median lies halfway between the �fth and the
sixth mark. Lying halfway means we are looking for a number that is equally
spaced from both marks; to �nd such a number we add up the marks and divide
them by two. In our example, we have 100 students, so the median would be
halfway between the �ftieth and �fty-�rst mark. Since they are both 55, the
median is just 55; if they were 55 and 56, the median would have been 55.5.

The median is a good measure of central tendency as it picks the score in the
middle position of the distribution. Its weakness is that it takes into account
only the central mark (marks), with no regard to the rest of the data. That is,
the median does not include all the information given by the marks. If the mark
of a student who scored 22, is corrected to 29, the median does not change. It
would still not change if more than one marks are changed, as long as marks
below the median were not changed to marks higher than the median or vice
versa. The median is simply the score where where we cut the list in two halves.

The median can be regarded as a better choice of central value than the mode,
there is a third measure of central tendency that takes into account all the
information in the list and is used more often than the either of the above
measures. This is the mean and we denote it by µ. In order to compute the
mean, we use the formula

µ =

∑
X

N
(2)

where X indicates a score (in our example an examination mark) and N is the
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number of scores (in our example the number of marks or students). So in order
to �nd the mean of the distribution in our example, we add up all the marks
and divide them by the number of students. This gives us a mean of 52.62.

When we talk of an �average�, we are usually referring to the mean. One way
to regard the mean is to see it as the value which balances the scores on both
sides. Imagine the horizontal axis of the distribution given in Figure 2 as a
long wooden plank with length 100. The students are sitting on the plank at
a position speci�ed by their mark; so there is one student sitting on 90, two
students sitting on 32, etc. In order to balance the plank perfectly, we have
to put a balancing rod exactly at the mean position. If we change any mark
(equivalent to moving a student along the plank), than the mean also changed
(the position of the rod shifts in order to maintain the balance). Thus the mean
is determined by all the scores, unlike the median.

From the plank analogy, we can see that the mean is sensitive to extreme values.
A very large or a very small score would have a greater e�ect on where the
supporting rod stays, than a mark in the middle of the distribution would.
That is, a balanced plank would tip much easier if a new person sits near either
end rather than near the middle.

3.1.2 Comparing measures of central tendency

So far we have three measures of central tendency - mode, median and mean.
Which is the one we should choose? The answer is - the one that is most
appropriate. We want the one that best represents the central value of our
distribution. Usually that results in choosing the mean, but there are occasions
when the mode or the median present a better measure.

The mode is quick and easy to determine once we have the distribution, so it
might be used as a rough measure without need of any other computations. Also,
with some types of data we cannot calculated the mean and the median. For
example, when choosing an exam date, a teacher would suggest some range of
possible dates and would probably select the date chosen by the largest number
of students. Note that in this case it does not make sense to calculate median
and mean; a value of, for example, 18th of July is not useful if it is not in the
suggested range of possible dates.

A median is often used if there are abnormally large or small values in the
frequency distribution, which would result in the mean giving a distorted idea
of the central tendency. As an example, �ve Volkswagen cars have the following
maximal speeds: 190 km/h, 210 km/h, 220 km/h, 250 km/h and 400 km/h (the
last one is a sports model). We see most have maximum speed of around 220
km/h, but with the inclusion of the fast sports model gives a mean of 254 km/h.
This number might not be appropriate for a central value, as four out of the �ve
cars are slower. Taking the median here is more representative for the central
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value.

However, in most cases of data collection, the mean is the chosen value as it
takes into account all the scores.

3.1.3 Measures of spread

A useful statistic for summarizing data is the measure of spread. It is important
to know how spread the scores are. Two groups of students taking the same
exam can have di�erent distributions but the same means. In order to express
the di�erence between the two distributions, we need to use the spreads - it
is very likely that the marks for one group are more spread out than that of
the other. A small spread of the results is normally seen as a good thing - it
means that people are behaving similarly and hence the mean value represents
the scores well. A large spread indicates that there are large di�erences between
individual scores and the mean is therefore not representative.

The simplest measure of spread is the range. It is the di�erence between the
largest and the smallest score. In the example the highest score is the mark 90
and the lowest is 0, thus the range is 90. This measure is crude, it only sets
the boundaries of the scores, but tells us nothing about their general spread.
Therefore marks spread evenly between 0 and 90 would have the same range as
the ones from our example.

Another way to describe the spread is to calculate quartiles. We saw earlier that
the median divides the ordered data into halves; the quartiles simply divide it
into quarters. The �rst quartile indicates the score that is one quarter on the
way up the list, starting from the lowest score. The second quartile is the score
that is two quarters up the list, which is in fact halfway up and is therefore
equivalent to the median. The third quartile is the score three quarters up the
list and the forth quartiles is the score all the way up the list, namely the highest
score. We use Qi to denote the ith quartile.

In our example, one quarter up the list of a hundred scores lies between the
twenty-�fth and the twenty-sixth mark, that is between 48 and 49. Therefore,
the �rst quartile is Q1 = 48.5. Similarly, the third quartile is Q3 = 59.5, that is
the mark lying between the seventy-�fth and the seventy-sixth mark. We know
the second quartiles is Q2 = 55 as we have already computed the median; the
forth quartile is Q4 = 90, the highest score.

A slightly more sophisticated measure of spread than the range is the interquar-
tile range - the di�erence between the �rst and the third quartile (Q3 − Q1).
This is the range of half the scores, those that are in the middle of the distribu-
tion. The reason why it is interesting is that unlike the range, it is not a�ected
by a very high or low score and would therefore represent the spread of the
distribution more appropriately.
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Calculating quartiles does not use all the information available from the scores
in the data. As with the median, some of the scores could be di�erent and yet
we would arrive at the same interquartile range. The aim is then to devise a
measure that takes into account all the available scores. There are a number of
measures of spread that have been developed in this direction. Their common
feature is that all begin with the mean. Their idea is as follows: if we take the
mean as the central position of our distribution we can compare each score to
it and �nd out how far it deviates from it. If we add up the deviation of each
of the scores from the mean, we will have a measure of total variability in the
data. If we went, we can then divide by the total number of scores, thus �nding
the average deviation of each score from the mean.

We can calculate the deviation of a score from the mean simply by computing
X − µ, where X is a score µ is the mean. The problem here is that when we
add them up, the deviations tend to cancel each other out. In our example,
a mark of 55 gives a deviation of 55 − 52.62 = 2.38 and a mark of 50 gives
a deviation of 50 − 52.62 = −2.62. If we add them up, we get a deviation of
−0.24. Both scores are over two marks away from the mean, but they give a
total variation less than one. We do not want this - it is not a statistic that
represents variability as it really is.

The problem here comes from the minus sign. In fact what it tells us is that
the mark is lower than the mean. We are not actually interested in that; what
we want to know is how far the score is from the mean. There are two ways to
add up deviations so they do not cancel each other out and we end up with a
reasonable estimate of the real variability of the scores.

One way is to ignore the negative signs altogether, i.e. to take the absolute
deviation from the mean, that is |X − µ|. Thus each deviation contributes a
positive number to the total deviation. To �nd the average deviation, we add
up all the deviations for all scores and divide by the number of scores N . We

call this mean absolute deviation and compute it by the formula

∑
|X − µ|
N

. In

our example, the mean absolute error is 9.15.

An alternative way to taking absolute values is to square the deviations since
the square of a number is always positive. We add up the square of each of the
deviations. Then we can divide by the number of scores to �nd the average of
the squared deviations. This value is called variance:

Variance =

∑
(X − µ)2

N

In our example the variance is 176.52. The variance does what we want - it
gives a large �gure when the scores are spread out and a smaller one when they
are closer together. Since we are dealing with squared deviations, values that
are away from the mean would have more weight than values that are closer to
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it. For example, if a score deviates by 2 from the mean, in contributes 4 to the
variance; however, a score deviating by 4 would contribute 16, so even though
the second score is only twice as far as from the mean as the �rst, it contributes
four times as much to the variance.

The variance provides a good measure of variability. But note that in our exam-
ple, the variance we calculated cannot be placed on the frequency distribution
as a distance from the mean. This is because the variance is the average of the
squared deviations. We need to undo the squaring in order to go back to the
terms we started with. That is we take a square root of the variance and call
this statistic the standard deviation σ.

σ =

√∑
(X − µ)2

N
(3)

In our example, the standard deviation of the one hundred marks is 13.29. The
standard deviation gives us a measure of the spread about the mean. In many
cases, most of the scores would lie within one standard deviation form the mean,
that is in the range X − σ to X + σ

3.1.4 Comparing measures of spread

As with the measures of central tendency, the measure of spread that is most
useful depends on the reasons for calculating it. The range and the interquar-
tile range are both easy to calculate, giving limited but potentially adequate
measures of the spread. Their weakness is that they do not take into account
all the scores and may not represent the true variability of the scores.

The variance is a good measure of variation of the data - it takes into account
all the scores and gives a small number if the scores are clustered together and
a large number if they are spread out. However, when describing a set of data,
the variance might not be particularly useful, as it produces a number that is
of di�erent order than the scores.

The mean absolute deviation and the standard deviation are both good descrip-
tive statistics of the spread of a set of scores. They both use all the available
information and produce a value that expresses the average deviation from the
mean in terms that we want (in our example - marks). As they are expressed
in the same terms as the scores, both are easy to handle.

3.1.5 Comparing two sets of data

So far we have managed to brie�y describe the given data, but in most cases we
would like to use that information to make a certain point. In our example we
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might be concerned that students perform worse, which might be due to failing
standards of education, stricter grading or poor selection criteria. The statistics
we have so far can help us make a decision about such question. This, of
course, requires a comparison with the previous year's results. The calculation
of statistics is often used not only for description but to allow us to answer
speci�c research question and thus involves comparing two sets of results.

To extend our example, assume we are given the results or last year's exam,
where again 100 students sat the exam (table of results is not given here). We
already know we can order the data in increasing order and create a frequency
distribution. If we compare the results from the two years just by looking at
Figure 2 and Figure 3 we note that the distribution looks similar over the two
years. This can be important observation, indicating a consistency in the perfor-
mance between consecutive years. However, just by looking at the distributions,
we cannot tell how similar they are and we might miss many subtle di�erences
between them.

Figure 3: Histogram of last year's marks distribution

We can use the measures of central tendency to compare the two years directly.

Last year This year
Mode 58 56
Median 56.5 55.0
Mean 54.25 52.62

We can see that all three measures have dropped a little since the last year.
The change in the mode could easily have been caused by just a few students,
so in this case it is not the most useful measure. The median indicates that the
central point was higher last year. Most importantly, the mean value shows a
drop of 1.63 marks. It is important to recall that the mean takes into account
all the students, so that means there is a drop of 1.63 marks per student. This
could be due to a number of reasons that are worth investigating - perhaps the
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exam was easier last year; or students were better last year; or perhaps there
were a few particularly good students last year or a few poor students this year,
which would change the mean, but would not indicate that the standards are
failing. To check the last hypothesis, we need to compare the measures of spread

Last year This year
Range 83 90

Interquartile range 10.5 11.0
Mean absolute deviation 8.82 9.15

Variance 169.93 176.52
Standard deviation 13.04 13.29

There was a narrower range last year with no one scoring as low as 0 and as high
as 90. However, there is not much di�erence in the interquartile range and, more
importantly, in the standard deviation. It might be worth researching further
to see why there was reduction in the mean performance. Note that the results
alone tell us a di�erence has occurred, they do not tell us what the reasons for
that di�erence are. Interpretation of the results is up to one's own judgement.

3.1.6 Comparing scores from di�erent distributions

If a student took an exam and scored 59, how good had he done, relative to his
classmates? Was he among the best or the worst? If we know the mean and
the standard deviation, we can begin answering that question. For example, if
the mean is 50 and the standard deviation is 5, than the score was one of the
best. However, if the mean is 60 with standard deviation 3, the score is slightly
lower than the mean; however, the results are clustered around 60, so probably
there are a lot of other students with similar grades.

If a student took two exams, and receive 58 in Mathematics and 49 in Finance,
which mark would the student be happier with? 58 is numerically higher so
that might be a good �rst guess. However, if the student �nds out most of the
students who took Mathematics scored more than 60 and most of those who took
Finance scored no more than 45, than things look di�erent. The distributions
of the two sets are di�erent, making 49 in Finance a very high mark, compared
with the rest of the class and 58 in Mathematics a very low mark.

Assume the student �nds out that for the Mathematics exam the mean is 61
and the standard deviation is 6, and for Finance exam the mean is 45 and the
standard deviation is 4. To compare the two scores, we need to standardise
them. To do so, we compute the standard score or z-score. This expresses the
score relative to the mean in terms of the standard deviation. So for example,
a score of 58 is 3 marks away from the mean of 61. The standard deviation
is 6 marks, so the score is 3/6th, or half a standard deviations away from the
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mean. Essentially, the standard score tells us how many standard deviations
the score is from the mean of the distribution. We use the following formula for
the standard score:

z =
X − µ
σ

where X is the score we want standardised, µ is the mean and sigma is the
standard deviation of the distribution.

We can compare standard scores, because no matter what distribution we start
with, converting the scores to z-scores results in distribution with mean of 0 and
standard deviation of 1. We compare the standard scores and see which result
is higher.

In Mathematics X = 58, µ = 61, σ = 6

z =
X − µ
σ

=
58− 61

6
= −0.5

In Finance, X = 49, µ = 45, σ = 4

z =
X − µ
σ

=
49− 45

4
= 1

In Mathematics the student is half a standard deviation below the mean (due
to the negative sign) and in Finance the student is a standard deviation above
the mean. The higher z-score in Finance means that the student is higher in
the class results for Finance that for Mathematics.

In the previous example we compared two sets of examination results, from this
year and from last year. For this year a score of 59 yields the following z score:

z =
59− 52.62

13.29
= 0.48

For last year's distribution, a score of 59 produces

z =
59− 54.25

13.04
= 0.36

From the two z-scores we can see a score of 59 is higher up the distribution this
year, than it was last year, so 59 is a better score this year.

29



3.2 Hypothesis Testing

So far we have seen that frequency distributions can be described by choosing
appropriate statistics, usually the mean and the standard deviation. Further-
more, we can compare scores from di�erent distributions using standard scores.
Now we need to see how to use this information to help us answer the question
we wish our research to answer. In this chapter we move from simply describing
the data to how we can use it to test hypotheses.

A hypothesis is a supposition - we state something we suppose to be true and
then collect evidence towards proving it. Imagine we are given a coin and asked
to determine whether it is fair or biased. If we �ipped the coin 100 times
and it came heads 55 times, it is likely to say the coin is fair. If the coin
landed heads only 4 times, we would be inclined to think it is biased towards
tails. Both statements are hypotheses we want to test. To do that we need a
procedure called hypothesis testing. Hypothesis testing is a way of systematically
quantifying how certain we are of the result of a statistical experiment. It follows
a logical sequence of stages from proposing to hypothesis to deciding whether
to reject it.

The hypothesis we want to test is also called the null hypothesis and is denoted
by H0. It is the statement that is believed to be correct throughout the anal-
ysis. The main goal of hypothesis testing is to tell us whether we have enough
evidence to reject the null hypothesis. Rejecting the null hypothesis tells us the
alternative should be true. In our example, we want to test whether the coin is
biased or not, so our null hypothesis should be �the coin is fair�. If we manage
to reject it, we can assume the alternative - the coin is not fair.

It is important to note, that if we cannot reject the null hypothesis, it does
not mean we can automatically accept it and claim with certainty that the
coin is fair. Not being able to reject the null means we have not found enough
evidence in our data, which certainly is di�erent from demonstrating that the
null hypothesis is true. What we can do is test the alternative, that is test
whether the coin is fair or not. Then the null hypothesis would become �the
coin is not fair�. If we manage to reject it, we can safely assume the coin is in
fact fair.

Let us go back to the example. Our null hypothesis is �the coin is fair�. We �ip
the coin 100 times and it comes up heads 51 times. Our intuition tells us the
coin is probably fair, but nothing more. The expected number of heads is 50
and 51 is close enough. But what if we had �ipped the coin 100 000 times and
it came up heads 51 000 times? In both cases we have 51% heads, but in the
second case the coin seems more likely to be biased.

Let us try to quantify our intuition. Let X be a random variable, describing
the outcome of a coin toss. It lands heads with probability p and tails with
probability 1− p. X takes a value of 1 if the coin lands heads, and 0 if the coin
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lands tails. This is equivalent to writing

P(X = 1) = 1− P(X = 0) = p

Now assume we have made 100 coin �ips. If Xi is the outcome of the ith coin
�ip, the random variable

Y =

100∑
i=1

Xi

represents the number of heads in the 100 �ips.

Let us denote the set of outcomes from the 100 coin �ips as O. What we want
to calculate is the probability that we observed O, given the null hypothesis
is true, or P(O|H0). If this probability is su�ciently small, it would mean the
outcomes are very unlikely to occur if the null hypothesis is true; therefore we
can conclude that the null hypothesis is false. So for example, the probability
of observing only 1 head out of 100 coin tosses, given the coin is fair, is very low
(it is 0.5100), much lower than 1%. Therefore, with certainty higher than 99%
we can reject the null hypothesis and claim the coin is not fair.

The certainty with which we reject the null hypothesis is called level of con�-
dence. We can use whatever level of con�dence we want before rejecting the
null hypothesis, but most often we use 90%, 95%, or 99%. If we choose a 95%
con�dence level, we reject the null hypothesis if

P(O|H0) ≤ 1− 0.95 = 0.05

The Central Limit theorem plays a main part here. Let us brie�y recall the
idea of Theorem (2.3): the sum of any number of independent and identically
distributed random variables approximates the standard normal distribution.
Let p = Y

N be the proportion of heads in the sample of 100 coin �ips. In our
case p = 0.51 or 51%. But by the central limit theorem, p approximates the
standard normal distribution, as p is in fact sum of the i.i.d. Xi's. This means
we can estimate the standard deviation of p as

σ =

√
p− p2

N

Our null hypothesis is that the coin is fair, or in other words p0 = 50%. Let us
look at the normal curve:

A 95% level of con�dence means we reject the null hypothesis if p < 0.05 or
equivalently if p falls outside 95% of the area of the normal curve. Looking at
that chart we see that this area corresponds to approximately 1.96 standard
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Figure 4: Normal Distribution

deviations. Therefore, if p is more than 1.96 standard deviations away from
p0, we can reject the null hypothesis with 95% con�dence. If we want, we can
use 99.9% level of con�dence. In this case we reject the null hypothesis if p
falls outside 99.9% of the area of the normal curve, which is approximately 3
standard deviations.

To check how many standard deviations away from p0 our p is, we need to
compute the z-score. Recall that p0 = 0.5 and the standard deviation of p0

is computed as
√

p0(1−p0)
N . We compute the z-score the same way we did in

section 3.1.6:

z =
p− 0.5√
0.5(1−0.5)

N

We can now compute that for hundred coin �ips and 51 heads or N = 100 and
p = 0.51, we get a z-score of 0.2, meaning p is 0.2 standard deviations away from
p0. This is not greater that 1.96, therefore we cannot reject the null hypothesis.
If we had two more coins from which we have obtained 60 and 70 heads in
100 coin �ips, we would get z-scores of 2 and 4 respectively. Than with 95%
con�dence, we could reject the null hypothesis that the coin is fair and conclude
that they are biased. Note that in the case of getting 70 heads, we could reject
the null hypothesis with even higher con�dence - 99.9%, since p is more than 3
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Coin Flips Heads Z-score 95% con�dence 99.9% con�dence
Coin 1 100 51 0.2 not rejected not rejected
Coin 2 100 60 2 rejected not rejected
Coin 3 100 70 4 rejected rejected

Table 1: Results for 100 �ips of a coin

standard deviations away from p0. These results are summarized in Table 1

This concludes our hypothesis testing.

3.3 Sampling

3.3.1 Population and samples

So far we have only considered what is know as populations , that is the complete
set of things we are interested in. The frequency distribution have included all
the scores we are interested in, such as the scores of all students who took the
exam in the example of section 3.1.5. A population is not necessarily a collection
of people; it can be a complete set of anything, such as the IQ of �fteen-year olds
living in Ulm, the number of goals scored in each football league on a particular
Sunday or the number of books in each library in Europe. The population is
simply every member of a certain category that we wish to study.

Often due to the vast size of the population, we cannot study it all. In this
case we select a sample . A sample is a subset of the population. Usually we
want to know about populations rather than about samples, but in most cases
it is only possible to test samples. This is a fundamental problem in statistical
analysis - how can we generalise the information a sample gives us to the entire
population? We illustrate the di�culty with an example.

A doctor wishes to know the risk of developing respiratory problems in German
man over the age of 50 years. This is a very large population and it is quite
di�cult to test them all. Therefore, a sample must be tested instead. But what
the doctor is not interested in the sample itself, but in what it tells him about
the population. If it is not possible to estimated details of the population from
the sample, than it is not worth studying it. What the doctor needs to �nd is
sample information that is useful for estimating details about the population.

One of the di�culties of using samples to represent population is selecting the
sample members. In most cases we want our sample to truly represent the
population, so we can generalise our �ndings to the population and claim the
population will behave like the sample. When conducting a survey on a sample
of the voting population, we should make sure that we have, for example, the
same proportion of men and women in the sample as they are in the population.
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Consider the example of respiratory problems. Would any group of men over 50
be an acceptable sample? If we took only man from hill top villages, where the
air is clear, or from mining towns polluted with coal dust, we are likely to have
a biased sample, as not all members of the population live in such places. We
would need to take the sample from a range of locations. We need to consider
age as well. If our sample contained only men between 50 and 60, would it be
representative for men over 60 in the population?

Any di�erence between the sample and the population can lead to a problem
in generalisation: location, age, whether they smoke or not, occupation and
so on. It is almost impossible to obtain a truly representative sample, where
every characteristic of the sample matches the population characteristics. Here
researchers should do the best with what they have and try to be aware of any
di�erence between the sample and population. Here the judgement is not en-
tirely statistical but also depends on the researcher's expertise in the subject.
A doctor would know that certain factors are important with respect to respi-
ratory problems and will try to select a sample representative of the population
on these key factors.

An alternative way of selecting the sample to represent the population is through
random selection. With a random sample , the sample members are selected at
random from the entire population with each member having an equal chance
of being selected. For example, when doing a survey, we might select names at
random from the phone book. We have no idea who the people are, we leave it
all to chance. By random selection, we make sure the sample is not deliberately
biased, so any di�erences between the sample and the population are random
and therefore not systematically in�uencing the data.

However, even the random sampling might not be so random. If we perform
a survey in the streets on random passers by, we exclude all those people not
passing by. If we perform the survey at 10 a.m., we exclude all the people whose
occupation keep them at work at this time. Selecting randomly people listed in
the telephone book excludes all that are not listed. Often it is hard to collect a
truly random sample, but again it we must do the best we can by deciding on
the key factors and selecting randomly within those factors.

3.3.2 Sample statistics and population parameters

Of the various measures of spread, the mean absolute deviation and the stan-
dard deviation both use information from all the scores. However, it has been
found that the sample mean absolute deviation is an unstable estimator of the
population �gure, that is, there is no consistent relationship between the mea-
sure for the mean and for the population. On the other hand the standard
deviation is a much more reliable estimator of the population value. Therefore
when we do not know the population standard deviation, we use the sample
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standard deviation to estimate it.

The formula for the standard deviation is given by equation (3). However,
when applied to the sample scores, this formula underestimates the population
value. To improve the estimate we change the formula for the sample standard
deviation:

Sample standard deviation (s) =

√∑
(X − X̄)2

n− 1
, (4)

where n is the sample size, X̄ is the sample mean and s is the sample standard
deviation (to distinguish from the population mean µ and standard deviation
σ).

We also want to know the central �gure in a population, but when we only have
sample, rather than details on the population, we have to estimate it. Of the
various measures of central tendency, the sample mean is the best estimate of
the population value. But how good an estimate of µ is the sample mean X̄
depends on the size of the sample. The larger it is, the better the sample mean
is as an estimate of the population mean. We can see from a simple example.

The population of IQ scores is normally distributed with mean 100 and standard
deviation of 15. If we took 20 people's IQ scores, would their mean be 100? The
answer is probably not. We might have taken a sample of very smart people
only, then the sample mean would be higher than 100. So sample mean will
have di�erent values, depending on the sample we have selected.

Now imagine we are able to select every possible sample of 20 IQ scores and
compute their sample means. If we plot those means as a frequency distribution,
we get the distribution of the sample means. Note that we are not interested in
the individual scores, but in the mean of every sample of size 20. It turns out
that the distribution of the sample means has some very useful characteristics.

First, we �nd that as we obtain more samples, the mean of the sample means
get closer to the population mean. When we have collected all the possible
samples, we �nd that their mean is the same as the population mean. So if we
collect all samples of 20 IQ scores, then the mean of the samples is 100. We
denote this mean by µX̄ .

Second, the distribution of sample means will tend to be a normal distribution.
If the population of scores is normally distributed, than the distribution of
sample means would de�nitely be normally distributed. Even if the distribution
of scores is not normally distributed the distribution of sample means will still
look rather like a normal distribution. The larger the samples we select, the
closer the distribution approaches normal distribution. This is a consequence of
the Central Limit theorem (Theorem 2.3). This is an extremely useful piece of
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information in our statistical analysis.

Third, as the distribution of the sample means is approximately normally dis-
tributed, we can compute the probability of �nding a sample with a particular
mean by calculating a z-score for our sample.

Finally, we can easily compute the standard deviation of the distribution of
sample means using the standard deviation of the individual scores. We call
this new standard deviation the standard error of the mean and denote it by
σX̄ . The standard error provides us with the standard deviation of a sample
mean from the population mean.

σX̄ =
σ√
n

where σ is the standard deviation of the population and n is the sample size.

The standard error of the mean is precisely the distance that the sample mean
is from the population mean. It tells us how good an estimate the sample mean
is of the population mean. Notice that as the sample size (n) gets larger, the
standard error gets smaller

The distribution of the sample means is now something we know a lot about
without having to calculate the means for all the samples. The distribution of
the sample means is normal distribution with mean µX̄ , the same as the popu-
lation mean µ and a standard deviation σX̄ , equal to the population standard
deviation divided by the square root of the sample size.

In the IQ example, the distribution for samples of 20 scores will be normal with
mean 100 and a standard error of 15√

20
= 3.35. As we have a normal distribution

with known mean and standard deviation, we can calculate the z-scores and
work out probability values. Suppose we have obtained a sample mean of 95 in
our sample of 20 IQ scores. We compute the z-score:

z =
X̄ − µX̄
σX̄

=
95− 100

3.35
= −1.49

We can look up the probability of the z-score in standard normal distribution
tables as our sampling distribution is normally distributed and we get a prob-
ability of 6.80%. This tells us that the probability of obtaining a sample mean
as low as 95 from our sample of 20 IQ scores is only 6.80%. If we used a larger
sample size, say 30 instead of 20, this probability decreases to 3.39%. This is
what we need for hypothesis testing.
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4 Basic Concepts and Notation

De�nition 4.1. A set Ω is a collection of distinct objects, called �elements� of
Ω.

Interpretation

• The elements of a set can be anything - numbers, colours, letters and so
on. For example A = {1, 2, 3, 4, 5} is the set of the �rst 5 positive integers
and B = {A,B,C,D, ...,X, Y, Z} is the set of the alphabet.

• Two sets are said to be equal if and only if they have precisely the same
elements; for example, C = {2, 1, 4, 3, 5} is equal to the set A described
above, but the set C ′ = {6, 2, 1, 4, 3, 5} is not. Note that the order of the
elements does not matter.

• A set may contain no elements at all, then it is called the empty set and
is denoted by ∅.

• A set can have in�nitely many elements, for example the set of all odd
positive numbers D = {1, 3, 5, 7, ...}.

De�nition 4.2. Given two sets X and Y , we say that X is a subset of Y , if
every element of X is also an element of Y . It is denoted as X ⊆ Y and it
implies that

x ∈ X ⇒ x ∈ Y

De�nition 4.3. A set Ω is called countable if there exists an injective function
f : Ω→ N from Ω to the natural numbers N

Remark

• If a set is countable, then the number of elements of this set is some subset
of the natural numbers. This means the elements can be counted one at a
time and each element is associated with a natural number. However that
does not mean that a countable set is �nite - just like the set of natural
number is not.

• If a set is not countable, it is call uncountable.

Example 4.1. Recall the set of all positive odd numbers D as de�ned above.
Now consider a set E consisting of all odd positive numbers, divisible by 3. Than
the set E = {3, 9, 15, 21, 27, ...} is a subset of D since all the elements in E are
also elements in D.

Example 4.2. Consider the set E = {0, 1, 2} and the set A as de�ned above.
Than E is not a subset of A or E 6⊆ A since 0 ∈ E, but 0 /∈ A.
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Example 4.3. Every set is a subset of itself and the empty set is a subset of
every other set. That means ∅ ⊆ F and F ⊆ F for every set F .

Example 4.4. If X ⊆ Y and Y ⊆ X, than it must be the case that X = Y .

De�nition 4.4. Given a set Ω, the power set of Ω is the set of all subsets of
Ω. It is denoted by P(Ω).

Interpretation

• If we have a set Ω = {x, y, z}, then {x}, {y} and {z} each form a subset
of Ω. Also, so do {x, y}, {x, z} and {y, z}. Finally, the empty set {∅} and
the whole set Ω are also considered subsets of Ω. Therefore the power set
of {x, y, z} is given by

P(Ω) = {{∅}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

• The power set is therefore a set, whose elements are again sets, that con-
sists of a di�erent selection of items in Ω. Note that due to the set prop-
erties, the order of the items does not matter, so {x, y} is the same as
{y, x}. Also, repetitions do not matter, i.e. {x, x, y} = {x, y}.

• Number of subsets: if the set Ω has n elements, than the power set of Ω
has 2n elements. In the example above, Ω has 3 elements, therefore the
power set should have 8 elements in total, which we can see to be true.

De�nition 4.5. A set O is called open if for every x ∈ O there exists a real
number ε > 0 such that, any point y in Rn with distance from x is smaller than
ε, is also in O (y ∈ O).

Interpretation

• Consider the interval (0, 1). The endpoints 0 and 1 are not in the interval;
if we take a point x that is arbitrarily close to either of the endpoints,
we can still �nd a small enough number ε ∈ R, such that all points with
a distance from x smaller than ε are in (0, 1). For example, consider
x = 0.9999, so the distance from 1 is 0.0001. Still, we can take, say,
ε = 0.0001/2 and it is small enough to ensure the above requirements.
Therefore (0, 1) is an open interval.

• Now consider the interval [0, 1]. Unlike the previous example, the end-
points 0 and 1 belong to the interval. Now if we take x = 1, than we
cannot �nd a positive ε such that any y with distance from x less than ε
is in [0, 1]. Indeed, consider a very small epsilon, say ε = 0.00001. Than
for y = 1.000001, the distance between x and y is less than ε, yet clearly
y /∈ [0, 1]

38



De�nition 4.6. A Borel set on R is any set that can be formed from open
sets through the operations of countable union and countable intersection. The
collection of Borel sets on X forms a σ-algebra, known as the Borel algebra. This
is the smallest σ-algebra containing all open sets (or equivalently, containing all
closed sets).

Interpretation

• Every �reasonable� subset of R, in particular each interval, open set, closed
set, �nite set, countable set, is a Borel set. For example, (0, 1) is a Borel
set, so is (1, 2) and so is their union.

De�nition 4.7. A simple function is

De�nition 4.8. The indicator function of a subset A of a set X is a function
1A : X → {0, 1} de�ned as

1A =

{
1, if x ∈ A,
0, if x /∈ A

39



Index

σ-algebra, 3

absolute deviation, 25

Borel set, 39

central limit theorem, 19
countable set, 37
Cumulative density function, 13
cumulative distribution function, 12

expectation, 15

identically distributed, 17
independent identically distributed ran-

dom variables, 17
independent random variables, 17
indicator function, 39
interquartile range, 24

law of large numbers, 18
level of con�dence, 31

mean, 22, 23
measurable function, 6
measurable sets, 3
measurable space, 3
measure, 5
measure space, 5
median, 22
mode, 22

null hypothesis, 30

open set, 38

population, 33
power set, 38
Probability Distribution, 11
probability mass function, 11
probability measure, 5
probability space, 5, 9

quartile, 24

random sample, 34
random variable, 9
range, 24

sample, 33
sample space, 8
set, 37
simple function, 39
standard deviation, 26
standard error, 36
standard score, 28
subset, 37

variance, 16, 25

40


	Basic Definitions
	Measure
	Lebesgue Integral

	Basic Probability Background
	Fundamentals

	Statistics Background
	Basics
	Hypothesis Testing
	Sampling

	Basic Concepts and Notation

