Prof. Dr. Alexander Lindner Dirk-Philip Brandes Institut für Finanzmathematik Universität Ulm Winter semester 2014/2015

Statistics of Financial Data Exercise Sheet 7

To be discussed on Monday, December 1, 2014

Let us recall the following:

Definition: Let $I \neq \emptyset$ and $d \in \mathbb{N}$. A family $(P_J)_{J \subset I, |J| < \infty}$ of probability measures on $(\times_{j \in J} \mathbb{R}^d, \bigotimes_{j \in J} \mathbb{R}_d)$ is called a *projective family of probability measures (based on* $(\mathbb{R}^d, \mathcal{B}_d))$, if

 $P_L = \pi_L^J(P_J)$ for all finite subsets $L \subset J$ of I,

where π_J^L is the projection from $\times_{j\in J} \mathbb{R}^d \to \times_{j\in L} \mathbb{R}^d$, given by $(x(j))_{j\in J} \mapsto (x(j))_{j\in L}$.

In probability theory or in stochastic processes we have learnt:

Extension theorem of Kolmogorov:

Let $I \neq \emptyset$ and $(P_J)_{J \subset I, |J| < \infty}$ a projective family of probability measures, based on $(\mathbb{R}^d, \mathcal{B}_d)$. Then there exists an \mathbb{R}^d -valued stochastic process $(X_t)_{t \in I}$ whose finite dimensional distributions are exactly the P_J with $J \subset I$ finite.

Problem 7.1 (Extension of strictly stationary stochastic processes) Let $(Y_n)_{n \in \mathbb{N}_0}$ be an \mathbb{R}^d -valued strictly stationary stochastic process. Show that a two-sided strictly stationary stochastic process $(X_n)_{n \in \mathbb{Z}}$ exists such that $(X_0, \ldots, X_n) \stackrel{d}{=} (Y_0, \ldots, Y_n)$ for all $n \in \mathbb{N}_0$.

Definition: Let $p \in \mathbb{N}$, $q \in \mathbb{N}_0$, $\alpha_0 > 0$, $\alpha_1, \ldots, \alpha_{p-1} > 0$, $\alpha_p > 0$, $\beta_1, \ldots, \beta_{q-1} \ge 0$, $\beta_q > 0$ and $(\varepsilon_t)_{\in \mathbb{N}_0}$ an i.i.d. sequence of random variables. Then a GARCH(p, q)-process on \mathbb{N}_0 with volatility process $(\sigma_t)_{t \in \mathbb{N}_0}$ is a stochastic process $(X_t)_{t \in \mathbb{N}_0}$ such that

$$X_t = \sigma_t \varepsilon_t \quad \forall \ t \in \mathbb{N}_0$$

and

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i X_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2, \quad t \ge \max\{p, q\}.$$
 (1)

The process is called *causal* if additionally σ_t^2 is independent of $(\varepsilon_{t+h})_{h\in\mathbb{N}_0}$ for $t = 0, \ldots, \max\{p, q\}$. By (1), the latter independence property then easily extends to hold for all $t \in \mathbb{N}_0$.

Problem 7.2

(a) Show that the following are equivalent:

- (i) There exists a GARCH(p, q)-process on \mathbb{N}_0 with the given parameters such that $(X_t, \sigma_t)_{t \in \mathbb{N}_0}$ is strictly stationary.
- (ii) There exists a solution to the GARCH(p, q) equations (3.1) and (3.2) on \mathbb{Z} with the given parameters and a suitable i.i.d. noise $(\tilde{\varepsilon}_n)_{n\in\mathbb{Z}}$, where $\tilde{\varepsilon}_0 \stackrel{d}{=} \varepsilon_0$ and such that $(X_t, \sigma_t)_{t\in\mathbb{Z}}$ is strictly stationary.

(b) Give a necessary and sufficient condition for the existence of strictly stationary GARCH(1,1) processes on \mathbb{N}_0 (meaning that $(X_t, \sigma_t)_{t \in \mathbb{N}_0}$ is strictly stationary), and show that every such process must be automatically causal.