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Abstract

We establish asymptotic properties of M -estimators, defined in terms of a contrast func-
tion and observations from a continuous-time locally stationary process. Using the stationary
approximation of the sequence, θ-weak dependence, and hereditary properties, we give suffi-
cient conditions on the contrast function that ensure consistency and asymptotic normality
of the M -estimator.
As an example, we obtain consistency and asymptotic normality of a localized least squares
estimator for observations from a sequence of time-varying Lévy-driven Ornstein-Uhlenbeck
processes. Furthermore, for a sequence of time-varying Lévy-driven state space models, we
show consistency of a localized Whittle estimator and an M -estimator that is based on a
quasi maximum likelihood contrast. Simulation studies show the applicability of the estima-
tion procedures.
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1 Introduction
Various powerful inference methodologies for continuous-time stochastic processes are based on
stationarity. One reason for this is that, in many cases, stationarity is essential to derive asymp-
totic results. For instance, based on stationarity arguments, different estimation procedures have
been successfully applied to flexible and widely used continuous-time models in [8, 9, 16, 19] and
[28].
However, numerous established models, including processes used in the references above, are in-
appropriate for modeling data that shows non-stationary behavior. To overcome this issue, [29]
recently introduced a general theory on stationary approximations for non-stationary continuous-
time processes that allows modeling non-stationary data. Heuristically, this approach follows the
intuitive idea of local stationarity as discussed in [12, 13, 14, 32], and assumes that a sequence
of non-stationary processes can be locally approximated by a stationary process. Noticeable ex-
amples of time-series models discussed in [29] come from the class of time-varying Lévy-driven
Ornstein-Uhlenbeck processes and time-varying Lévy-driven state space models. Since such pro-
cesses are non-stationary, classical methods used for statistical inference in a stationary setting
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cannot be applied, and novel estimation procedures are needed.
In the present work, we address this issue and provide inference methodologies for sequences
of non-parametric non-stationary continuous-time processes that possess a locally stationary
approximation. Noteworthy, our results are established in a model-free setting using limit the-
orems from [29]. We apply these results to study concrete estimators for several well-known
non-stationary time series models and analyze their asymptotic properties.
To the best of our knowledge, the only comparable results can be found in [21], where the au-
thors investigate time-varying Gaussian-driven diffusion models and provide asymptotic results
of a proposed estimator. Different from [21], our theory also encompasses non-Gaussian and
non-linear time series models. In the discrete-time setting, results similar to our theory have
been obtained in [2] and [13], where the authors derive a remarkably versatile theory including
various analytical and statistical results for locally stationary processes.
More precisely, we introduce a class of kernel-based M -estimators whose objective function is
a contrast that depends on observations sampled from a sequence of non-stationary processes.
To establish consistency and asymptotic normality in a general setting, we impose conditions
on the stationary approximation of the sequence and the contrast function. Specifically, the
stationary approximation is assumed to be θ-weakly dependent as introduced in [15] and the
contrast function is assumed to satisfy identifiability and regularity conditions. In particular,
these conditions ensure the existence of a θ-weakly dependent stationary approximation of the
contrast. The relative simplicity of the conditions allows us to readily derive asymptotic results
for different contrast functions of finite and infinite memory.
For instance, we consider a sequence of time-varying Lévy-driven Ornstein-Uhlenbeck processes
and obtain, based on a least squares contrast, a consistent and asymptotically normally dis-
tributed M -estimator of the underlying coefficient function. The estimator’s good performance
is demonstrated through a simulation study in a finite sample for different coefficient functions.
Moreover, we consider a sequence of time-varying Lévy-driven state space models, whose lo-
cally stationary approximation is a time-invariant Lévy-driven state space model. The latter
processes build a flexible class of continuous-time models that encompasses the well-known class
of CARMA processes (see [7, 23] for an introduction) and allow modeling high-frequency and
irregularly spaced data occurring, for example, in finance and turbulence. Recently, a quasi-
maximum likelihood and a Whittle estimator for Lévy-driven state space models sampled at low
frequencies have been discussed and compared in [16], and [28]. We use results from these works
and establish consistency results for two novel estimators, a localized quasi-maximum likelihood
and a localized Whittle estimator. While the localized quasi-maximum likelihood estimator is a
time domain M -estimator that is based on a log-likelihood contrast, the localized Whittle esti-
mator is a frequency domain estimator constructed from a consistent estimator of the sample
autocovariance. We compare both estimators in a simulation study, where their finite sample
performances and convergence behaviors are studied.
The paper is structured as follows. In Section 2, all technical results needed throughout this work
are presented. We review locally stationary approximations, introduce the sampling schemes in
use, discuss θ-weak dependence and outline hereditary properties of this measure of dependence
and the stationary approximations. In Section 3, we discuss the aforementioned class of M -
estimators and establish consistency and asymptotic normality. In Section 4, we first review
elementary properties of Lévy processes, stochastic integration with respect to them, and time-
varying Ornstein-Uhlenbeck processes. We then apply our results to a least squares contrast
and obtain asymptotic results of the corresponding M -estimator, where the observations are
sampled from a sequence of time-varying Ornstein-Uhlenbeck processes.
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In Section 5, we first review time-varying Lévy-driven state space models. Then, for observations
sampled from a sequence of such processes, we propose a localized quasi-maximum likelihood
estimator in Section 5.2 and a localized Whittle estimator in Section 5.4. We show consistency
of both estimators and present a truncated version of the localized quasi-maximum likelihood
estimator in Section 5.3.
The outcomes of the simulation study are discussed in Section 6 and the proofs of most results
are given in Section 7.

1.1 Notation

In this paper, we denote the set of positive integers by N, non-negative integers by N0, positive
real numbers by R+, non-negative real numbers by R0

+, the set of m× n matrices over a ring R
by Mm×n(R), and 1n stands for the n× n identity matrix. The real part of a complex number
z ∈ C is written as Re(z). For square matrices A,B ∈ Mn×n(R), [A,B] = AB − BA denotes
the commutator of A and B. We shortly write the transpose of a matrix A ∈ Mm×n(R) as A′,
and norms of matrices and vectors are denoted by ‖·‖. If the norm is not further specified, we
take the Euclidean norm or its induced operator norm, respectively. For a bounded function h,
‖h‖∞ denotes the uniform norm of h. In the following Lipschitz continuous is understood to
mean globally Lipschitz. For u, n ∈ N, let G∗u be the class of bounded functions from (Rn)u to R
and Gu be the class of bounded, Lipschitz continuous functions from (Rn)u to R with respect to
the distance

∑u
i=1 ‖xi − yi‖, where x, y ∈ (Rn)u. For G ∈ Gu we define

Lip(G) = sup
x 6=y

|G(x)−G(y)|
‖x1−y1‖+...+‖xu−yu‖ .

The Borel σ-algebras are denoted by B(·) and λ stands for the Lebesgue measure, at least in
the context of measures. For a normed vector space W , we denote by `∞(W ) the space of all
bounded sequences in W . In the following, we will assume all stochastic processes and random
variables to be defined on a common complete probability space (Ω,F , P ) equipped with an
appropriate filtration if necessary. Finally, we simply write Lp to denote the space Lp(Ω,F , P )
and Lp(R) to denote the space Lp(R,B(R), λ) with corresponding norms ‖·‖Lp .

2 Locally stationary approximations and θ-weak dependence

2.1 Locally stationary approximations

Throughout this paper, we consider sequences of processes that can be locally approximated in
Lp by a stationary process. This concept is a non-parametric approach to express the intuitive
idea of local stationarity, as discussed by Dahlhaus and others (see e.g. [12, 32]). In this paper,
we consider locally stationary approximations defined as follows.

Definition 2.1 ([29, Definition 2.1]). Let YN = {YN (t), t ∈ R}N∈N be a sequence of real-valued
stochastic processes and Ỹ = {Ỹu(t), t ∈ R}u∈R+ a family of real-valued stationary processes.
We assume that the process Ỹu is ergodic for all u ∈ R+ and supu∈R+

∥∥∥Ỹu(0)
∥∥∥
Lp
< ∞ for some

p ≥ 1. If there exists a constant C > 0, such that uniformly in t ∈ R and u, v ∈ R+

‖Ỹu(t)− Ỹv(t)‖Lp ≤ C |u− v| and ‖YN (t)− Ỹt(Nt)‖Lp ≤ C
1
N
, (LS)

then we call Ỹu a locally stationary approximation of the sequence YN for p.
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If Ỹu is a locally stationary approximation of YN for p, then it is also a locally stationary
approximation for p′, where 1 ≤ p′ ≤ p.
Whenever we investigate estimators based on observations from a sequence of processes, we
assume the observations to be sampled according to one of the following schemes.

Assumption 2.2. For fixed N ∈ N and u ∈ R+ we assume YN to be equidistantly observed at
times τNi = u+ iδN with grid size δN = |τNi − τNi−1| such that δN ↓ 0 for N →∞. For a sequence
bN ↓ 0 we consider the observation window [u− bN , u+ bN ] and set mN = bbN/δNc. Thus, the
number of observations is given by 2mN + 1 = |{i ∈ Z : τNi ∈ [u − bN , u + bN ]}|. We require
bN/δN →∞ as N →∞ and either

(O1) NδN = δ > 0 for all N ∈ N or

(O2) NδN →∞ as N →∞.

Note that these conditions on N , bN and δN immediately imply that NbN → ∞ as N →
∞. For a comprehensive discussion on the above approximations and observations, including
examples of sequences that satisfy Definition 2.1, we refer to [29].

2.2 θ-weak dependence and hereditary properties

In this section we summarize results that are needed throughout the paper. We start with a
brief review of the concept of θ-weak dependence.

Definition 2.3 ([15]). Let X = {X(t)}t∈R be an Rn-valued stochastic process. Then, X is called
θ-weakly dependent if

θ(h) = sup
v∈N

θv(h) −→
h→∞

0,

where

θv(h)=sup
{ |Cov(F (X(i1), . . . , X(iv)), G(X(j)))|

‖F‖∞ Lip(G) , F ∈ G∗u, G ∈ G1, i1 ≤ . . . ≤ iv ≤ iv + h ≤ j
}
.

We call (θ(h))h∈R+
0
the θ-coefficients.

Next, we summarize hereditary properties of locally stationary approximations and θ-weak
dependence under transformations (see [29, Section 2.3 and 2.4] for a comprehensive discussion).
Let YN be a sequence of stochastic processes with locally stationary approximation Ỹu for some
p ≥ 1. For k ∈ N0 we define the infinite and finite memory vectors

ZN (t) =
(
YN (t), YN

(
t− 1

N

)
, . . .

)
and Z̃u(t) = (Ỹu(t), Ỹu(t− 1), . . .), as well as

Z
(k)
N (t) =

(
YN (t), YN

(
t− 1

N

)
, . . . , YN

(
t− k

N

))
and Z̃(k)

u (t) = (Ỹu(t), Ỹu(t− 1), . . . , Ỹu(t− k)).

For functions from the following two classes we obtain hereditary properties.

Definition 2.4 ([13, Definition 2.4]). A measurable function g : Rk+1 → R is said to be in the
class Lk+1(M,C) for M ≥ 0 and C ∈ [0,∞], if

sup
x 6=y

|g(x)− g(y)|
‖x− y‖1 (1 + ‖x‖M1 + ‖y‖M1 )

≤ C.
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Definition 2.5 ([29, Definition 2.10]). A measurable function h : R∞ → Rn is said to belong
to the class Lp,q∞ (α) for p, q ≥ 1, if there exists a sequence α = (αk)k∈N0 ⊂ R0 satisfying∑∞
k=0 αk <∞ and a function f : R+

0 → R+
0 such that for all sequences X = (Xk)k∈N0 ∈ `∞(Lq)

and Y = (Yk)k∈N0 ∈ `∞(Lq) it holds

‖h(X)− h(Y )‖Lp ≤ f
(

sup
k∈N0

{‖Xk‖Lq ∨ ‖Yk‖Lq}
) ∞∑
k=0

αk ‖Xk − Yk‖Lq .

The next proposition is a combination of Proposition 2.7 and 2.11 from [29].

Proposition 2.6. Let YN be a sequence of stochastic processes with locally stationary approx-
imation Ỹu for some q ≥ 1. Then, for g ∈ Lk+1(M,C) and a real-valued function h ∈ Lp,q∞ (α),
where M ≥ 0, C ∈ [0,∞), p ≥ 1 and

∑∞
k=0 kαk <∞, it holds:

(a) g(Z̃(k)
u (t)) is a locally stationary approximation of the sequence g(Z(k)

N (t)) for p̃ = q
M+1 .

(b) If Ỹu is θ-weakly dependent with θ-coefficients θỸu(h), then Z̃(k)
u is θ-weakly dependent with

θ-coefficients θ
Z̃

(k)
u

(h) ≤ (k + 1)θỸu(h− (k + 1)) for h ≥ (k + 1).

(c) If Ỹu is θ-weakly dependent with θ-coefficients θỸu(h), satisfies E[|Ỹu(t)|(1+M+γ)] <∞ for
some γ > 0 and additionally |g(x)| ≤ C̃ ‖x‖M+1

1 for a constant C̃ > 0, then g(Z̃(k)
u (t)) is

θ-weakly dependent with θ-coefficients θ
g(Z̃(k)

u )(h) = O
(
θỸu(h)

γ
M+γ

)
.

(d) h(Z̃u(t)) is a locally stationary approximation of h(ZN (t)) for p.

If Ỹu(t) is a Lévy-driven moving average processes (see Section 4.1) we give sufficient con-
ditions for h(Z̃u(t)) to be θ-weak dependence in Proposition 4.2.

3 M-estimation of contrast functions based on locally stationary
approximations

Let YN be a sequence of stochastic processes with locally stationary approximation Ỹu as de-
scribed in Definition 2.1. In this section, we study localized M -estimators of contrast functions
based on observations of YN . In a discrete-time setting, such an estimation procedure has re-
cently been investigated in [2] and [13]. The contrast functions we investigate are assumed to be
of the form

Φ
((
Ỹu(∆(1− k))

)
k∈N0

, ϑ
)
, (1)

where Ỹ = (Ỹu(∆(1− k)))k∈N0 is a sequence in Lp for p ≥ 1,∆ > 0 and ϑ ∈ Θ, where Θ ⊂ Rd is
a parameter space. We assume that the true parameter ϑ∗ is identifiable from the contrast, i.e.

Assumption (M1). Assume that Φ(Ỹ , ϑ) ∈ L1 for all ϑ ∈ Θ and that ϑ∗ is the unique minimum
in Θ of the function ϑ 7→ E[Φ(Ỹ , ϑ)] = M(ϑ).

In a stationary setting, the natural choice of an M -estimator for ϑ∗ is

arg min
ϑ∈Θ

1
n

n∑
i=1

Φ
(
(Ỹu(i+ ∆(1− k)))k∈N0 , ϑ

)
. (2)
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For processes that possess a locally stationary approximation, a localized law of large numbers
has recently been proven in [29, Theorem 3.5 and 3.6]. There, the localization is achieved by
using a localizing kernel of the following type.

Definition 3.1. Let K : R→ R be a bounded function. If K is of bounded variation, has compact
support [−1, 1] and satisfies

∫
RK(x)dx = 1, then we call K a localizing kernel.

From now on, if not otherwise stated, K always denotes a localizing kernel.
Following this approach we replace the observations of Ỹu in (2) by observations of the sequence
YN as defined in Assumption 2.2, leading to the localized estimator

ϑ̂N = arg min
ϑ∈Θ

MN (ϑ),where

MN (ϑ) = δN
bN

mN∑
i=−mN

K

(
τNi − u
bN

)
Φ
((

YN

(
τNi + ∆(1− k)

N

))
k∈N0

, ϑ

)
.

(3)

In the next two sections, we derive sufficient conditions on the contrast Φ that ensure consistency
and asymptotic normality of ϑ̂N . As first step, we give conditions ensuring that Φ is integrable.

Lemma 3.2. Let Φ : R∞ × Rd → R be a measurable function. If Φ(·, ϑ) ∈ Lp,q∞ (α) for all ϑ ∈ Θ
and supϑ∈Θ ‖Φ(0, ϑ)‖ < ∞, then Φ(X,ϑ) ∈ L1 for all X = (Xk)k∈N0 ∈ `∞(Lq) and ϑ ∈ Θ.
Moreover, if X = (Xt)t∈R is a stationary integrable ergodic process, then (Φ ((Xt−k)k∈N0 , ϑ))t∈R
is again a stationary integrable ergodic process for all ϑ ∈ Θ.

Proof. For t ∈ R and m ∈ N we have that φt,m = Φ(Xt, . . . , Xt−m, 0, . . . , ϑ) ∈ L1, since
supϑ∈Θ ‖Φ(0, ϑ)‖ < ∞ and Φ(·, ϑ) ∈ Lp,q∞ (α). Then, similar to [2, Lemma 3.1], one can show
that φt,m is a Cauchy sequence in L1. Noting that Φ is measurable, we conclude analogous to
[22, Proposition 4.3].

Note that Lemma 3.2 is often used implicitly in the following.

3.1 Consistency

We now show pointwise convergence of MN (ϑ), i.e. MN (ϑ) P→ M(ϑ) for all ϑ ∈ Θ as N → ∞
and stochastic equicontinuity of the sequence {MN (ϑ)}N∈N. Together, these properties imply
ϑ̂N

P−→ ϑ∗ as N → ∞ along usual lines. To show pointwise convergence, we use the localized
law of large numbers from [29]. To this end, it is necessary to impose regularity conditions
on Φ. We demand that Φ belongs to Lp,q∞ for each ϑ ∈ Θ. Moreover, if (O2) holds, it is clear
that Φ(Ỹ , ϑ) has to be θ-weakly dependent for all ϑ ∈ Θ (see [29, Theorem 3.6]). Besides this,
Φ has to additionally belong to Ld with respect to the parameter space to ensure stochastic
equicontinuity.

Theorem 3.3. Let YN be a sequence of stochastic processes with locally stationary approximation
Ỹu for some q ≥ 1 such that either (O1) or (O2) holds. Besides, for some p ≥ 1 and a compact
set Θ ⊂ Rd, we assume that

(a) Φ(·, ϑ) ∈ Lp,q∞ (α) for all ϑ ∈ Θ, such that
∑∞
k=0 kαk <∞,

(b) Φ(x, ·) ∈ Ld (0, D1(1 +
∑∞
k=0 βk|xk|q)) for all real sequences x = (xk)k∈N0 and some D1 ≥

0, where (βk)k∈N0 ⊂ R+ is a sequence such that
∑∞
k=0 kβk <∞,
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(c) if (O2) holds, both Φ((Ỹu(t+ ∆(1− k)))k∈N0 , ϑ) as well as g((Ỹu(t+ ∆(1− k)))k∈N0) are
θ-weakly dependent for all ϑ ∈ Θ, where g(x) =

∑∞
k=0 βk|xk|q,

(d) supϑ∈Θ ‖Φ(0, ϑ)‖ <∞ and

(e) the identifiability condition (M1) holds.

Then, ϑ̂N is consistent, i.e. ϑ̂N
P−→ ϑ∗ as N →∞.

Proof. See Section 7.1.

Remark 3.4. In the case where (O2) holds and the contrast function Φ is of finite memory,
i.e. there exists n ∈ N0 such that Φ((Ỹu(∆(1 − k)))k∈N0 , ϑ) = Φ(Ỹu(∆), . . . , Ỹu(∆(1 − n)), ϑ),
Proposition 2.6 shows that the conditions (c) and (d) of Theorem 3.3 are implied by the condition
that

(c∗) Φ(x, ϑ) ≤ C ‖x‖M+1
1 and Φ(·, ϑ) ∈ Ln+1(M,C) for some C,M ≥ 0 and all x ∈ Rn+1,

ϑ ∈ Θ. Moreover, Ỹu is θ-weakly dependent and E[|Ỹu|(q∨(M+1))+γ ] <∞ for some γ > 0.

For contrast functions that are of infinite memory, we give sufficient conditions for (c) in Corol-
lary 4.3, where we investigate processes, whose locally stationary approximation Ỹu is a Lévy-
driven moving average.

3.2 Asymptotic normality

To establish asymptotic normality of ϑ̂N we follow the classical approach (see e.g. [31, Section
5.3]) to show asymptotic normality of an M -estimator. We impose conditions on the first and
second order partial derivatives of the contrast Φ and investigate the Taylor expansion of ∇ϑMN

at ϑ∗. The individual components of the expansion are then shown to either converge to 0 or to
be asymptotically normal. The localization is achieved by using the rectangular kernel

Krect(x) = 1
21{x∈[−1,1]}. (4)

It is easy to see that Krect is a localizing kernel. Depending on whether (O1) or (O2) holds, we
obtain different asymptotic variances.
To establish asymptotic normality of the components of the Taylor expansion we use results
from [29]. There, the authors derived central limit type results under the following condition on
the θ-coefficient θ(h) of the locally stationary approximation

DD(ε) :
∞∑
h=1

θ(h)h
1
ε <∞ for some ε > 0.

Sufficient conditions for DD(ε) to hold are for instance θ(h) ∈ O(h−α) for some α > (1 + 1
ε ) or

θ(h) ∈ O
((
h ln(h)

)−1− 1
ε
)
.

Theorem 3.5. Let q, q̃, q̄ ≥ 1 and YN be a sequence of stochastic processes with locally stationary
approximation Ỹu for some s ≥ max{q, q̃, q̄} such that either (O1) or (O2) holds. The contrast
function Φ is assumed to be of the form (1) such that the Hessian matrix ∇2

ϑΦ of Φ with respect
to ϑ exists. Moreover, assume that
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(a) the parameter space Θ ⊂ Rd is compact, (M1) holds and the unique minimum ϑ∗ is located
in the interior of Θ.

(b) √mNbN → 0 as N →∞ and the localizing kernel is given by (4).

(c) Φ(x, ·) ∈ Ld (0, D0(1 +
∑∞
k=0 βk|xk|q)) for all real sequences x = (xk)k∈N0 and some D0 ≥

0, where (βk)k∈N0 ⊂ R+ is a sequence such that
∑∞
k=0 kβk < ∞ and Φ(·, ϑ) ∈ Lp,q∞ (α) for

all ϑ ∈ Θ, where p ≥ 1 and
∑∞
k=0 kαk <∞.

(d) ∂
∂ϑi

Φ(·, ϑ∗) ∈ Lp̃,q̃∞ (α̃) for all i = 1, . . . , d, where p̃ ≥ 2 and
∑∞
k=0 kα̃k <∞.

(e) the stationary process ∇ϑΦ(t) := ∇ϑΦ
((
Ỹu(t+ ∆(1− k))

)
k∈N0

, ϑ∗
)
∈ L2+γ1 for some

γ1 > 0. Moreover, ∇ϑΦ(t) is θ-weakly dependent with θ-coefficients θ(h) satisfying DD(γ1).

(f) ∂2

∂ϑi∂ϑj
Φ(x, ·) ∈ Ld

(
0, D1(1 +

∑∞
k=0 β̄k|xk|q̄)

)
for all real sequences x = (xk)k∈N0, i, j =

1, . . . , d and some D1 ≥ 0, where (β̄k)k∈N0 ⊂ R+ is a sequence such that
∑∞
k=0 kβ̄k < ∞

and ∂2

∂ϑi∂ϑj
Φ(·, ϑ) ∈ Lp̄,q̄∞ (ᾱ) for all ϑ ∈ Θ, i, j = 1, . . . , d, where p̄ ≥ 1 and

∑∞
k=0 kᾱk <∞.

(g) if (O2) holds, the following conditions are satisfied:

(g1) the processes Φ
((
Ỹu(t+ ∆(1− k))

)
k∈N0

, ϑ

)
and g

((
Ỹu(t+ ∆(1− k))

)
k∈N0

)
are θ-

weakly dependent for all ϑ ∈ Θ, where g((xk)k∈N0) =
∑∞
k=0 βk |xk|

q̄.

(g2) the processes ∂2

∂ϑi∂ϑj
Φ
((
Ỹu(t+ ∆(1− k))

)
k∈N0

, ϑ

)
and ḡ

((
Ỹu(t+ ∆(1− k))

)
k∈N0

)
are θ-weakly dependent for all ϑ ∈ Θ and i, j = 1, . . . , d, where ḡ((xk)k∈N0) =∑∞
k=0 β̄k |xk|

q̄.

(h) supϑ∈Θ ‖Φ(0, ϑ)‖ <∞ and supϑ∈Θ

∥∥∥ ∂2

∂ϑi∂ϑj
Φ(0, ϑ)

∥∥∥ <∞ for all i, j = 1, . . . , d.

(i) the matrices

I(u) =
{1

2I(u, 0) +
∑∞
k=1 I(u, k), if (O1) holds,

1
2I(u, 0), if (O2) holds

and

V (u) = E

[
∇2
ϑΦ
((
Ỹu(∆(1− k))

)
k∈N0

, ϑ∗
)]

are positive definite, where

I(u, k) = E

[
∇ϑΦ

((
Ỹu(∆(1− k))

)
k∈N0

, ϑ∗
)
∇ϑΦ

((
Ỹu(kδ + ∆(1− k))

)
k∈N0

, ϑ∗
)′]

.

Then, it holds √
bN
δN

(
ϑ̂N − ϑ∗

)
d−→

N→∞
N
(
0, V (u)−1I(u)V (u)−1

)
. (5)

Proof. See Section 7.2.
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Remark 3.6. If the contrast function Φ is of finite memory (see Remark 3.4), Proposition 2.6
and the obvious analog of [10, Proposition 3.4] for our θ-weak dependence coefficient, show that
condition (e) is implied by

(e∗) ∇ϑΦ(0, ϑ∗) = 0, ∂
∂ϑi

Φ(·, ϑ∗) ∈ Ln+1(M1, C1) for some C1,M1 ≥ 0 and Ỹu is θ-weakly
dependent with θ-coefficients θỸu(h) ∈ O(h−α) for some α > (1 + M1+1

γ1
)(1+2M1+γ1

1+M1+γ1
), where

γ1 > 0 such that Ỹu(0) ∈ L2(M1+1)+γ1.

If, in addition, (O2) holds, condition (g) is implied by 3.3 by

(g1∗) Φ(x, ϑ) ≤ C2 ‖x‖M2+1 and Φ(·, ϑ) ∈ Ln+1(M2, C2) for some M2, C2 ≥ 0 and all x ∈ Rn+1,
ϑ ∈ Θ. Moreover, Ỹu is θ-weakly dependent and Ỹu ∈ L(q∨(M2+1))+γ2 for some γ2 > 0.

(g2∗) ∂2

∂ϑi∂ϑj
Φ(x, ϑ) ≤ C3 ‖x‖M3+1 and ∂2

∂ϑi∂ϑj
Φ(·, ϑ) ∈ Ln+1(M3, C3) for some M3, C3 ≥ 0 and

all x ∈ Rn+1, i, j = 1, . . . , d and ϑ ∈ Θ. Moreover, Ỹu is θ-weakly dependent and Ỹu ∈
L(q̄∨(M3+1))+γ3 for some γ3 > 0.

4 Least squares estimation for time-varying Lévy-driven Orn-
stein-Uhlenbeck processes

In this section, we establish consistency and asymptotic normality of an M -estimator using
results from Section 3 for a least squares contrast. The observations are assumed to be sampled
according to Assumption 2.2 from a sequence of time-varying Lévy-driven Ornstein-Uhlenbeck
processes, which possesses a locally stationary approximation.
Before we give the definition of (time-varying) Lévy-driven Ornstein-Uhlenbeck processes, we
review Lévy processes and discuss basic results including stochastic integration with respect to
them. For further insight we refer to [1] and [26].

4.1 Lévy processes and stochastic integration

Definition 4.1. A real-valued stochastic process L = {L(t), t ∈ R+
0 } is called Lévy process if

(a) L(0) = 0 almost surely,

(b) the random variables (L(t0), L(t1) − L(t0), . . . , L(tn) − L(tn−1)) are independent for any
n ∈ N and t0 < t1 < t2 < · · · < tn,

(c) for all s, t ≥ 0, the distribution of L(s+ t)− L(s) does not depend on s and

(d) L is stochastically continuous.

Without loss of generality we additionally consider L to be càdlàg, i.e. right continuous with
finite left limits.

Let L = {L(t), t ∈ R+
0 } be a real-valued Lévy process. Then, L(1) is an infinitely divisible

real-valued random variable with characteristic triplet (γ,Σ, ν), where γ ∈ R, Σ > 0 and ν is
a Lévy measure on R, i.e. ν(0) = 0 and

∫
R

(
1 ∧ |x|2

)
ν(dx) < ∞. The characteristic function

of L(t) is given by ϕL(t)(z) = E[eizL(t)] = etΨL(z) with characteristic exponent ΨL(z) = (iγz −
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Σz2

2 +
∫

R(eizx − 1 − izx1Z(x))ν(dx)), z ∈ R and Z = {x ∈ R, |x| ≤ 1}. If ν has finite second
moment, i.e. ∫

|x|>1
|x|2 ν(dx) <∞

(
⇐⇒

∫
R
|x|2 ν(dx) <∞

)
, (6)

then L(t) ∈ L2 for all t ≥ 0 and we have E[L(t)] = t
(
γ +

∫
|x|>1 xν(dx)

)
<∞ and V ar(L(t)) =

t
(
Σ +

∫
R x

2ν(dx)
)
< ∞. In the remainder we work with two-sided Lévy processes, i.e. L(t) =

L1(t)1{t≥0}−L2(−t)1{t<0}, where L1 and L2 are independent copies of a one-sided Lévy process.
Consider

X(t) =
∫

R
f(t, s)L(ds), (7)

where t ∈ R and f : R × R 7→ Rn is B(R × R) − B(Rn) measurable. Necessary and sufficient
conditions for the stochastic integral (7) to exist are given in [26, Theorem 3.3], namely if

• Σ
∫

R ‖f(t, s)f(t, s)′‖ ds <∞,

•
∫

R

∫
R

(
(‖f(t, s)‖x)2 ∧ 1

)
ν(dx)ds <∞ and

•
∫

R

∥∥∥f(t, s)
(
γ +

∫
R x

(
1[0,1] (‖f(t, s)x‖)− 1[0,1] (|x|) ν(dx)

))∥∥∥ ds <∞
are satisfied, then (7) is well-defined. If L satisfies (6) and f(t, ·) ∈ L1(R)∩L2(R), then the above
conditions are satisfied and the integral X(t) =

∫
R f(t, s)L(ds) exists in L2. If X = {X(t), t ∈

R} with X(t) as in (7) is well-defined, X(t) is infinitely divisible with characteristic triplet
(γint,Σint, νint), where

• γint =
∫

R(f(t, s)γds+
∫

R

∫
R f(t, s)x(1[0,1](‖f(t, s)x‖)− 1[0,1](|x|))ν(dx))ds,

• Σint = Σ
∫

R f(t, s)f(t, s)′ds and

• νint(B) =
∫

R

∫
R 1B(f(t, s)x)ν(dx)ds, B ∈ B(Rn).

The following proposition shows that infinite memory transformations of Lévy-driven mov-
ing average processes, i.e. processes of the form (7) for which g(u, t, s) = g(u, t−s), are θ-weakly
dependent.

Proposition 4.2. Let L be a two-sided Lévy process satisfying (6), µ +
∫
|x|>1 xν(dx) = 0 and

g : R+×R 7→ R a function such that g(u, ·) ∈ L1(R)∩Lq(R) for all u ∈ R+ and some q ∈ {2, 4}.
For fixed u ∈ R+ we define the process Xu = {Xu(t), t ∈ R} as

Xu(t) =
∫ t

−∞
g(u, t− s)L(ds). (8)

Consider an Rn-valued function ϕ ∈ Lp,q∞ (α), where p ≥ 1 and for some ∆ > 0 the infinite
memory vector Zu(t) = (Xu(t+ ∆), Xu(t), Xu(t−∆), . . .). Then, the process ϕ(Zu(t)) is θ-
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weakly dependent with θ-coefficients satisfying

q = 2 : θϕ(Zu)(h) ≤ C
∞∑

k=b h2∆c
αk + C

(
ΣL

∫ −h2
−∞

g(u,−s)2ds

) 1
2

= θ̂ϕ(Zu)(h)

q = 4 : θϕ(Zu)(h) ≤ C
∞∑

k=b h2∆c
αk + C

(∫ −h2
−∞

g(u,−s)4ds

(∫
R
x4ν(dx)

)

+ 3Σ2
L

(∫ −h2
−∞

g(u,−s)2ds

)2) 1
4

= θ̂ϕ(Zu)(h)

(9)

for a constant C ≥ 0 and all h ≥ 1.

Proof. See Section 7.3.

Corollary 4.3. Consider YN , Ỹu and Φ as in Theorem 3.3 for q = 2 where Φ is of infinite
memory. Then, condition (c) from Theorem 3.3 is implied by

(c∗∗) Ỹu satisfies the conditions of Proposition 4.2.

Corollary 4.4. Consider YN , Ỹu and Φ as in Theorem 3.5, where q, q̄ = 2, q̃ = 4 and Φ is of
infinite memory. Then, the conditions (e) and (g) are respectively implied by

(e∗∗) ∇ϑΦ(t) ∈ L2+γ1 for some γ1 > 0 and Ỹu satisfies the conditions of Proposition 4.2.
Moreover, θ̂∇ϑΦ(t)(h) from (9) satisfies DD(γ1) and

(g∗∗) Ỹu satisfies the conditions of Proposition 4.2.

4.2 Time-varying Lévy-driven Ornstein-Uhlenbeck processes

We consider a sequence of time-varying Lévy-driven Ornstein-Uhlenbeck processes

YN (t) =
∫ ∞
−∞

gN (Nt,Nt− u)L(du), with kernel function

gN (Nt,Nt− u) = 1{Nt−u≥0}e
−
∫ Nt
u

a( s
N )ds = 1{Nt−u≥0}e

−
∫ 0
−(Nt−u) a( s+NtN )ds

,

(10)

where a : R → R+
0 is continuous such that u 7→ e

−
∫ 0
−u a( s+NtN )ds ∈ L1(R+) for all t ∈ R and

N ∈ N, which ensures the existence of (10), since additionally (6) holds. In the next proposition
we review sufficient conditions under which the sequence (10) possesses a locally stationary
approximation Ỹu for p = 2 and p = 4 given by

Ỹu(t) =
∫

R
g(u, t− s)L(ds), with kernel function

g(u, t− s) = 1{t−s≥0}e
−a(u)(t−s).

(11)

Remark 4.5. The process Ỹu from (11) is the unique stationary solution to the stochastic
differential equation

dỸu(t) = −a(u)Ỹu(t)dt+ L(dt).

11



Proposition 4.6 ([29, Proposition 5.3]). Let YN be a sequence of time-varying Lévy-driven
Ornstein-Uhlenbeck processes as given in (10) such that (6) holds. Then, Ỹu as given in (11) is
a locally stationary approximation of YN for p = 2, if

(a) the coefficient function a is Lipschitz with constant L,

(b) infs∈R a(s) > 0.

If additionally
∫
|x|>1 x

4ν(dx) <∞, then Ỹu is also a locally stationary approximation of YN for
p = 4.

4.3 Least squares estimation

Let us assume that we observe a sequence of time-varying Lévy-driven Ornstein-Uhlenbeck
processes YN as defined in (10), where the characteristic triplet of the driving Lévy process L is
known and the observations are sampled according to Assumption 2.2 such that either (O1) or
(O2) hold.
Our goal is to estimate the coefficient function at a fixed point u > 0, i.e. to estimate a(u). To
this aim we assume that a(u) ∈ Θ ⊂ R+, where Θ is a compact parameter space.
For ϑ ∈ Θ and ∆ > 0 we define the following least squares contrast

ΦLS
(
(Ỹu(∆(1− k)))k∈N0 , ϑ

)
= ΦLS

(
Ỹu(∆), Ỹu(0), ϑ

)
=
(
Ỹu(∆)− e−∆ϑỸu(0)

)2
. (12)

We show consistency and asymptotic normality of the estimator ϑ̂N from (3), defined with
respect to the least squares contrast (12), using Theorem 3.3 and 3.5.

Theorem 4.7. Let YN be a sequence of time-varying Lévy-driven Ornstein-Uhlenbeck processes
as given in (10) such that (6) and either (O1) or (O2) hold. Assume that

(a) γ +
∫
|x|>1 ν(dx) = 0,

(b) the parameter space Θ ⊂ R+ is compact,

(c) the coefficient function a is Lipschitz and satisfies infs∈R a(s) > 0 and

(d) if (O2) holds,
∫
|x|>1 |x|

2+γ1 ν(dx) <∞ for some γ1 > 0.

Then, ϑ̂N is consistent, i.e. ϑ̂N
P−→ a(u) as N →∞. Moreover, if

(d)
∫
|x|>1 x

4+γ2ν(dx) <∞ for some γ2 > 0,

(e) a(u) is in the interior of Θ and √mNbN → 0 as N →∞ and

(f) ϑ̂N is defined with respect to the rectangular kernel (4),

then
√

bN
δN

(
ϑ̂N − a(u)

)
d−→ N (0,Σ(u)) as N →∞, where

Σ(u) = 1
2∆2

e2a(u)∆ + 2e2a(u)∆e−2a(u)δ 1−e−2a(u)δ(d∆/δe−1)

1−e−2a(u)δ − 2 d∆/δe+ 1, if (O1) holds,
e2a(u)∆ − 1, if (O2) holds.

(13)

Remind that ∆ denotes the step size in the contrast function (1) and δ = NδN for the observation
scheme (O1). In particular, if δ = ∆, the asymptotic variance is given by Σ(u) = 1

2∆2 (e2a(u)∆−1),
independent of whether (O1) or (O2) holds.
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Proof. See Section 7.4.

Remark 4.8. A consistent plug-in estimator of Σ(u) can be readily obtained by replacing a(u)
in (13) with ϑ̂N .

5 Quasi-maximum likelihood and Whittle estimation for time-
varying Lévy-driven state space models

We consider observations of a time-varying Lévy-driven state space model that follow the sam-
pling scheme from Assumption 2.2 such that either (O1) or (O2) hold. In this section, we derive
consistency results for an M -estimator that is based on a log-likelihood contrast. In addition,
we establish consistency for a localized Whittle estimator.

5.1 Time-varying Lévy-driven state space models

We give a brief review of the definition and basic properties of time-varying Lévy-driven state
space models. For further details we refer to [5, 29].
Let L = {L(t), t ∈ R} be a two-sided Lévy process with values in R satisfying (6). For p ∈ N and
arbitrary continuous coefficient functions A(t) ∈ Mp×p(R) and B(t), C(t) ∈ Mp×1(R), t ∈ R we
consider the observation and state equation

Y (t) = B(t)′X(t) and dX(t) = A(t)X(t)dt+ C(t)L(dt). (14)

The solution of (14) is unique and given by (see [5, Section 4])

X(t) =
∫ t

−∞
Ψ(t, s)C(s)L(ds) and Y (t) = B(t)

∫ t

−∞
Ψ(t, s)C(s)L(ds),

provided that the integrals exist in L2. The matrix Ψ(t, t0) for t > t0 is the unique solution to
the homogeneous initial value problem (IVP)

d

dt
Ψ(t, t0) = A(t)Ψ(t, t0), with initial condition Ψ(t0, t0) = 1p. (15)

A comprehensive discussion on the IVP (15) can be found in [6, Section 3 and 4] and in the
context of Lévy-driven state space models in [29, Section 5.2 and 5.3].

Definition 5.1. Let X = {X(t), t ∈ R} be a solution to the state space representation (14).
Then, we call X a time-varying Lévy-driven state space process. If the coefficient functions A,B
and C are time-invariant, the solution is called a Lévy-driven state space process.

Remark 5.2. Noticeable examples from the class of time-varying Lévy-driven state space models
are time-varying Lévy-driven CARMA processes, for which the matrix function C(t) is time-
invariant, i.e. C(t) = C for all t ∈ R and the matrix function A(t) is of the form

A(t) =


0 1 . . . 0
... . . . ...
0 1

−ap(t) −ap−1(t) . . . −a1(t)

 ,
where ai(t), i = 1, . . . , p are continuous real functions.
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Now, for continuous coefficient functions A(t) ∈Mp×p(R) and B(t), C(t) ∈Mp×1(R), t ∈ R
and a two-sided Lévy process L, we consider a sequence YN of time-varying Lévy-driven state
space models, where

YN (t) =
∫

R
gN (Nt,Nt− s)L(ds), with kernel function

gN (Nt,Nt− s) = 1{Nt−s≥0}B(t)′ΨN,t(0,−(Nt− s))C
(−(Nt− s)

N
+ t

)
,

(16)

where t ∈ R. Then, ΨN,t(0,−(Nt− u)) is the solution to the IVP

d

ds
ΨN,t(s, s0) = A

(
s

N
+ t

)
ΨN,t(s, s0), with initial condition ΨN,t(s0, s0) = 1p

for s > s0. We assume that A(u), u ∈ R+ has eigenvalues with strictly negative real part and
consider as corresponding locally stationary approximation Ỹu the process

Ỹu(t) =
∫

R
g(u, t− s)L(ds), with kernel function

g(u, t− s) = 1{t−s≥0}B(u)′eA(u)(t−s)C (u) .
(17)

Proposition 5.3 ([29, Corollary 5.13]). Let YN be a sequence of time-varying Lévy-driven state
space models as given in (16). Then, Ỹu as given in (17) is a locally stationary approximation
of YN for p = 2, if

(a) the coefficient functions A,B and C are Lipschitz with constants LA, LB and LC ,

(b) sups∈R ‖B(s)‖ <∞ and sups∈R ‖C(s)‖ <∞,

and either (c1)-(e1) or (c1), (d2) and (e2) hold, where

(c1) {A(t)}t∈R commutes, i.e. [A(t), A(s)] = 0 for all s, t ∈ R,

(d1)
∥∥∥∥eν ∫ 0

s
A( τ

N
+t)dτ

∥∥∥∥ ≤ γeνsλ, with γ, λ > 0 for all ν ∈ [0, 1], s < 0, t ∈ R and N ∈ N and

(e1)
∥∥∥e−νA(t)s

∥∥∥ ≤ γ̃eνsλ̃, with γ̃, λ̃ > 0 for all ν ∈ [0, 1], s < 0 and t ∈ R,

(d2) the eigenvalues λj(t) of A(t) for j = 1, . . . , p satisfy supt∈R maxj=1,...,pRe(λj(t)) < 0.

(e2) A(t) is diagonalizable for all t ∈ R.

If we additionally assume that
∫

R x
4ν(dx) <∞, then Ỹu is also a locally stationary approximation

of YN for p = 4.

5.2 Quasi-maximum likelihood estimation

Let Θ ⊂ Rd be a compact parameter space and ϑ∗ = {ϑ∗(t), t ∈ R} a parameter curve in
Θ. Moreover, let (Aϑ)ϑ∈Θ ⊂ Mp×p(R) and (Bϑ)ϑ∈Θ, (Cϑ)ϑ∈Θ ⊂ Mp×1(R) be families of matri-
ces, (Σϑ)ϑ∈Θ a family of positive numbers, and (Lϑ)ϑ∈Θ a family of Lévy processes such that
V ar(Lϑ(1)) = Σϑ.
Consider a sequence of time-varying Lévy-driven state space models (Y ϑ∗

N (t))N∈N such that
Y ϑ∗
N (t) is defined as in (16) with coefficient functions A(t) = Aϑ∗(t), B(t) = Bϑ∗(t), C(t) = Cϑ∗(t)
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and driving noise L = Lϑ∗(0), such that V ar(L(1)) = Σϑ∗(0).
Based on the families Aϑ, Bϑ, Cϑ and Lϑ from above we define a family of processes (Ỹ ϑ(t))ϑ∈Θ,
where

Ỹ ϑ(t) =
∫ t

−∞
B′ϑe

Aϑ(t−s)CϑLϑ(ds). (18)

The following assumption is crucial for all results that we derive in the sequel.

Assumption (C0). We assume that Ỹu(t) = Ỹ ϑ∗(u)(t) is a locally stationary approximation of
Y ϑ∗
N (t) for some p ≥ 1.

To obtain a consistent estimator for ϑ∗(u), u ∈ R+, we consider an M -estimator of a log-
likelihood contrast ΦLL and use results from Section 3. We derive the contrast ΦLL using results
from [28], where the authors investigated a related estimator in a stationary setting.

Assumption (C1). For each ϑ ∈ Θ, it holds E[Lϑ(1)] = 0 and E[Lϑ(1)2] = Σϑ < ∞. Addi-
tionally, we rule out the degenerate case, where E[Lϑ(1)2] = 0.

Assumption (C2). For each ϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative real parts.

Under the previous assumptions Ỹ ϑ is for all ϑ ∈ Θ the unique stationary centered solution
to the observation and state equation

Ỹ ϑ(t) = B′ϑX(t) and dX(t) = AϑX(t)dt+ CϑLϑ(dt), (19)

i.e. a Lévy-driven state space process. Moreover, for ∆ > 0 it follows from [28, Proposition
3.6] that the sampled process (Ỹ ϑ,∆(k))k∈Z, where Ỹ ϑ,∆(k) = Ỹ ϑ(∆k) satisfies the state space
representation

Ỹ ϑ,∆(k) = B′ϑX(k) and X(k) = e∆AϑX(k − 1) +N
(∆)
ϑ (k), (20)

where N (∆)
ϑ (k) =

∫ k∆
(k−1)∆ e

Aϑ(k∆−s)CϑLϑ(ds), k ∈ Z. The sequence (N (∆)
ϑ (k))k∈Z is i.i.d with

mean zero and covariance matrix

�Σ(∆)
ϑ = Σϑ

∫ ∆

0
eAϑsCϑC

′
ϑe
A′ϑsds. (21)

Moreover, the spectral density of Ỹ ϑ,∆, denoted by f (∆)
Ỹ

(ω, ϑ), is given by

f
(∆)
Ỹ

(ω, ϑ) = 1
2πB

′
ϑ(eiω1p − e∆Aϑ)−1

�Σ (∆)
ϑ (e−iω1p − e∆A′ϑ)Bϑ, ω ∈ [−π, π]. (22)

Next, we review some aspects of Kalman filtering that are necessary to define the log-
likelihood contrast ΦLL.

Proposition 5.4 ([28, Proposition 2.1]). Let Y = {Yn, n ∈ Z} be the output process of the state
space model Yn = B′Xn and Xn = AXn−1 + Zn−1, n ∈ Z, where A ∈ Mp×p(R), B ∈ Mp×1(R)
and Zn is an Rp-valued centered i.i.d. sequence with covariance matrix Q. The linear innovations
ε = (εn)n∈Z of Y are defined as εn = Yn − Pn−1Yn, where Pn is the orthogonal projection onto
span{Yk : k ≤ n} and the closure is taken in L2. If the eigenvalues of A are less than 1 in
absolute value it holds:
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(a) The Ricatti equation Ω = AΩA′ + Q − (AΩB)(B′ΩB)−1(AΩB)′ has a unique positive
semidefinite solution Ω ∈Mp×p(R).

(b) The eigenvalues of A − KB′ ∈ Mp×p(R) have absolute value less than one, where K =
(AΩB)(B′ΩB)−1 ∈Mp×1(R) is the steady-state Kalman gain matrix.

(c) The linear innovations ε of Y are the unique stationary solution to X̃n = (A−KB′)X̃n−1+
KYn−1 and εn = Yn −B′X̃n, n ∈ Z. Moreover, εn can equivalently be written as

εn = Yn −B′
∞∑
ν=1

(A−KB′)ν−1KYn−ν . (23)

For the covariance matrix V = E[ε2
n] we have V = B′ΩB.

We apply the above proposition to the state space model (20) and obtain the parametrized
matrices Ωϑ,Kϑ and Vϑ. In addition to the assumptions (C1) and (C2), we impose the following
conditions.

Assumption (C3). The parameter space Θ ⊂ Rd is compact.

Assumption (C4). The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ and ϑ 7→ Σϑ are continuously
differentiable and Bϑ 6= 0 for all ϑ ∈ Θ.

Lemma 5.5. Assume that (C1) - (C4) hold. Then, e∆Aϑ has eigenvalues with absolute value
less than 1 and Vϑ = B′ϑΩϑBϑ > CV for a constant CV > 0 and all ϑ ∈ Θ.

Proof. Follows from the proof of [28, Lemma 2.2 and Lemma 3.14].

Following the sensitivity analysis of the Ricatti equation in [30], the degree of smoothness
of Aϑ, Bϑ, Cϑ and Σϑ, namely C1 carries over to the mapping ϑ 7→ Ωϑ. Therefore, from the
previous assumptions it follows that the functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, ϑ 7→ Σϑ, ϑ 7→ Kϑ

and ϑ 7→ Vϑ are Lipschitz.

Under the conditions (C1) - (C4) we define for u ∈ R+, Ỹ ϑ∗(u),∆ = (Ỹ ϑ∗(u),∆(1 − k))k∈N0 and
Ỹ ϑ∗(u),∆(k) = Ỹ ϑ∗(u)(∆k) as in (20) the log-likelihood contrast

ΦLL
(
Ỹ ϑ∗(u),∆, ϑ

)
= log(2π) + log(Vϑ) +

ε2
ϑ

(
Ỹ ϑ∗(u),∆

)
Vϑ

, (24)

where εϑ(Ỹ ϑ∗(u),∆) it given by the analogue of (23), i.e.

εϑ
(
Ỹ ϑ∗(u),∆

)
= Ỹ ϑ∗(u),∆(1)−B′ϑ

∞∑
n=1

(
e∆Aϑ −KϑB

′
ϑ

)n−1
KϑỸ

ϑ∗(u),∆(1− n). (25)

The localized M -estimator resulting from the contrast (24) can be considered as a localized
quasi-maximum likelihood estimator. It is given by

ϑ̂N = arg min
ϑ∈Θ

MN (ϑ), where

MN (ϑ) = δN
bN

mN∑
i=−mN

K

(
τNi − u
bN

)
ΦLL

((
Y ϑ∗
N

(
τNi + ∆(1− k)

N

))
k∈N0

, ϑ

)
,

(26)

where K is a localizing kernel. The following proposition shows that if (C1) - (C4) hold, ΦLL

satisfies all conditions of Theorem 3.3 besides the identifiability condition (M1).
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Proposition 5.6. If (C1) - (C4) hold, then

(a) ΦLL(·, ϑ) ∈ L1,2
∞ (α) for all ϑ ∈ Θ, where α = (αk)k∈N0 ⊂ R+ satisfies

∑∞
k=0 kαk <∞,

(b) ΦLL(x, ·) ∈ Ld(0, D1(1 +
∑∞
k=0 βkx

2
1−k)) for all real sequences x = (x1−k)k∈N0 and some

D1 ≥ 0, where (βk)k∈N0 ⊂ R satisfies
∑∞
k=0 kβk <∞ and

(c) if the observations follow the sampling scheme (O2), condition (c) of Theorem 3.3 is
satisfied.

Proof. See Section 7.5.

The following conditions (C5)-(C7) will help to verify the identifiability condition (M1).
First, it is necessary to ensure that the sampled process Ỹ ϑ,∆ is not the output process of any
state space representation of lower dimension than p for all ϑ ∈ Θ. The concept of minimality
is suitable for this purpose.

Definition 5.7. Let H : R → R be a rational function and A ∈ Mp×p(R) and B,C ∈ Mp×1(R)
such that H(x) = B′(x1p−A)−1C. We then call the triplet (A,B,C) an algebraic realization of H
of dimension p. If (A,B,C) is an algebraic realization whose dimension is smaller than or equal
to the dimension of any other algebraic realization of H we call it minimal. The corresponding
dimension of such a minimal algebraic realization is called McMillan degree.

Assumption (C5). For each ϑ ∈ Θ the triplet (Aϑ, Bϑ, Cϑ) is minimal with McMillan degree
p.

Definition 5.8. An algebraic realization (A,B,C) of dimension p is called controllable if the
matrix [C AC . . . Ap−1C] ∈ Rp×p has full rank. Moreover, it is called observable if the matrix
[B BA′ . . . B(Ap−1)′] ∈ Rp×p has full rank.

Proposition 5.9. An algebraic realization (A,B,C) of dimension p is controllable and observ-
able if and only if it is minimal.

Proof. See [18, Theorem 2.3.3].

Assumption (C6). Let (Ỹ ϑ)ϑ∈Θ be the family of output processes of the observation and state
equation (19). For all ϑ1 6= ϑ2 the spectral densities of the two processes Ỹ ϑ1 and Ỹ ϑ2 are
different.

Proposition 5.10. For ϑ ∈ Θ let Ỹ ϑ be the output process of (19). Then, its spectral density
fỸ ϑ is given by

fỸ ϑ(ω) = 1
2πHϑ(iω)ΣϑHϑ(−iω), ω ∈ R,

where Hϑ : R→ R is the transfer function of Ỹ ϑ and defined as Hϑ(x) = B′ϑ(x1p −Aϑ)−1Cϑ.

Proof. See [28, Proposition 3.4].

Under the following assumption one can show that (C6) also holds for the sampled process
Ỹ ϑ,∆.

Assumption (C7). For each ϑ ∈ Θ the spectrum of Aϑ is a subset of {z ∈ C, −π∆ < Im(z) < π
∆}.
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Proposition 5.11. Let ΦLL be as defined in (24) and assume that (C1) - (C7) hold. Then,
(M1) holds.

Proof. Follows from [28, Lemma 2.10 and the proof of Theorem 3.16].

Theorem 5.12. Assume that (C0) is satisfied for p=2 and that either (O1) or (O2) holds. If
(C1) - (C7) hold, then ϑ̂N

P−→ ϑ∗(u) as N →∞ for all u ∈ R+ with ϑ̂N as defined in (26).

Proof. According to Proposition 5.6 and 5.11 the contrast ΦLL as defined in (24) satisfies the
conditions of Theorem 3.3.

Remark 5.13. Theorem 5.12 provides an important first result for the statistical inference of
time-varying Lévy-driven state space models, specifically including time-varying CARMA pro-
cesses.
In addition, it is desirable to have results on the estimator’s (asymptotic) distribution at hand
to construct for instance confidence intervals. In fact, Theorem 3.5 should pave the way to prove
asymptotic normality of ϑ̂N as defined in (26). However, this requires an in-depth analysis of the
regularity properties of the contrast function’s first and second order partial derivatives, which is
beyond the scope of this work.

Remark 5.14. If (O1) holds for NδN = ∆, the estimator ϑ̂N is given by the simpler expression

ϑ̂N = arg min
ϑ∈Θ

δN
bN

mN∑
i=−mN

K

(
iδN
bN

)
ΦLL

((
Y ϑ∗
N (τi+1−k)

)
k∈N0

, ϑ

)
.

In the next example we briefly present an estimation setting that satisfies the conditions
(C0)-(C7).

Example 5.15. Assume that Θ ⊂ R3 is a properly restricted compact parameter space. For
ϑ = (ϑ1, ϑ2, ϑ3) ∈ Θ we consider the following families of matrices and real numbers

Aϑ =
(
ϑ1 0
0 ϑ2

)
, Bϑ =

( 1
ϑ2−ϑ1−1
ϑ2−ϑ1

)
, Cϑ =

(
−ϑ1(1 + ϑ2)
−ϑ2(1 + ϑ1)

)
and Σϑ = ϑ3 > 0.

Moreover, Lϑ denotes a family of two sided Lévy process that satisfies (C1) for all ϑ ∈ Θ. For
a properly restricted compact parameter space T ⊂ R5, we define the family RΘ = {ϑ̃(t) =
(τ1 + τ2| sin(t)|, τ1 + τ3| cos(x)|, τ4)}τ=(τ1,τ2,τ3,τ4)∈T of curves in Θ, such that (ϑ̃(t))t∈R ⊂ Θ for
all ϑ̃ ∈ RΘ.
Following Remark 5.14, we define the family (Y ϑ̃

N (t))ϑ̃∈RΘ
of sequences of time-varying Lévy-

driven state space models such that Y ϑ̃
N (t) is defined as in (16) with coefficient functions A(t) =

Aϑ̃(t), B(t) = Bϑ̃(t), C(t) = Cϑ̃(t) and driving noise Lϑ̃(t), ϑ̃ ∈ RΘ. All of the above functions
are uniformly bounded and Lipschitz in t for all τ ∈ T . In addition, it holds [A(t), A(s)] = 0 for
all s, t ∈ R and τ ∈ T (see e.g. [33]). All eigenvalues of A(t) are real and strictly negative for a
properly restricted T . Overall, (a), (b), (c1), (d2) and (e2) of Proposition 5.3 hold and Ỹ ϑ̃(u)(t)
as given in (18) is a locally stationary approximation of Y ϑ̃

N (t) for p = 2 and all τ ∈ T . Now,
assume that we observed Y ϑ∗

N (t) for some true parameter curve ϑ∗(t) ∈ RΘ. Then, (C0) holds.
By construction, the functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ and ϑ 7→ Σϑ are continuously
differentiable. It is easy to see that the triplet (Aϑ, Bϑ, Cϑ) is controllable and observable and
therefore, according to Proposition 5.9 also minimal for all ϑ ∈ Θ. Overall, (C0)-(C5) and (C7)
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hold. In view of (C6) it is enough to observe that fỸ ϑ(ω) = ϑ3
2π

(ω−iϑ1ϑ2)(ω+iϑ1ϑ2)
(ω+iϑ1)(ω+iϑ2)(ω−iϑ1)(ω−iϑ2) , which

satisfies (C6) whenever ϑ1 6= ϑ2, ϑi 6= ϑi and Re(ϑi) < 0 for i = 1, 2. Finally, for all u ∈ R+

Theorem 5.12 implies that ϑ̂N is a consistent estimator of ϑ∗(u). If the true parameter curve ϑ∗
can be estimated at 0 < u1 < u2, one can solve a system of equations to obtain estimators for
τ , such that the whole curve ϑ∗ can be reconstructed.
It is interesting to note that [27, Theorem 3.3] immediately shows that Ỹ ϑ is a CARMA(2,1)
process with AR polynomial p(z) = (z − ϑ1)(z − ϑ2) and MA polynomial q(z) = z − ϑ1ϑ2.
We note that the form of B and C ensures the transfer function of Ỹ ϑ to be properly normed
and the AR and MA polynomials to be monic, which helps to obtain the identifiability condition
from the spectral density.

5.3 Truncated quasi-maximum likelihood estimation

We consider observations as described in Assumption 2.2 that follow the sampling scheme (O1)
for NδN = ∆.
It is clear that in practice one does not observe the full history of Y ϑ∗

N as assumed in (26). As
unobserved sampling points must not contribute to the estimator, we set Y ϑ∗

N (τ) to 0 if τ is
not included in the observation window [u− bN , u+ bN ]. Thus, for Y ϑ∗

N = (Y ϑ∗
N (τi+1−k))k∈N0 we

define

Φ̃LL
i,mN

(
Y ϑ∗
N , ϑ

)
=
(

log(2π) + log(Vϑ) +
ε̃2
ϑ,i,mN

(
Y ϑ∗
N

)
Vϑ

)
and

ε̃ϑ,i,mN

(
Y ϑ∗
N

)
= Y ϑ∗

N

(
τNi+1

)
−B′ϑ

mN+i+1∑
n=1

(
e∆Aϑ −KϑB

′
ϑ

)n−1
KϑY

ϑ∗
N

(
τNi+1−n

)
, i ∈ Z.

This leads to the truncated estimator

ϑ̂modN = arg min
ϑ∈Θ

M̃N (ϑ), (27)

where M̃N (ϑ) = δN
bN

∑mN−1
i=−mN K

(
τNi −u
bN

)
Φ̃LL
i,mN

(
Y ϑ∗
N , ϑ

)
. The following theorem extends the con-

sistency result from Theorem 5.12 to the truncated estimator ϑ̂modN .

Theorem 5.16. Assume that (C0) is satisfied for p=2. If (O1) as well as (C1) - (C7) hold,
then ϑ̂modN

P−→ ϑ∗(u) as N →∞ for all u ∈ R+ with ϑ̂modN as defined in (27).

Proof. See Section 7.6.

5.4 Whittle estimation

In this section, we investigate under the same setting as in Section 5.2 a localized Whittle
estimator for ϑ∗. Before we prove consistency of this estimator, we briefly review the Whittle
estimator in a stationary setting [16].
Let X = {X(t), t ∈ R} be a real-valued centered square integrable Lévy-driven state space
model given by X(t) =

∫ t
−∞B

′eA(t−s)CL(ds), where A ∈ Mp×p(R) and B,C ∈ Mp×1(R). For
some ∆ > 0 we consider the sampled process X∆ = {X∆(k), k ∈ N0}, where X∆(k) = X(∆k).
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The spectral density f
(∆)
X is defined as the Fourier transform of the autocovariance function

Γ(∆)
X (h) = E[X∆(h)X∆(0)], h ∈ Z, i.e.

f
(∆)
X (ω) = 1

2π
∑
h∈Z

Γ(∆)
X (h)e−ihω, ω ∈ [−π, π],

and conversely, using the inverse Fourier transform, Γ(∆)
X (h) =

∫ π
−π f

(∆)
X (ω)eihω, h ∈ Z, where we

make the additional convention that Γ(∆)
X (−h) = Γ(∆)

X (h). Based on the sample autocovariance
Γn(h) = 1

n

∑n−h
k=1 X

∆(k + h)X∆(k), h ∈ Z, where Γn(−h) := Γn(h), we define the periodogram
In : [−π, π]→ [0,∞) as

In(ω) = 1
2πn

 n∑
j=1

X∆(j)e−ijω
( n∑

k=1
X∆(k)eikω

)
= 1

2π

n−1∑
h=−n+1

Γn(h)e−ihω, ω ∈ [−π, π]. (28)

The periodogram In(ω) can be considered as the empirical version of the spectral density and
is the main part of the Whittle estimator.
Now, let Θ ⊂ Rd be a compact parameter space. For ϑ ∈ Θ let Xϑ be a real valued centered
square integrable state space model of the form (18) and f (∆)

X (ω, ϑ) the corresponding spectral
density. In this stationary setting the Whittle function is defined as

W stat
n (ϑ) = 1

2n

n∑
j=−n+1

(
In(ωj)

f
(∆)
X (ωj , ϑ)

+ log
(
f

(∆)
X (ωj , ϑ)

))
, ϑ ∈ Θ, (29)

where ωj = πj
n for j = 1, . . . , n. Based on this Whittle function, the Whittle estimator is defined

as ϑ̂statn = arg minϑ∈ΘW
stat
n (ϑ). For more information on the Whittle estimator including con-

ditions that ensure consistency, we refer to [16].

Let (Y ϑ∗
N (t))N∈N denote a sequence of time-varying Lévy-driven state space models as con-

sidered in Section 5.2 and (Ỹ ϑ(t))ϑ∈Θ a family of Lévy-driven state space models in the form of
(18). Based on observations of Y ϑ∗

N , we now give a localized version of the Whittle estimator.
We fix ∆ > 0 and assume that the available observations follow the sampling scheme introduced
in Assumption 2.2 such that (O1) holds for NδN = ∆. For a positive localizing kernel K we
consider a localized version I locN : [−π, π]→ [0,∞) of the periodogram (28) which is given by

I locN (ω)= δN
2πbN

 mN∑
j=−mN

√√√√K (
τNj − u
bN

)
Y ϑ∗
N (τNj )e−ijω

 mN∑
j=−mN

√√√√K (
τNj − u
bN

)
Y ϑ∗
N (τNj )eijω


= 1

2π

2mN∑
h=−2mN

Γ̂locN (h)e−ihω,

(30)

where ω ∈ [−π, π] and

Γ̂locN (h) = δN
bN

mN−h∑
j=−mN

√√√√K (
τNj+h − u
bN

)
K

(
τNj − u
bN

)
Y ϑ∗
N (τNj )Y ϑ∗

N (τNj+h), h ∈ Z,
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with the convention Γ̂locN (−h) = Γ̂locN (h). Based on the localized periodogram we define the
localized Whittle function WN (ϑ) as

WN (ϑ) = 1
4mN + 2

2mN+1∑
j=−2mN

 I locN (ωj)
f

(∆)
Ỹ

(ωj , ϑ)
+ log

(
f

(∆)
Ỹ

(ωj , ϑ)
) , ϑ ∈ Θ,

where ωj = πj
2mN+1 for j = −2mN , . . . , 2mN + 1 and f (∆)

Ỹ
(·, ϑ) denotes the spectral density of

Ỹ ϑ,∆ given by (22). Then, the localized Whittle estimator is defined as

ϑ̂N = arg min
ϑ∈Θ

WN (ϑ). (31)

Under the same conditions as in Section 5.2 we obtain consistency.

Theorem 5.17. Assume that (C0) is satisfied for p=2, (O1) holds for NδN = ∆ and that the
localizing kernel K is continuous and positive or the non-continuous rectangular kernel (4). If
additionally (C1) - (C7) hold, then ϑ̂N

P−→ ϑ∗(u) as N →∞ for all u ∈ R+ with ϑ̂N as defined
in (31).

Proof. See Section 7.7.

Remark 5.18. In contrast to Theorem 5.12, we cannot readily adapt the above theorem for
observations following the sampling scheme (O2) as Γ̂locN (h) does not necessarily convergence to
E[Ỹu(0)Ỹu(h)] in this setting (see also Lemma 7.2).

Remark 5.19. For time-invariant Lévy-driven state space models, asymptotic normality of the
Whittle estimator has been shown in [16, Theorem 2] following an approach that is similar to
the proof of Theorem 3.5. More detailed, the authors approximated the periodogram (28) in the
score function (29) by the corresponding periodogram with respect to the process N (∆)

ϑ as defined
in (20) (see [16, Lemma 3]). It is worth noting that this technique does not immediately carry
over to our non-stationary setting.

6 Simulation study
In this section, we study the finite sample behavior and the convergence of the estimators intro-
duced in Section 4.3, Section 5.3 and Section 5.4 in a simulation study.
More precisely, we perform a Monte Carlo study for each estimator and different data generating
processes. Using an Euler-Maruyama scheme on the interval [0, 2000] we simulate 400 indepen-
dent paths of different time-varying Lévy-driven state space models that start in 0. For each
simulated path we estimate the coefficient function at equidistant points (ui)i=1,...,101, where
u1 = 400 and u101 = 1600.
The driving Lévy process is either a centered Gaussian Lévy process or a centered normal-
inverse Gaussian (NIG) Lévy process (see e.g. [3] and [25] for more details). The distribution of
the increments L(t)− L(t− 1) of an NIG Lévy process L is characterized by the density

fNIG(x, µ, α, β, δNIG) = δNIG
2π

(1 + αg(x))
g(x)3 eκ+βx−αg(x), x ∈ R

with g(x) =
√
δ2
NIG + (x− µ)2 and κ =

√
α2 − β2, where µ ∈ R is a location parameter, α ≥ 0

is a shape parameter, β ∈ R is a symmetry parameter and δNIG ≥ 0 is a scale parameter.
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It is clear that the step size used for the Euler-Maruyama scheme has a strong impact on the
accuracy of the simulated solution of the Lévy-driven state space model and hence also on a
sample taken from this. Even for a constant step size, a sample becomes inaccurate if the distance
between two observations shrinks, as we observe it for δN whenN increases. To overcome possible
distortions of our simulation study caused by this issue, we adapt the step size to the sampling
scheme by considering a ratio of 1:1000 between the sampled and simulated points, i.e. every
1000th simulated point is sampled.
The observations are sampled according to (O1), where

δN = 1
N
, bN = 400√

N
, such that ∆ = 1 and mN = b400

√
Nc.

The bandwidth parameter bN has to be chosen. Our choice of bN satisfies the conditions imposed
in Theorem 3.3 and 3.5. Moreover, the constant 400 aims to establish a sample size known to
provide good results in a stationary setting (see [16, 28]). An investigation on the choice of the
bandwidth is an interesting topic of further research.
In our simulation study we investigate the values N = 1, 4, 16, 64, 256. If the driving Lévy
process is Gaussian (i.e. L(1) ∼ N (µ, σ2)), we assume that µ = 0 and σ2 = 0.2. In the case of
an NIG Lévy process as driving noise we consider the parameters α = 3, β = 1, δNIG = 2 and
µ = −2/

√
8, which implies that E[L(1)] = 0 and ΣL = 9

√
2/16 ≈ 0.7955. As localizing kernel

we consider the rectangular kernel (4) or the Epanechnikov kernel

Kepan(x) = 3
4(1− x2)1{x∈[−1,1]}. (32)

To measure the coefficient function estimate’s quality, we use the mean integrated square error
(MISE), where the integral in the MISE over the interval [400, 1600] is replaced by a Riemann
sum over the equidistant partition that is based on the estimation points (ui)i=1,...,101.
All simulations have been conducted in MATLAB on the BwUniCluster. For numerical opti-
mization, a differential evolution optimization routine has been used.

6.1 Simulation Study: least squares estimation

We simulate a sequence of time-varying Ornstein-Uhlenbeck processes as defined in (10) for
three different coefficient functions

a(1)(t) = 1
10 + 1

2

∣∣∣∣cos
(

t

500

)∣∣∣∣ , a(2)(t) = 1 + 1
10 sin

(
t

150

)
and a(3)(t) = 1

2 −
t

5000 ,

t ∈ [0, 2000]. The characteristic triplet of the driving Lévy process is assumed to be known.
Using the rectangular kernel as localizing kernel, we compute for the above coefficient functions
the localized least squares estimators â(1)(ui), â(2)(ui) and â(3)(ui), i = 1, . . . , 101. Since the
conditions of Theorem 4.7 are satisfied, all estimators are consistent and asymptotically normal.
Indeed, Figure 1 reflects the consistency of â(1) and â(2). As N grows the mean over 400 estima-
tions recovers the respective coefficient function with increasing accuracy. Moreover, the MISE
of the estimated coefficient functions decreases across all coefficient functions and driving noises
as N increases (see Table 1).
Qualitatively, we observe a higher bias for estimates conducted near to extreme points of the
coefficient functions (see Figure 1). This arises from the fact that the localizing kernel smoothes
the estimation at each fixed estimation point ui over the window [ui−bN , ui+bN ]. If the average
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â(1) â(2) â(3)

N Gaussian NIG Gaussian NIG Gaussian NIG
1 6.2142 6.4279 7.5200 8.9841 1.0293 1.1089
4 1.3816 1.3120 2.2083 2.8325 0.4889 0.5416
16 0.3550 0.3868 0.9882 1.2945 0.2407 0.2562
64 0.1400 0.1543 0.4837 0.6278 0.1203 0.1290
256 0.0651 0.0722 0.2402 0.3085 0.0588 0.0650

Table 1: MISE of â(1), â(2), â(3) for N = 1, 4, 16, 64, 256 using the rectangular kernel (4). As driving noise
we use either a Gaussian or NIG Lévy process.

of the respective coefficient function on the estimation window deviates from the value of the
coefficient function at ui, we observe a comparably high bias (see N = 1, 16 in Figure 1). For
our coefficient functions, the peak effect occurs at extreme points. Since bN ↓ 0, the smoothing
window [ui− bN , ui+ bN ] shrinks which eventually ensures a low bias also at extreme points (see
N = 256 in Figure 1).
Exemplary, we investigate the performance of the estimates â(1), â(2) and â(3) at fixed estimation
points ui, i = 25, 50, 75 in Table 2. The MSE presented in Table 2 decrease across all estimation
points, coefficient functions and noises as N increases.
It is not surprising that we find high differences in the MSE across the estimation points for each
of the coefficient curves a(1) and a(2) at low values of N . Again, the main driver for this effect
is an increased bias at estimation points close to extreme points of the coefficient functions. As
a(3) is a linear function, we do not find the same effect for this coefficient function.
Moreover, in Figure 2, we compare the empirical distribution of the standardized estimation
error of the estimates â(1), â(2) and â(3) at u25 for N = 256 with a standard normal distribution
through a Q-Q plot. For standardization we use the consistent estimator from Remark 4.8. All
Q-Q plots show that the sample quantiles of the standardized estimation error are close to those
of a standard normal law.
Overall, the investigated least squares estimators perform well across all coefficient functions and
noises and the finite sample behavior is very well described by the asymptotic results established
in Theorem 4.7.
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Figure 1: First row: coefficient function a(1) with five realizations of â(1) and the mean over 400 real-
izations of â(1) respectively for N = 1, 16, 256. Second row: coefficient function a(2) with five realizations
of â(2) and the mean over 400 realizations of â(2) respectively for N = 1, 16, 256. For simulation we
considered an NIG Lévy process. In addition, we indicate u25, u50 and u75 for N = 256.
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Figure 2: Normal Q-Q plots of the standardized estimation error of â(1)(u25), â(2)(u25) and â(3)(u25) for
N = 256, where we considered either a Gaussian or an NIG Lévy process as driving noise.
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â(1) â(2) â(3)

N u25 u50 u75 u25 u50 u75 u25 u50 u75
1 3.5077 1.5266 5.6332 10.6488 5.1043 8.4159 1.0586 0.8761 0.7687
4 0.3127 1.5355 0.7543 2.4044 2.1300 2.6313 0.4783 0.4464 0.3483
16 0.2698 0.2551 0.3058 0.9397 1.0692 1.1790 0.2917 0.2272 0.1739
64 0.0597 0.0868 0.1576 0.4116 0.5218 0.5996 0.1205 0.1134 0.0767
256 0.0338 0.0470 0.0776 0.2163 0.2569 0.2948 0.0662 0.0591 0.0417

Table 2: MSE×103 of the estimators â(1)(ui), â(2)(ui) and â(3)(ui) for N = 1, 4, 16, 64, 256 and i =
25, 50, 75 using the rectangular kernel (4). As driving noise we consider an NIG Lévy process.

6.2 Simulation study: quasi-maximum likelihood and Whittle estimation

We simulate a sequence of time-varying Lévy-driven state space models as defined in (16) for
the matrix functions

A(t) =
(
ϑ1(t) 0

0 ϑ2(t)

)
, B(t) =

( 1
ϑ2(t)−ϑ1(t)
−1

ϑ2(t)−ϑ1(t)

)
, C(t) =

(
−ϑ1(t)(1 + ϑ2(t))
−ϑ2(t)(1 + ϑ1(t))

)
,

and ΣL = ϑ3(t), where

ϑ1(t) = −1
2 + 0.1

∣∣sin( t
500)

∣∣ , and ϑ2(t) = −3− 0.2
∣∣cos( t

500)
∣∣ , t ∈ [0, 2000].

In the Gaussian case, we consider ϑ3(t) = 0.2 and ϑ3(t) = 9
√

2
16 ≈ 0.7955 in the NIG case.

Using either the rectangular kernel (4) or the Epanechnikov kernel (32) as localizing kernel, we
compute for the aforementioned coefficient functions the

quasi-maximum likelihood estimators (ϑ̂QML
1 (ui),ϑ̂QML

2 (ui),ϑ̂QML
3 (ui)) and the

Whittle estimators (ϑ̂W1 (ui), ϑ̂W2 (ui), ϑ̂W3 (ui)), i = 1, . . . , 101,

from Section 5.3 and Section 5.4, respectively. All conditions of Theorem 5.16 and Theorem 5.17
are satisfied (see also Example 5.15) such that both estimators are consistent.
Figure 3 and 4 are in line with our theoretical findings and reflect the estimators’ consistency.
For both estimators, we observe that the mean over 400 estimates recovers the respective true
coefficient function more precisely as N increases, independently of the driving noise and the
localizing kernel. We note that the Epanechnikov kernel has a stronger smoothing effect com-
pared to the rectangular kernel (see Figure 3 and 4).
Table 3 and Table 4 show that also the MISE of all estimated coefficient functions decreases
as N increases for both estimators, all localizing kernels and driving noises. However, for the
rectangular kernel, we observe lower MISE.
Exemplary, we compare in Figure 5 and Figure 6 for fixed estimation points ui, i = 25, 75 the
empirical distribution of the estimation error with a standard normal distribution, where we
consider different localizing kernels and driving noises for the quasi-maximum likelihood and
Whittle estimator. The results show that the estimation error’s distribution of both estimators
can be well approximated by a normal distribution and strengthen the hypothesis that the es-
timators are asymptotically normal.
Overall, the performances of the quasi-maximum likelihood and the Whittle estimator are very
similar, and neither of the estimators is preferable.
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Figure 3: Coefficient functions ϑ1, ϑ2, ϑ3 and the mean over 400 realizations of ϑ̂QML
1 , ϑ̂QML

2 and ϑ̂QML
3

for N = 16, 256 using either the rectangular or the Epanechnikov kernel. For the simulation we considered
an NIG Lévy process.
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Figure 4: Coefficient functions ϑ1, ϑ2, ϑ3 and the mean over 400 realizations of ϑ̂W
1 , ϑ̂W

2 and ϑ̂W
3 for

N = 16, 256 using either the rectangular or the Epanechnikov kernel. For the simulation we considered
an NIG Lévy process.
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Krect Kepan

Noise N ϑ̂QML
1 ϑ̂QML

2 ϑ̂QML
3 ϑ̂QML

1 ϑ̂QML
2 ϑ̂QML

3

Gaussian

1 12.2178 954.9114 1.5844 15.9248 1074.9837 1.6684
4 5.6206 527.5252 0.8054 6.7165 623.1291 0.9417
16 2.7979 257.3131 0.3921 3.4222 314.5225 0.4845
64 1.3190 125.3640 0.1887 1.6603 150.1066 0.2357
256 0.6793 62.2253 0.0965 0.7965 74.7023 0.1159

NIG

1 13.3915 962.2520 25.2487 15.1466 1081.8759 28.8395
4 5.8316 528.2882 13.0114 6.8370 632.4238 15.7627
16 2.8093 267.8274 6.5422 3.2770 310.6784 7.5447
64 1.3502 125.6270 3.1771 1.6305 155.1777 3.8812
256 0.6743 63.4687 1.6086 0.8241 76.5732 1.9886

Table 3: MISE of the estimators ϑ̂QML
1 , ϑ̂QML

2 and ϑ̂QML
3 for N = 1, 4, 16, 64, 256 using either the

rectangular kernel (4) or the Epanechnikov kernel (32). As driving noise we consider either a Gaussian
or an NIG Lévy process.
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Figure 5: First row: normal Q-Q plots of the estimation error of the estimates ϑ̂QML
1 (u25), ϑ̂QML

2 (u25)
and ϑ̂QML

3 (u25) for N = 256 using the rectangular kernel (4) and a Gaussian Lévy process as driving
noise. Second row: normal Q-Q plots of the estimation error of the estimates ϑ̂QML

1 (u75), ϑ̂QML
2 (u75) and

ϑ̂QML
3 (u75) for N = 256 using the Epanechnikov kernel (32) and an NIG Lévy process as driving noise.
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Krect Kepan

Noise N ϑ̂W1 ϑ̂W2 ϑ̂W3 ϑ̂W1 ϑ̂W2 ϑ̂W3

Gaussian

1 12.8997 1082.6087 1.5627 14.3332 1143.9525 1.8873
4 5.2176 526.1243 0.7166 6.9049 626.2685 0.9188
16 2.8774 256.1971 0.4000 3.3788 295.5396 0.4658
64 1.3734 125.1810 0.1950 1.6296 153.6250 0.2351
256 0.6737 61.8317 0.0960 0.8060 75.4662 0.1164

NIG

1 12.1261 960.6616 22.9088 14.0046 1127.7369 27.4745
4 5.6328 485.4932 12.8253 6.8520 639.1451 15.1066
16 2.7545 255.6482 6.4252 3.4720 313.6670 7.8922
64 1.3238 124.9270 3.1781 1.5885 155.3078 3.8583
256 0.6855 63.3847 1.6103 0.8083 77.1361 1.9350

Table 4: MISE of the estimators ϑ̂W
1 , ϑ̂W

2 and ϑ̂W
3 for N = 1, 4, 16, 64, 256 using either the rectangular

kernel (4) or the Epanechnikov kernel (32). As driving noise we consider a Gaussian or an NIG Lévy
process.
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Figure 6: First row: normal Q-Q plots of the estimation error of the estimates ϑ̂W
1 (u25), ϑ̂W

2 (u25) and
ϑ̂W

3 (u25) for N = 256 using the rectangular kernel (4) and a Gaussian Lévy process as driving noise.
Second row: normal Q-Q plots of the estimation error of the estimates ϑ̂W

1 (u75), ϑ̂W
2 (u75) and ϑ̂W

3 (u75)
for N = 256 using the Epanechnikov kernel (32) and an NIG Lévy process as driving noise.
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7 Proofs

7.1 Proof for Section 3.1

Proof of Theorem 3.3. Clearly, Lemma 3.2 implies that Φ is integrable. In the following we show
the sufficient conditions of [31, Theorem 5.7].
First, we note that M(ϑ) is continuous, since for ϑ1, ϑ2 ∈ Θ we have

|M(ϑ1)−M(ϑ2)| ≤
∥∥∥Φ(Ỹ , ϑ1)− Φ(Ỹ , ϑ2)

∥∥∥
L1

≤ ‖ϑ1 − ϑ2‖ 3D1

(
1 +

∞∑
k=0

βkE[|Ỹu(∆(1− k))|q]
)
.

(33)

To show uniform convergence in probability of MN (ϑ) we use [24]. For all ϑ ∈ Θ Proposition 2.6
and Lemma 3.2 imply that Φ((Ỹu(t+ ∆(1−k)))k∈N0 , ϑ) is a locally stationary approximation of
Φ
((
YN
(
t + ∆ (1−k)

N

))
k∈N0

, ϑ
)
for p ≥ 1. An application of [29, Theorem 3.5] in the case of (O1)

and [29, Theorem 3.6] if (O2) holds, gives

‖MN (ϑ)−M(ϑ)‖L1 −→
N→∞

0, for all ϑ ∈ Θ.

It is left to show stochastic equicontinuity of the family (MN (ϑ))N∈N. Define g : R∞ → R where
g(x) =

∑∞
k=0 βk|xk|q. Using the mean value theorem, we obtain ||y|q − |z|q| ≤ q|y − z|(1 +

|y|q−1 + |z|q−1) for all y, z ∈ R. An application of Hoelder’s inequality ensures g ∈ L1,q
∞ (β). Since∑∞

k=0 kβk < ∞, Proposition 2.6 implies that g((Ỹu(t + ∆(1 − k)))k∈N0) is a locally stationary
approximation of g

((
YN
(
t+ ∆(1−k)

N

))
k∈N0

)
for p = 1. Noting that |K(x)|∫

|K(x)|dx is again a localizing
kernel, we obtain from either [29, Theorem 3.5] or [29, Theorem 3.6] that

δN
bN

mN∑
i=−mN

∣∣∣∣∣K
(
τNi − u
bN

)∣∣∣∣∣
(

1 + g

((
YN

(
τNi + ∆(1− k)

N

))
k∈N0

))
P−→

N→∞
E

[
1 + g

((
Ỹu (∆(1− k))

)
k∈N0

)] ∫
R
|K(x)|dx =: E.

(34)

Then, for λ = η
6D1E

it holds

P

(
sup

‖ϑ1−ϑ2‖<λ
|MN (ϑ1)−MN (ϑ2)| > η

)

≤ P

∣∣∣∣∣∣δNbN
mN∑

i=−mN

∣∣∣∣∣K
(
τNi − u
bN

)∣∣∣∣∣
(

1+g
((
YN

(
τNi + ∆(1− k)

N

))
k∈N0

))
−E

∣∣∣∣∣∣>E
 −→
N→∞

0.
(35)

It follows that supϑ∈Θ ‖MN (ϑ)−M(ϑ)‖ P−→
N→∞

0. Finally, we conclude with [31, Theorem 5.7].

7.2 Proof for Section 3.2

Proof of Theorem 3.5. For MN as defined in (3) we investigate the Taylor expansion of ∇ϑMN

at ϑ∗, which is given by√
bN
δN

(
∇ϑMN (ϑ∗)

)
=
√
bN
δN

(
∇ϑMN (ϑ̂N )

)
−
√
bN
δN

(
ϑ̂N − ϑ∗

) (
∇2
ϑMN (ϑ̃)

)
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for some ϑ̃ ∈ Θ satisfying ‖ϑ̃ − ϑ∗‖ ≤ ‖ϑ̂N − ϑ∗‖. From the definition of ϑ̂N it follows for
sufficiently large N that ∇ϑMN (ϑ̂N ) = 0. Hence, for ȲN =

(
YN
(
τNi + ∆ (1−k)

N

))
k∈N0

and Ȳu =
(Ỹu(NτNi + ∆(1− k)))k∈N0 we obtain√

bN
δN

(
ϑ̂N − ϑ∗

)
= −

√
bN
δN

(∇ϑMN (ϑ∗))
(
∇2
ϑMN (ϑ̃)

)−1

= −
(√

bN
δN

mN∑
i=−mN

Krect

(
τNi − u
bN

)(
∇ϑΦ

(
ȲN , ϑ

∗
)
− E

[
∇ϑΦ

(
ȲN , ϑ

∗
)])

+
√
bN
δN

mN∑
i=−mN

Krect

(
τNi − u
bN

)
E
[
∇ϑΦ

(
ȲN , ϑ

∗
)])(

∇2
ϑMN (ϑ̃)

)−1

=: −(P1 + P2)
(
∇2
ϑMN (ϑ̃)

)−1
.

As first step, we show asymptotic normality of P1, which mainly follows from [29, Theorem 3.7]
and the Cramer-Wold device.
Let a ∈ Rd. Then, since ∂

∂ϑi
Φ(·, ϑ∗) ∈ Lp̃,q̃∞ (α) for all i = 1, . . . , d and some p̃ ≥ 2, we have

a′∇ϑΦ(·, ϑ∗) ∈ Lp̃,q̃∞ (α). Thus, due to Proposition 2.6, a′∇ϑΦ(Ȳu, ϑ∗) is a locally stationary
approximation of a′∇ϑΦ(ȲN , ϑ∗) for p̃. Furthermore, since linear functions are Lipschitz, the
locally stationary approximation a′∇ϑΦ(Ȳu, ϑ∗) is θ-weakly dependent with θ-coefficients, that
decay with the same rate as the θ-coefficients of ∇ϑΦ(Ȳu, ϑ∗). Overall, all assumptions of [29,
Theorem 3.7] are satisfied and√

bN
δN

mN∑
i=−mN

Krect

(
τNi − u
bN

)
a′
(
∇ϑΦ(ȲN , ϑ∗)− E

[
∇ϑΦ(ȲN , ϑ∗)

])
d−→

N→∞
N
(
0, a′I(u)a

)
.

From the Cramer-Wold device we obtain immediately

P1
d−→

N→∞
N (0, I(u)) . (36)

Since E
[
∇ϑΦ

(
Ȳu, ϑ

∗
)]

= 0, we obtain

P2 =
√
bN
δN

mN∑
i=−mN

Krect

(
τNi − u
bN

)(
E
[
∇ϑΦ

(
ȲN , ϑ

∗
)]
− E

[
∇ϑΦ

(
Ȳu, ϑ

∗
)])

≤ d
√
bN
δN

(2mN + 1) |K|∞C
( 1
N

+ bN

)
−→
N→∞

0 (37)

for some constant C > 0. Regarding ∇2
ϑMN (ϑ̃), we first note that

∥∥∥∇2
ϑMN (ϑ̃)− V (u)

∥∥∥ ≤
∥∥∥∥∥∥
√
bN
δN

mN∑
i=−mN

K

(
τNi − u
bN

)
∇2
ϑΦ
(
ȲN , ϑ̃

)
− E

[
∇2
ϑΦ
(
Ȳu, ϑ̃

)]∥∥∥∥∥∥
+
∥∥∥E [∇2

ϑΦ
(
Ȳu, ϑ̃

)]
− E

[
∇2
ϑΦ
(
Ȳu, ϑ

∗
)]∥∥∥ =: ‖R1(ϑ̃)‖+ ‖R2‖ .

From the conditions on ∂2

∂ϑi∂ϑj
Φ it follows that the map ϑ 7→ E

[
∇2
ϑΦ
(
Ȳu, ϑ

)]
is continuous.

Additionally noting that ϑ̃ P−→ ϑ∗ as ϑ̂N
P−→ ϑ∗, we obtain ‖R2‖ −→ 0 as N →∞.
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To show that ‖R1(ϑ̃)‖ tends to 0 in probability, we show that supϑ∈Θ ‖R1(ϑ)‖ converges to 0
in probability as N →∞. To this end, it is sufficient to investigate the asymptotic behavior of
R

(i,j)
1 (ϑ) for all i, j = 1, . . . , d, ϑ ∈ Θ, where R(i,j)

1 (ϑ) denotes the i, j-th entry of R1(ϑ). More
precisely,

R
(i,j)
1 (ϑ) =

√
bN
δN

mN∑
i=−mN

K

(
τNi − u
bN

)
∂2

∂ϑi∂ϑj
Φ
(
ȲN , ϑ

)
− E

[
∂2

∂ϑi∂ϑj
Φ
(
Ȳu, ϑ

)]
.

Noting that ∂2Φ
∂ϑi∂ϑj

satisfies all assumptions on the contrast function from Theorem 3.3, we can
follow the same steps as in the proof of Theorem 3.3 to obtain

sup
ϑ∈Θ

∥∥∥R(i,j)
1 (ϑ)

∥∥∥ P−→
N→∞

0. (38)

Finally, combining (36), (37), (38) and Slutsky’s theorem we obtain the convergence as stated
in (5).

7.3 Proof for Section 4.1

Proof of Proposition 4.2. In the following we suppress the index u ∈ R+ and assume q = 2. We
fix h ≥ 0 and define, for all t ∈ R and m ∈ R+ the truncated process X(m)(t) =

∫ t
t−m g(u, t −

s)L(ds) and for l ∈ N

Z(l)(t) = (X (t+ ∆) , . . . , X (t−∆(l − 2))) , ϕ(l)(t) = ϕ(Z(l)(t), 0, . . .) as well as

Z(l,m)(t) =
(
X(m) (t+ ∆) , . . . , X(m) (t−∆(l − 2))

)
, ϕ(l,m)(t) = ϕ(Z(l,m)(t), 0, . . .).

Then, for ΣL = Σ +
∫

R x
2ν(dx)

∥∥∥X(t)−X(m)(t)
∥∥∥
L2

=
∥∥∥∥∫ −m
−∞

g(u,−s)L(ds)
∥∥∥∥
L2

=
(

ΣL

∫ −m
−∞

g(u,−s)2ds

) 1
2
. (39)

Let F ∈ G∗u, G ∈ G1 and i1 ≤ . . . ≤ iu ≤ iu + h ≤ j, u ∈ N. In view of Definition 2.3 we define
ϕ∗ = (ϕ(Z(i1), . . . , ϕ(Z(iu)))) and obtain

|Cov(F (ϕ∗), G(ϕ(Z(j))))| ≤
∣∣∣Cov (F (ϕ∗), G (ϕ(Z(j)))−G

(
ϕ(l)(j)

))∣∣∣
+
∣∣∣Cov (F (ϕ∗), G

(
ϕ(l)(j)

)
−G

(
ϕ(l,m)(j)

))∣∣∣
+
∣∣∣Cov (F (ϕ∗), G

(
ϕ(l,m)(j)

))∣∣∣ =: P1 + P2 + P3.

We show that ϕ∗ and ϕ(l,m)(j) are independent which implies P3 = 0. Due to to the independence
of L on non-overlapping intervals it is sufficient to truncate the stochastic integrals entering in
ϕ(l,m)(j) with suitable choices of l and m such that the involved integration sets are disjoint
from any integration set entering in g∗.
Since iu ≥ ia for all a = 1, . . . , u, it is enough to investigate Z(iu) and Z(l,m)(j). In turn, this
requires to analyze the stochastic integrals in Z(iu) and Z(l,m)(j) whose integration sets have
the smallest distance, i.e.

X(m)(j −∆(l − 2)) =
∫ j−∆(l−2)

j−∆(l−2)−m
g(u, j −∆(l − 2)− s)L(ds) and
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X(iu + ∆) =
∫ iu+∆

−∞
g(u, iu + ∆− s)L(ds).

We set m = h
2 and l =

⌊
h

2∆

⌋
. Then, iu + ∆ < j −∆(l − 2)−m and P3 = 0.

For P1 we have for some function f : R+
0 → R+

0 due to the stationarity of X

P1 ≤ 2 ‖F‖∞
∥∥∥G (ϕ(Z(j)))−G

(
ϕ(l)(j)

)∥∥∥
L1

≤ 2 ‖F‖∞ Lip(G)f (‖X(0)‖L2) ‖X(0)‖L2

∞∑
k=l

αk −→
h→∞

0,

by the dominated convergence theorem, since we set l =
⌊
h

2∆

⌋
. Moreover, using (39)

P2 ≤ 2 ‖F‖∞
∥∥∥G (ϕ(l)(j)

)
−G

(
ϕ(l,m)(j)

)∥∥∥
L1

≤ 2 ‖F‖∞ Lip(G)f
(
‖X(0)‖L2 ∨

∥∥∥X(m)(0)
∥∥∥
L2

)
×

l−1∑
k=0

αk
∥∥∥X(j −∆(k − 1))−X(m)(j −∆(k − 1))

∥∥∥
L2

≤ 2 ‖F‖∞ Lip(G)f
(
‖X(0)‖L2 ∨

∥∥∥X(m)(0)
∥∥∥
L2

)( ∞∑
k=0

αk

)(
ΣL

∫ −m
−∞

g(u,−s)2ds

) 1
2
−→
m→∞

0,

again by the dominated convergence theorem for m = h
2 . For q = 4 we follow similar steps and

use that ‖X(t)−X(m)(t)‖L4 = ((
∫−m
−∞ g(u,−s)4ds)(

∫
R x

4ν(dx)) + 3Σ2
L(
∫−m
−∞ g(u,−s)2ds)2)

1
4 (see

[29, Lemma 5.2]).

7.4 Proof for Section 4.3

To calculate the asymptotic variance in Theorem 4.7, it is necessary to evaluate 4-th order mixed
moments of Ỹu.

Lemma 7.1. Let Ỹu be a Lévy-driven Ornstein-Uhlenbeck process as given in (11) such that
γ +

∫
|x|>1 xν(dx) = 0 and

∫
|x|>1 x

4ν(dx) <∞. Then, for any real numbers t1 ≤ t2, t3, t4

E[Ỹu(t1)Ỹu(t2)Ỹu(t3)Ỹu(t4)] = Σ2
L

4a(u)2

(
ea(u)(t1−t2−|t3−t4|)+ea(u)(t1−t3−|t2−t4|)+ea(u)(t1−t4−|t2−t3|)

)
+ ea(u)(3t1−t2−t3−t4)

4a(u)

∫
R
x4ν(dx),

where ΣL = Σ +
∫

R x
2ν(dx).

Proof. Define the random vector

X =
∫

R
(g(u, t1 − s), g(u, t2 − s), g(u, t3 − s), g(u, t4 − s))′L(ds).

From Section 4.1 it is known that X is infinitely divisible. Since X is centered, we obtain for
the joint cumulant κ(Ỹu(t1), Ỹu(t2), Ỹu(t3), Ỹu(t4)), as defined in [17, Definition 4.2.1.],

κ(Ỹu(t1), Ỹu(t2), Ỹu(t3), Ỹu(t4)) = ∂4

∂z1∂z2∂z3∂z4
log

(
E
[
ei(z1,z2,z3,z4)X

])∣∣∣∣
z1,...,z4=0
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=
∫

R
x4ν(dx)

∫
R
g(u, t1 − s)g(u, t2 − s)g(u, t3 − s)g(u, t4 − s)ds

= ea(u)(3t1−t2−t3−t4)

4a(u)

∫
R
x4ν(dx).

On the other hand, due to [17, Proposition 4.2.2.],

E[Ỹu(t1)Ỹu(t2)Ỹu(t3)Ỹu(t4)]

= κ(Ỹu(t1), Ỹu(t2), Ỹu(t3), Ỹu(t4)) + E
[
Ỹu(t1)Ỹu(t2)

]
E
[
Ỹu(t3)Ỹu(t4)

]
+ E

[
Ỹu(t1)Ỹu(t3)

]
E
[
Ỹu(t2)Ỹu(t4)

]
+ E

[
Ỹu(t1)Ỹu(t4)

]
E
[
Ỹu(t2)Ỹu(t3)

]
.

We conclude by noting that E[Ỹu(x)Ỹu(y)] = ΣL
2a(u)e

−a(u)|x−y| for any x, y ∈ R.

Proof of Theorem 4.7. First, we note that ΦLS(0, 0, ϑ) = 0. We use Theorem 3.3 and Remark
3.4. From Proposition 4.6 it follows that Ỹu is a locally stationary approximation of YN for q = 2.
Basic calculations show that for ΣL = Σ +

∫
R x

2ν(dx) we have

E

[
ΦLS

((
Ỹu(∆(1− k))

)
k∈N0

, ϑ

)]
= (1 + e−2∆ϑ)E[Ỹu(0)2]− 2e−∆ϑE[Ỹu(∆)Ỹu(0)]

= ΣL

2a(u)(1 + e−2∆ϑ − 2e−∆(a(u)+ϑ)),

which has a unique minimum in ϑ = a(u) such that (M1) holds for ϑ∗ = a(u). We show that
the conditions (a) and (b) of Theorem 3.3 hold. In view of (a) we have for x0, x1, y0, y1 ∈ R and
ϑ ∈ Θ∣∣∣ΦLS(x0, x1, ϑ)− ΦLS(y0, y1, ϑ)

∣∣∣ ≤ ∣∣∣x2
0 − y2

0

∣∣∣+ 2e−∆ϑ |y0y1 − x0x1|+ e−2∆ϑ
∣∣∣x2

1 − y2
1

∣∣∣
≤ (|x0 − y0|+ |x1 − y1|)
× (1 + 2e−∆ϑ + e−2∆ϑ)(|x0|+ |x1|+ |y0|+ |y1|).

(40)

Using Hoelder’s inequality and (40), we obtain for X0, X1, Y0, Y1 ∈ L2 and ϑ ∈ Θ∥∥∥ΦLS(X0, X1, ϑ)− ΦLS(Y0, Y1, ϑ)
∥∥∥
L1

≤ 16 max
k=0,1

{‖Xk‖L2 ∨ ‖Yk‖L2} (‖X0 − Y0‖L2 + ‖X1 − Y1‖L2) ,

which shows ΦLS(·, ϑ) ∈ L1,2
∞ (α), where αk = 1 for k = 0, 1 and αk = 0 for k ≥ 2. To show (b)

let x0, x1 ∈ R and ϑ1, ϑ2 ∈ Θ. Then,∣∣∣ΦLS(x0, x1, ϑ1)− ΦLS(x0, x1, ϑ2)
∣∣∣ ≤ 2 |x0| |x1|

∣∣∣e−∆ϑ2 − e−∆ϑ1
∣∣∣+ x2

1

∣∣∣e−2∆ϑ1 − e−2∆ϑ2
∣∣∣

≤ ∆
(
2x2

0 + 4x2
1

)
|ϑ1 − ϑ2| ,

such that ΦLS(x, ·) ∈ L2(0, D1(1 +
∑∞
k=0 βk |xk|

2)) for D1 = ∆ and β0 = 2, β1 = 4 and βk = 0
for k ≥ 2. If (O1) holds, the stated convergence follows immediately from Theorem 3.3.
Using Remark 3.4 we also obtain consistency if (O2) holds. Indeed (c∗) holds, since the con-
trast ΦLS is of finite memory (for n = 1), |ΦLS(x0, x1, ϑ)| ≤ (|x0| + |x1|)2 and (40) gives
that ΦLS(·, ϑ) ∈ L2(1, 4) for all ϑ ∈ Θ and x0, x1 ∈ R. Since

∫
|x|>1 x

2+γ1ν(dx) < ∞, we have
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Ỹu ∈ L2+γ1 . Analogous to [11, Theorem 3.36] one can show that Ỹu is θ-weakly dependent with
exponentially decaying θ-coefficients θ(h). Then, the stated result follows from Remark 3.4.
To show asymptotic normality we apply Theorem 3.5 and Remark 3.6. Proposition 4.6 implies
that Ỹu is a locally stationary approximation of YN for q = 4. The conditions (a)-(c) of Theorem
3.5 are immediately satisfied. For all x0, x1 ∈ R and ϑ ∈ Θ it holds

d

dϑ
ΦLS(x0, x1, ϑ) = 2∆e−∆ϑ

(
x0x1 − e−∆ϑx2

1

)
and

d2

dϑ2 ΦLS(x0, x1, ϑ) = 2∆2e−∆ϑ
(
2e−∆ϑx2

1 − x0x1
)
.

Note that d2

dϑ2 ΦLS(0, ϑ) = 0 for all ϑ ∈ Θ. Then, for x0, x1, y0, y1 ∈ R and ϑ ∈ Θ we have∣∣∣∣ ddϑΦLS(x0, x1, ϑ)− d

dϑ
ΦLS(y0, y1, ϑ)

∣∣∣∣ ≤ (|x0 − y0|+ |x1 − y1|) 2∆e−∆ϑ
(
1 + e−∆ϑ

)
× (|x0|+ |x1|+ |y0|+ |y1|) and (41)∣∣∣∣∣ d2

dϑ2 ΦLS(x0, x1, ϑ)− d2

dϑ2 ΦLS(y0, y1, ϑ)
∣∣∣∣∣ ≤ (|x0 − y0|+ |x1 − y1|) 2∆2e−∆ϑ

(
1 + 2e−∆ϑ

)
× (|x0|+ |x1|+ |y0|+ |y1|) . (42)

In view of (d) we apply Hoelder’s inequality to (41) and obtain for X0, X1, Y0, Y1 ∈ L2 and ϑ ∈ Θ∥∥∥∥ ddϑΦLS(X0, X1, ϑ)− d

dϑ
ΦLS(Y0, Y1, ϑ)

∥∥∥∥
L2
≤ 16∆ max

k=0,1
{‖Xk‖L4 ∨ ‖Yk‖L4}

(‖X0 − Y0‖L4 + ‖X1 − Y1‖L4) ,

which shows d
dϑΦLS(·, ϑ∗) ∈ L2,4

∞ (α̃), where α̃k = 1 for k = 0, 1 and α̃k = 0 for k ≥ 2.
Note that d

dϑΦLS(0, 0, ϑ) = 0 and, due to (41), also d
dϑΦLS(·, ϑ) ∈ L2(1, 4∆). Moreover, since∫

|x|>1 x
4+γ2ν(dx) <∞, it holds Ỹu ∈ L4+γ2 . As explained above, Ỹu is θ-weakly dependent with

exponentially decaying θ-coefficients. Hence (e∗) from Remark 3.6 holds.
In view of (f) we first apply Hoelder’s inequality to (42) and obtain for X0, X1, Y0, Y1 ∈ L2 and
ϑ ∈ Θ ∥∥∥∥∥ d2

dϑ2 ΦLS(X0, X1, ϑ)− d2

dϑ2 ΦLS(Y0, Y1, ϑ)
∥∥∥∥∥
L1

≤ 24∆2 max
k=0,1

{‖Xk‖L2 ∨ ‖Yk‖L2}

(‖X0 − Y0‖L2 + ‖X1 − Y1‖L2) ,

such that d2

dϑ2 ΦLS(·, ϑ) ∈ L1,2
∞ (ᾱ), where ᾱk = 1 for k = 0, 1 and ᾱk = 0 for k ≥ 2. Now, let

x0, x1 ∈ R and ϑ1, ϑ2 ∈ Θ. Then,∣∣∣∣∣ d2

dϑ2 ΦLS(x0, x1, ϑ1)− d2

dϑ2 ΦLS(x0, x1, ϑ2)
∣∣∣∣∣

≤ 2∆2 |x0x1|
∣∣∣e−∆ϑ2 − e−∆ϑ1

∣∣∣+ 4∆2x2
1

∣∣∣e−2∆ϑ1 − e−2∆ϑ2
∣∣∣ ≤ ∆3

(
4x2

0 + 12x2
1

)
|ϑ1 − ϑ2| ,

such that d2

dϑ2 ΦLS(x, ·) ∈ L1(0, D2(1 +
∑∞
k=0 β̄k |xk|

2)) for D2 = ∆3 and β̄0 = 4, β̄1 = 12 and
β̄k = 0 for k ≥ 2. Overall, (f) holds.
If (O2) holds we show (g1∗) and (g2∗) from Remark 3.6. Indeed, we have already shown (g1∗).
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Moreover | d2

dϑ2 ΦLS(x0, x1, ϑ)| ≤ 6∆2(|x0|+|x1|)2 and (42) implies that d2

dϑ2 ΦLS(·, ϑ) ∈ L2(1, 6∆2)
for all ϑ ∈ Θ and x0, x1 ∈ R. From

∫
|x|>1 x

2+γ1ν(dx) < ∞, it follows Ỹu ∈ L2+γ1 . Since Ỹu is
θ-weakly dependent, the assertion of Remark 3.6 holds. It is left to investigate the asymptotic
variance Σ(u). We obtain

I(u, k) = 4∆2e−2a(u)∆
(
E
[
Ỹu(0)Ỹu(∆)Ỹu(kδ + ∆)Ỹu(kδ)

]
− e−a(u)∆E

[
Ỹu(0)Ỹu(∆)Ỹu(kδ)2

]
− e−a(u)∆E

[
Ỹu(0)2Ỹu(kδ + ∆)Ỹu(kδ)

]
+ e−2a(u)∆E

[
Ỹu(0)2Ỹu(kδ)2

] )
.

An application of Lemma 7.1 gives

I(u, k) =
∫

R x
4ν(dx)∆2e−2a(u)∆

a(u)
(
e−2a(u)(kδ+∆) − 2e−a(u)∆e−a(u)(2kδ+∆) + e−2a(u)∆e−2a(u)kδ)

)
+ ∆2Σ2

Le
−2a(u)∆

a(u)2

(
e−2a(u)∆ + e−a(u)(kδ+∆+|kδ−∆|) + e−2a(u)kδ − e−2a(u)∆

− 2e−a(u)(kδ+∆+|kδ−∆|) − e−2a(u)∆ − 2e−2a(u)(kδ+∆) + e−2a(u)∆ + 2e−2a(u)(kδ+∆)
)

=∆2Σ2
Le
−2a(u)∆

a(u)2

(
e−2a(u)kδ − e−a(u)(kδ+∆+|kδ−∆|)

)
.

First, we note that

I(u, 0) = ∆2Σ2
Le
−2a(u)∆

a(u)2

(
1− e−2a(u)∆

)
.

Moreover, straightforward calculations give

∞∑
k=1

I(u, k) = ∆2Σ2
Le
−2a(u)∆

a(u)2

 ∞∑
k=1

e−2a(u)kδ −
d∆/δe−1∑
k=1

e−2a(u)∆ −
∞∑

k=d∆/δe
e−2a(u)kδ


= ∆2Σ2

Le
−2a(u)∆

a(u)2

d∆/δe−1∑
k=1

(
e−2a(u)kδ − e−2a(u)∆

)
(43)

= ∆2Σ2
Le
−2a(u)∆

a(u)2

(
e−2a(u)δ 1− e−2a(u)δ(d∆/δe−1)

1− e−2a(u)δ − e−2a(u)∆(d∆/δe − 1)
)
.

Hence,

I(u) = ∆2Σ2
Le
−2a(u)∆

2a(u)2

1 + 2e−2a(u)δ 1−e−2a(u)δ(d∆/δe−1)

1−e−2a(u)δ − e−2a(u)∆(2 d∆/δe − 1), if (O1) holds,
1− e−2a(u)∆, if (O2) holds.

If (O2) holds, it is easy to see that I(u) > 0. If (O1) holds, it is enough to additionally observe
that all summands in (43) are non-negative since kδ ≤ ∆ for all k = 1, . . . , d∆/δe − 1. Finally,

V (u) = 4∆2e−2a(u)∆E[Ỹu(0)2]− 2∆2e−a(u)∆E[Ỹu(∆)Ỹu(0)] = ∆2e−2a(u)∆ΣL

a(u) > 0.
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7.5 Proof for Section 5.2

Proof of Proposition 5.6. First, we note that supϑ∈Θ |ΦLL(0, ϑ)| < ∞. For all ϑ ∈ Θ and se-
quences X = (X1−k)k∈N0 ∈ `∞(L2) and Y = (Y1−k)k∈N0 ∈ `∞(L2), we have∥∥∥ΦLL(X,ϑ)− ΦLL(Y, ϑ)

∥∥∥
L1

= 1
Vϑ

∥∥∥εϑ(X)2 − εϑ(Y )2
∥∥∥
L1
,

where εϑ(X) and εϑ(Y ) are the analogues of (25), defined in terms of X and Y . From Hoelder’s
inequality we obtain

≤ 1
Vϑ

(
‖X1‖L2 +

∥∥∥∥∥B′ϑ
∞∑
n=1

(
e∆Aϑ −KϑB

′
ϑ

)n−1
KϑX1−n

∥∥∥∥∥
L2

+ ‖Y1‖L2 +
∥∥∥∥∥B′ϑ

∞∑
n=1

(
e∆Aϑ −KϑB

′
ϑ

)n−1
KϑY1−n

∥∥∥∥∥
L2

)

×
(
‖X1 − Y1‖L2 +

∥∥∥∥∥B′ϑ
∞∑
n=1

(
e∆Aϑ −KϑB

′
ϑ

)n−1
Kϑ (Y1−n −X1−n)

∥∥∥∥∥
L2

)

≤ 1
Vϑ

(
4 sup
k∈N0

{
‖X1−k‖L2 ∨ ‖Y1−k‖L2

}
C1

∞∑
n=1

∥∥∥∥(e∆Aϑ −KϑB
′
ϑ

)n−1
∥∥∥∥
)

×
(
‖X1 − Y1‖L2 + C1

∞∑
n=1

∥∥∥∥(e∆Aϑ −KϑB
′
ϑ

)n−1
∥∥∥∥ ‖X1−n − Y1−n‖L2

)

for some constant C1 > 0. In the following we bound the expression (e∆Aϑ −KϑB
′
ϑ)n−1, n ∈ N.

From Proposition 5.4 (b), (C3) and since eigenvalues are continuous functions of the entries of
a matrix (see [4, Fact 10.11.2]), we obtain

max
{
|λ| , λ ∈ σ

(
e∆Aϑ −KϑB

′
ϑ

)}
≤ ρ

for some positive number ρ < 1 and all ϑ ∈ Θ, where σ(·) denotes the spectrum of a matrix. Let
ε > 0 be small enough, such that ρ+ ε < 1. Then, using Gelfand’s formula there exists N0 ∈ N
such that ∥∥∥∥(e∆Aϑ −KϑB

′
ϑ

)n−1
∥∥∥∥ ≤

{
(ρ+ ε)n−1, for all n ≥ N0

Sn−1
ρ , for all n < N0.

(44)

for some constant Sρ ≥ 1. We set

αn = max(1, C1)


1 , n = 0,
Sn−1
ρ , 1 ≤ n < N0,

(ρ+ ε)n−1 , N0 ≤ n.
(45)

Then, we readily obtain
∑∞
n=0 nαn <∞ and ΦLL(·, ϑ) ∈ L1,2

∞ (α) for all ϑ ∈ Θ.
It remains to show ΦLL(x, ·) ∈ Ld(0, D1(1+

∑∞
k=0 βkx

2
1−k)) for any real sequence x = (x1−k)k∈N0 .

Define SB = supϑ∈Θ ‖Bϑ‖, SV = supϑ∈Θ ‖Vϑ‖ and SK = supϑ∈Θ ‖Kϑ‖. First,∣∣∣ΦLL(x, ϑ1)− ΦLL(x, ϑ2)
∣∣∣ ≤ |log(Vϑ1)− log(Vϑ2)|+

∣∣∣∣∣ε
2
ϑ1

(x)
Vϑ1

−
ε2
ϑ2

(x)
Vϑ2

∣∣∣∣∣ =: P1 + P2.
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Since, ϑ 7→ Vϑ is Lipschitz with constant LV and bounded from below by CV > 0 we obtain

P1 ≤
LV
CV
‖ϑ1 − ϑ2‖ .

For P2 it holds

P2 ≤
1
C2
V

(∣∣∣Vϑ2ε
2
ϑ1(x)− Vϑ1ε

2
ϑ1(x)

∣∣∣+ ∣∣∣Vϑ1ε
2
ϑ1(x)− Vϑ1ε

2
ϑ2(x)

∣∣∣)
≤ 1
C2
V

(
|Vϑ1 − Vϑ2 | ε2

ϑ1(x) + 2SV

(
sup
ϑ∈Θ
|εϑ(x)|

)
|εϑ1(x)− εϑ2(x)|

)
=: 1

C2
V

(R1 +R2).

Again, due to (44) we obtain

|εϑ(x)| ≤ |x1|+ SBSK

( ∞∑
n=1

∥∥∥∥(e∆Aϑ −KϑBϑ
)n−1

∥∥∥∥ |x1−n|
)

≤ |x1|+ SBSK

( ∞∑
n=1

αn |x1−n|
)

and (46)

ε2
ϑ(x) ≤ 2x2

1 + 2S2
BS

2
K

( ∞∑
n=1

αn |x1−n|
)2

.

From Hoelder’s inequality for sequences we obtain

≤ 2x2
1 + 2S2

BS
2
K

( ∞∑
n=1

αnx
2
1−n

)( ∞∑
n=1

αn

)
. (47)

Because ϑ 7→ Vϑ is Lipschitz with constant LV we get from (47)

R1 ≤ ‖ϑ1 − ϑ2‖
∞∑
n=0

β(1)
n x2

1−n,

where β(1)
0 = 2LV and β(1)

n = 2LV S2
BS

2
K (
∑∞
k=1 αk)αn for n ≥ 1. Moreover,

|εϑ1(x)− εϑ2(x)| ≤SK
∥∥B′ϑ1 −B

′
ϑ2

∥∥( ∞∑
n=1

∥∥∥∥(e∆Aϑ1 −Kϑ1Bϑ1

)n−1
∥∥∥∥ |x1−n|

)

+ SBSK

( ∞∑
n=2

∥∥∥∥(e∆Aϑ1 −Kϑ1Bϑ1

)n−1
−
(
e∆Aϑ2 −Kϑ2Bϑ2

)n−1
∥∥∥∥ |x1−n|

)

+ SB ‖Kϑ1 −Kϑ2‖
( ∞∑
n=1

∥∥∥∥(e∆Aϑ2 −Kϑ2Bϑ2

)n−1
∥∥∥∥ |x1−n|

)
=: S1 + S2 + S3.

Since ϑ 7→ Bϑ and ϑ 7→ Kϑ are Lipschitz with constants LB and LK we obtain

S1 + S3 ≤ (LBSK + SBLK) ‖ϑ1 − ϑ2‖
( ∞∑
n=1

αn |x1−n|
)
.

In view of S2, a modification of [20, Lemma B.4] and an application of (44) give∥∥∥∥(e∆Aϑ1 −Kϑ1Bϑ1

)n−1
−
(
e∆Aϑ2 −Kϑ2Bϑ2

)n−1
∥∥∥∥
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≤
(∥∥∥e∆Aϑ1 − e∆Aϑ2

∥∥∥+ ‖Kϑ2Bϑ2 −Kϑ1Bϑ1‖
)

×
n−2∑
i=0

∥∥∥∥(e∆Aϑ1 −Kϑ1Bϑ1

)i∥∥∥∥ ∥∥∥∥(e∆Aϑ2 −Kϑ2Bϑ2

)n−i−2
∥∥∥∥

≤
(∥∥∥e∆Aϑ1 − e∆Aϑ2

∥∥∥+ ‖Kϑ2Bϑ2 −Kϑ1Bϑ1‖
)

×
n−2∑
i=0

(
Siρ1{i−1<N0} + (ρ+ ε)i 1{i−1≥N0}

) (
Sn−i−2
ρ 1{n−i−1<N0} + (ρ+ ε)n−i−2 1{n−i−1≥N0}

)
≤
(∥∥∥e∆Aϑ1−e∆Aϑ2

∥∥∥+‖Kϑ2Bϑ2−Kϑ1Bϑ1‖
)

×
(

(N0 − 1)S2N0−2
ρ 1{n<2N0}+(ρ+ ε)n−1

(
Sρ
ρ+ε

)N0 N0−2∑
i=0

(ρ+ε)N0−i−1

+SN0−1
ρ

n−2∑
i=dn2 e−1

(ρ+ε)i+(n−1) (ρ+ε)n−2
)

Since ϑ 7→ Aϑ, ϑ 7→ KϑBϑ and the matrix exponential on a compact subset of Mp×p(R) are
Lipschitz with constants LA, LKB and Lexp, respectively, we can bound the above expression
by ‖ϑ1 − ϑ2‖ (∆LALexp + LKB)β(2)

n , where for n ≥ 2

β(2)
n =(N0 − 1)S2N0−2

ρ 1{n<2N0}+
((

Sρ
ρ+ ε

)N0
(

(ρ+ ε)− (ρ+ ε)N0

1− (ρ+ ε)

)
+

SN0
ρ

1− (ρ+ ε) +(n− 1)
)

× (ρ+ ε)
n
2−1 .

It is clear that
∑∞
n=2 nβ

(2)
n <∞. Thus

S2 ≤‖ϑ1 − ϑ2‖SBSK (∆LALexp + LKB)
( ∞∑
n=2

β(2)
n |x1−n|

)
.

Using (46)

R2 ≤‖ϑ1 − ϑ2‖C2

(
x2

1 + α1x
2
0 +

∞∑
n=2

(
αn + β(2)

n

)
x2

1−n

)
= ‖ϑ1 − ϑ2‖C2

∞∑
n=0

β(3)
n x2

1−n,

where

β
(3)
0 = 1, β

(3)
1 = α1, β(3)

n = αn + β(2)
n , n ≥ 2

and the finite constant C2 is given by

C2 =4SV

(
1 + 2

(
S2
BS

2
K + (LBSK + SBLK)2

)( ∞∑
n=1

αn

)

+ S2
BS

2
K (∆LALexp + LKB)2

( ∞∑
n=2

β(2)
n

))
.

Finally, ∣∣∣ΦLL(x, ϑ1)− ΦLL(x, ϑ2)
∣∣∣ ≤ ‖ϑ1 − ϑ2‖D1

(
1 +

∞∑
n=0

βnx
2
1−n

)
,
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where D1 = LV
CV

+ C2
C2
V

and βn = β
(1)
n + β

(3)
n , for all n ≥ 0, such that

∑∞
n=0 nβn < ∞ and

ΦLL(x, ·) ∈ Ld(0, D1(1 +
∑∞
k=0 βkx

2
1−k)). To show part (c) we note that

Ỹu(t) = Ỹ ϑ∗(u)(t) =
∫ t

−∞
B′ϑ∗(u)e

Aϑ∗(u)Cϑ∗(u)L(ds)

is of the form (8). From (C2) it follows, that the kernel is of exponential decay and therefore also
in L1 ∩ L2. As shown above ΦLL(·, ϑ) ∈ L1,2

∞ (α) for all ϑ ∈ Θ. Moreover, γ +
∫
|x|>1 xν(dx) = 0

and (6) holds. Therefore, condition (c) from Theorem 3.3 follows from Corollary 4.3.

7.6 Proof for Section 5.3

Proof of Theorem 5.16. We use the same notation as in the proof of Proposition 5.6. First, we
note that supϑ∈Θ |Φ̃LL(0, ϑ)| < ∞. Following the proof of Theorem 3.3 it is sufficient to show
that for any η > 0 there exists λ > 0 such that∥∥∥M̃N (ϑ)−M(ϑ)

∥∥∥
L1
−→
N→∞

0 for all ϑ ∈ Θ and (48)

P

(
sup

‖ϑ1−ϑ2‖<λ

∣∣∣M̃N (ϑ1)− M̃N (ϑ2)
∣∣∣ > η

)
−→
N→∞

0. (49)

We start by proving (48). From Proposition 5.6 it follows that ‖MN (ϑ)−M(ϑ)‖L1 −→
N→∞

0, such
that it is left to show that ‖M̃N (ϑ)−MN (ϑ)‖L1 −→

N→∞
0. Now

∥∥∥M̃N (ϑ)−MN (ϑ)
∥∥∥
L1
≤

∥∥∥∥∥∥δNbN
mN−1∑
i=−mN

K

(
τNi − u
bN

)
1
Vϑ

(
ε2
ϑ(Y ϑ∗

N )− ε̃2
ϑ,i,mN

(Y ϑ∗
N )

)∥∥∥∥∥∥
L1

+
∥∥∥∥∥δNbNK

(
τNmN − u
bN

)(
log(2π)− log(Vϑ)− 1

Vϑ

(
Y ϑ∗
N (τNmN+1)

−B′ϑ
∞∑
n=1

(
e∆Aϑ −KϑB

′
ϑ

)n−1
KϑY

ϑ∗
N (τmN+1−n)

)2)∥∥∥∥∥
L1

=: P1 + P2.

From (LS) we obtain supt∈R‖Y ϑ∗
N (t)‖L2 ≤ SY for some constant SY > 0 and all N ∈ N. Thus,

using Hoelder’s inequality for sequences

P2 ≤
δN
bN
|K|∞

log(2π) + |log(Vϑ)|+ 2S2
Y

CV
+ 2S2

BS
2
KS

2
Y

CV

( ∞∑
n=1

αn

)2
 −→

N→∞
0,

where αn is defined in (45). For P1 we obtain from Hoelder’s inequality

P1 ≤
δN
bN

mN−1∑
i=−mN

|K|∞
CV

(∥∥∥εϑ(Y ϑ∗
N ) + ε̃ϑ,i,mN (Y ϑ∗

N )
∥∥∥
L2

∥∥∥εϑ(Y ϑ∗
N )− ε̃ϑ,i,mN (Y ϑ∗

N )
∥∥∥
L2

)
.

Similar arguments as in the first part of the proof of Proposition 5.6 give

∥∥∥εϑ(Y ϑ∗
N ) + ε̃ϑ,i,mN (Y ϑ∗

N )
∥∥∥
L2
≤2S2

Y

(
1 + SBSK

∞∑
n=1

αn

)
= C1 <∞.
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Thus

P1 ≤
C1|K|∞
CV

δN
bN

mN∑
i=−mN

∥∥∥εϑ(Y ϑ∗
N )− ε̃ϑ,i,mN (Y ϑ∗

N )
∥∥∥
L2

≤C1S
2
Y |K|∞SBSK
CV

δN
bN

mN∑
i=−mN

∞∑
n=mN+i+2

∥∥∥(e∆Aθ −KθB
′
θ)n−1

∥∥∥
≤C1S

2
Y |K|∞SBSK
CV

δN
bN

2mN∑
i=0

∞∑
n=1

∥∥∥(e∆Aθ −KθB
′
θ)n+i

∥∥∥
≤C1S

2
Y |K|∞SBSK
CV

δN
bN

( ∞∑
n=0

αn

)2

−→
N→∞

0.

To show (49) it is enough to observe that analogous to the second part of the proof of Proposition
5.6 it holds for ϑ1 6= ϑ2 and any real sequence x = (x1−k)k∈N0∣∣∣Φ̃LL

i,mN
(x, ϑ1)− Φ̃LL

i,mN
(x, ϑ2)

∣∣∣ ≤ ‖ϑ1 − ϑ2‖D1

(
1 +

∞∑
n=0

βnx
2
1−n

)
.

Finally, similar steps as in (34) and (35) ensure that (49) holds.

7.7 Proof for Section 5.4

The following auxiliary lemmata will be essential for the proof of Theorem 5.17.

Lemma 7.2. Assume that (C0) is satisfied for p=2, (O1) holds for NδN = ∆ and that the
localizing kernel K is continuous and positive or the non-continuous rectangular kernel (4).
Then, for all h ∈ N0

Γ̂locN (h) L1
−→
N→∞

E[Ỹu(0)Ỹu(h)].

Proof. In view of [29, Theorem 5.14] it is enough to observe∥∥∥∥∥∥Γ̂locN (h)− δN
bN

mN∑
j=−mN

K

(
τNj − u
bN

)
Y ϑ∗
N (τNj )Y ϑ∗

N (τNj+h)

∥∥∥∥∥∥
L1

≤ δN
bN

mN∑
j=−mN

∣∣∣∣∣∣
√√√√K (

τNj+h − u
bN

)
K

(
τNj − u
bN

)
−K

(
τNj − u
bN

)∣∣∣∣∣∣
∥∥∥Y ϑ∗

N (τNj )Y ϑ∗
N (τNj+h)

∥∥∥
L1

+ δN
bN

mN∑
j=mN−h+1

√√√√K (
τNj+h − u
bN

)
K

(
τNj − u
bN

)∥∥∥Y ϑ∗
N (τNj )Y ϑ∗

N (τNj+h)
∥∥∥
L1

=: P1 + P2.

Since ‖Y ϑ∗
N (τNj )Y ϑ∗

N (τNj+h)‖L1 ≤ ‖Y ϑ∗
N (τNj )‖L2‖Y ϑ∗

N (τNj+h)‖L2 < S2
Y for some constant SY > 0,

we obtain

P2 ≤
hS2

Y |K|∞ δN
bN

−→
N→∞

0.
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From the continuity of K it follows that, given any ε > 0,
∣∣∣K( τNj+h−ubN

)
− K

(
τNj −u
bN

)∣∣∣ < ε for
sufficiently large N . Thus it holds

P1 ≤
S2
Y δN
bN

mN∑
j=−mN

√√√√∣∣∣∣∣K
(
τNj+h − u
bN

)
−K

(
τNj − u
bN

)∣∣∣∣∣K
(
τNj − u
bN

)

≤
√
|K|∞S

2
Y (2mN + 1)δN

bN

√
ε −→
N→∞

√
|K|∞2S2

Y

√
ε.

For the non-continuous rectangular kernel (4) we can directly bound P1 and obtain

P1 ≤ S2
Y

δN
bN

1
2

mN∑
j=−mN

∣∣∣∣∣∣1{(j+h) δN
bN
∈[−1,1]

} − 1{
j
δN
bN
∈[−1,1]

}∣∣∣∣∣∣ 1{j δNbN ∈[−1,1]
} ≤ S2

Y

δN
bN

h

2 −→N→∞
0.

Lemma 7.3. Assume that (C1) - (C7) hold. Then, there exists a constant finf such that
f

(∆)
Ỹ

(ω, ϑ) > finf > 0 for all ω ∈ [−π, π] and ϑ ∈ Θ. Moreover, there exists a constant Lf > 0
such that

sup
ω∈[−π,π]

∣∣∣f (∆)
Ỹ

(ω, ϑ1)− f (∆)
Ỹ

(ω, ϑ2)
∣∣∣ ≤ Lf ‖ϑ1 − ϑ2‖ for all ϑ1, ϑ2 ∈ Θ. (50)

Proof. Since (ω, ϑ) 7→ f
(∆)
Ỹ

(ω, ϑ)−1 is continuous (see e.g. the proof of [16, Proposition 2]) and
Θ× [−π, π] is compact, there exists a constant finf > 0 such that f (∆)

Ỹ
(ω, ϑ) > finf > 0.

In order to show (50) we first note that, using the representation of f (∆)
Ỹ

(ω, ϑ) from (22), we
obtain

∣∣∣f (∆)
Ỹ

(ω, ϑ1)− f (∆)
Ỹ

(ω, ϑ2)
∣∣∣ = 1

2π

∣∣∣∣∣�Σ(∆)
ϑ1
B′ϑ1

 ∞∑
j=0

eAϑ1∆je−ijω

 ∞∑
j=0

e
A′ϑ1

∆j
eijω

Bϑ1

−�Σ(∆)
ϑ2
B′ϑ2

 ∞∑
j=0

eAϑ2∆je−ijω

 ∞∑
j=0

e
A′ϑ2

∆j
eijω

Bϑ2

∣∣∣∣∣
≤ R1 +R2 +R3 +R4 +R5, (51)

where

R1 = 1
2π

∣∣∣�Σ(∆)
ϑ1
−�Σ(∆)

ϑ2

∣∣∣ ∥∥B′ϑ1

∥∥ ∞∑
j=0

∥∥∥eAϑ1∆j
∥∥∥ ∞∑
j=0

∥∥∥eA′ϑ1
∆j
∥∥∥ ‖Bϑ1‖

R2 = 1
2π

∣∣∣�Σ(∆)
ϑ2

∣∣∣ ∥∥B′ϑ1 −B
′
ϑ2

∥∥ ∞∑
j=0

∥∥∥eAϑ1∆j
∥∥∥ ∞∑
j=0

∥∥∥eA′ϑ1
∆j
∥∥∥ ‖Bϑ1‖

R3 = 1
2π

∣∣∣�Σ(∆)
ϑ2

∣∣∣ ∥∥B′ϑ2

∥∥ ∥∥∥∥∥∥
∞∑
j=0

(
eAϑ1∆j − eAϑ2∆j

)
e−ijω

∥∥∥∥∥∥
∞∑
j=0

∥∥∥eA′ϑ1
∆j
∥∥∥ ‖Bϑ1‖

R4 = 1
2π

∣∣∣�Σ(∆)
ϑ2

∣∣∣ ∥∥B′ϑ2

∥∥ ∞∑
j=0

∥∥∥eAϑ2∆j
∥∥∥
∥∥∥∥∥∥
∞∑
j=0

(
e
A′ϑ1

∆j − eA
′
ϑ2

∆j)
eijω

∥∥∥∥∥∥ ‖Bϑ1‖
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R5 = 1
2π

∣∣∣�Σ(∆)
ϑ2

∣∣∣ ∥∥B′ϑ2

∥∥ ∞∑
j=0

∥∥∥eAϑ2∆j
∥∥∥ ∞∑
j=0

∥∥∥eA′ϑ2
∆j
∥∥∥ ‖Bϑ1 −Bϑ2‖ .

It is sufficient to show that each summand R1-R5 can be bounded by C3 ‖ϑ1 − ϑ2‖ for some
constant C3 > 0. To avoid repeating calculations we just give the main ideas.
Since Θ is compact and (C4) holds, the functions ϑ 7→ Bϑ, ϑ 7→ Aϑ are bounded and Lip-
schitz with constants LA and LB. Moreover, from (C2) we can follow ‖eAϑt‖ ≤ De−αt for some
constants D,α > 0 and all t ∈ R+

0 such that∥∥∥∥∥∥
∞∑
j=0

eAϑ∆j

∥∥∥∥∥∥ ≤
∞∑
j=0

∥∥∥eAϑ∆j
∥∥∥ ≤ D ∞∑

j=0
e−α∆j < C1, as well as

∥∥∥∥∥∥
∞∑
j=0

eA
′
ϑ∆j

∥∥∥∥∥∥ < C1

for some C1 > 0. Note that since the eigenvalues of a matrix are continuous functions of its
entries the above bounds hold uniformly in ϑ. In addition, due to [20, page 238], we have for
some constants C2, α̃ > 0 and all j ∈ Z∥∥∥eAϑ1∆j − eAϑ2∆j

∥∥∥ ≤ ‖Aϑ1 −Aϑ2‖∆j
∫ 1

0

∥∥∥eνAϑ1∆j
∥∥∥ ∥∥∥e(1−ν)Aϑ2∆j

∥∥∥ dν
≤ C2LA∆j ‖ϑ1 − ϑ2‖ e−α̃∆j .

Thus, the functions ϑ 7→ eAϑ∆j and ϑ 7→ eA
′
ϑ∆j are Lipschitz. Next, the representation (21) of

�Σ(∆)
ϑ implies that ϑ 7→�Σ(∆)

ϑ is bounded. By using a similar decomposition as in (51) for �Σ(∆)
ϑ

one can show that there exists a constant L�Σ > 0, such that∣∣∣�Σ (∆)
ϑ1
−��Σ (∆)

ϑ2

∣∣∣ ≤ L�Σ ‖ϑ1 − ϑ2‖ for all ϑ1, ϑ2 ∈ Θ.

Overall, each summand R1-R5 in (51) can be bounded by C3 ‖ϑ1 − ϑ2‖ for some constant C3,
which in turn implies that (50) holds.

Proof of Theorem 5.17. In order to show consistency of ϑ̂N we follow the same steps as in the
proof of Theorem 3.3. As limiting function we consider

W (ϑ) = 1
2π

∫ π

−π

f
(∆)
Ỹ

(ω, ϑ∗(u))

f
(∆)
Ỹ

(ω, ϑ)
+ log

(
f

(∆)
Ỹ

(ω, ϑ)
)
dω, ϑ ∈ Θ.

Then, [16, Lemma 1] yields that

W (ϑ) = L(ϑ) = − log(2π) + log(Vϑ) +
E
[
ε2
ϑ

(
Ỹ ϑ∗(u),∆

)]
Vϑ

,

where Vϑ, Ỹ ϑ∗(u),∆ and εϑ are defined as in Section 5.2. Note that L(ϑ) is closely related
to the limiting function of the quasi maximum likelihood estimator from Section 5.2 such
that Proposition 5.6 along with the inequalities in (33) ensure that W is continuous. More-
over, Proposition 5.11 ensures that W (ϑ) has a unique minimum. Therefore, it is left to show
‖WN (ϑ)−W (ϑ))‖L1 −→

N→∞
0 and that the sequence (WN (ϑ))N∈N is stochastically equicontinu-

ous. Indeed,

‖WN (ϑ)−W (ϑ))‖L1 ≤

∣∣∣∣∣∣ 1
4mN + 2

2mN+1∑
j=−2mN

log
(
f

(∆)
Ỹ

(ωj , ϑ)
)
− 1

2π

∫ π

−π
log

(
f

(∆)
Ỹ

(ω, ϑ)
)
dω

∣∣∣∣∣∣
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+

∥∥∥∥∥∥ 1
4mN + 2

2mN+1∑
j=−2mN

I locN (ωj)
f

(∆)
Ỹ

(ωj , ϑ)
− 1

2π

∫ π

−π

f
(∆)
Ỹ

(ω, ϑ∗(u))

f
(∆)
Ỹ

(ω, ϑ)
dω

∥∥∥∥∥∥
L1

=: P1 + P2.

From [16, equation (15)] we obtain P1 −→ 0 as N →∞. To show P2 −→ 0 as N →∞ we follow
the approach from [16, Proposition 2] and approximate f (∆)

Ỹ
(ω, ϑ)−1 by the Cesàro mean of its

Fourier series of size M for M sufficiently large. Define

qM (ω, ϑ) = 1
M

M−1∑
j=0

∑
|k|≤j

bk(ϑ)e−ikω =
∑
|k|<M

(
1− |k|

M

)
bk(ϑ)e−ikω, where

bk(ϑ) = 1
2π

∫ π

−π

1
f

(∆)
Ỹ

(ω, ϑ)
eikωdω.

Similar arguments as in the proof of [16, Proposition 2] yield that for all ε > 0 andM sufficiently
large

sup
ω∈[−π,π]

sup
ϑ∈Θ

∣∣∣∣∣∣qM (ω, ϑ)− 1
f

(∆)
Ỹ

(ω, ϑ)

∣∣∣∣∣∣ < ε. (52)

From the definition of I locN in (30) it is clear that it is non-negative, such that∥∥∥∥∥∥ 1
4mN + 2

2mN+1∑
j=−2mN

I locN (ωj)
f

(∆)
Ỹ

(ωj , ϑ)
− 1

4mN + 2

2mN+1∑
j=−2mN

qM (ωj , ϑ)I locN (ωj)

∥∥∥∥∥∥
L1

≤ ε

4mN + 2E

 2mN+1∑
j=−2mN

I locN (ωj)

 = ε

4mN + 2E

 2mN+1∑
j=−2mN

1
2π

2mN∑
h=−2mN

Γ̂locN (h)e−ihωj


= ε

2πE
[
Γ̂locN (0)

]
,

where the last equality follows from the identity (see [16, Lemma 4])

1
4mN + 2

2mN+1∑
j=−2mN

e−ihωj =
{

1 , there exists z ∈ Z : h = z(4mN + 2),
0 , else.

(53)

Now, from Lemma 7.2 it follows that

E
[
Γ̂locN (0)

]
−→
N→∞

E[Ỹu(0)2] <∞,

such that overall∥∥∥∥∥∥ 1
4mN + 2

2mN+1∑
j=−2mN

I locN (ωj)
f

(∆)
Ỹ

(ωj , ϑ)
− 1

4mN + 2

2mN+1∑
j=−2mN

qM (ωj , ϑ)I locN (ωj)

∥∥∥∥∥∥
L1

≤ C1ε,

for some constant C1 > 0. In view of P2 it is therefore enough to show∥∥∥∥∥∥ 1
4mN + 2

2mN+1∑
j=−2mN

qM (ωj , ϑ)I locN (ωj)−
1

2π

∫ π

−π

f
(∆)
Ỹ

(ω, ϑ∗(u))

f
(∆)
Ỹ

(ω, ϑ)
dω

∥∥∥∥∥∥
L1

−→
N→∞

0.
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On the one hand, using (53), we obtain

1
4mN + 2

2mN+1∑
j=−2mN

qM (ωj , ϑ)I locN (ωj)

= 1
2π

∑
|k|<M

∑
|h|≤2mN

(
1− |k|

M

)
bk(ϑ)Γ̂locN (h)

 1
4mN + 2

2mN+1∑
j=−2mN

e−i(k+h)ωj


= 1

2π
∑
|k|<M

(
1− |k|

M

)
bk(ϑ)Γ̂locN (−k) L1

−→
N→∞

1
2π

∑
|k|<M

(
1− |k|

M

)
bk(ϑ)E[Ỹu(0)Ỹu(k)],

where the convergence follows from Lemma 7.2 and

sup
k∈Z

sup
ϑ∈Θ
|bk(ϑ)| ≤ max

ϑ∈Θ
max

ω∈[−π,π]

∣∣∣f (∆)
Y (ω, ϑ)−1

∣∣∣ <∞,
since (ω, ϑ) 7→ f

(∆)
Ỹ

(ω, ϑ)−1 is continuous (see e.g. the proof of [16, Proposition 2]). On the other
hand we obtain from (52)∣∣∣∣∣∣ 1

2π
∑
|k|<M

(
1− |k|

M

)
bk(ϑ)E[Ỹu(0)Ỹu(k)]− 1

2π

∫ π

−π

f
(∆)
Ỹ

(ω, ϑ∗(u))

f
(∆)
Ỹ

(ω, ϑ)
dω

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
2π

∑
|k|<M

(
1− |k|

M

)
bk(ϑ)

∫ π

−π
f

(∆)
Ỹ

(ω, ϑ∗(u))eikωdω − 1
2π

∫ π

−π

f
(∆)
Ỹ

(ω, ϑ∗(u))

f
(∆)
Ỹ

(ω, ϑ)
dω

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
2π

∫ π

−π
f

(∆)
Ỹ

(ω, ϑ∗(u))

qM (ω, ϑ)− 1
f

(∆)
Ỹ

(ω, ϑ)

 dω
∣∣∣∣∣∣ ≤ C2ε,

for some constant C2 > 0, since ω 7→ f
(∆)
Ỹ

(ω, ϑ∗(u)) is continuous. Overall, it holds P2 −→
N→∞

0.
It is left to show stochastic equicontinuity of the sequence (WN (ϑ))N∈N. For η, λ > 0 we have

P

(
sup

‖ϑ1−ϑ2‖<λ
|WN (ϑ1)−WN (ϑ2)| > η

)

≤ P

 sup
‖ϑ1−ϑ2‖≤λ

∣∣∣∣∣∣ 1
4mN + 2

2mN+1∑
j=−2mN

I locN (ωj)

 1
f

(∆)
Ỹ

(ωj , ϑ1)
− 1
f

(∆)
Ỹ

(ωj , ϑ2)

∣∣∣∣∣∣ > η

2


+ P

 sup
‖ϑ1−ϑ2‖≤λ

∣∣∣∣∣∣ 1
4mN + 2

2mN+1∑
j=−2mN

(
log

(
f

(∆)
Ỹ

(ωj , ϑ1)
)
− log

(
f

(∆)
Ỹ

(ωj , ϑ2)
))∣∣∣∣∣∣ > η

2

 =: T1 + T2.

From Lemma 7.3 it is clear, that

sup
ω∈[−π,π]

∣∣∣∣∣∣ 1
f

(∆)
Ỹ

(ω, ϑ1)
− 1
f

(∆)
Ỹ

(ω, ϑ2)

∣∣∣∣∣∣ ≤ Lf
f2
inf

‖ϑ1 − ϑ2‖ as well as (54)

sup
ω∈[−π,π]

∣∣∣log
(
f

(∆)
Ỹ

(ω, ϑ1)
)
− log

(
f

(∆)
Ỹ

(ω, ϑ2)
)∣∣∣ ≤ Lf

finf
‖ϑ1 − ϑ2‖ . (55)
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We set

λ = min
(

ηπf2
inf

2LfE[Ỹu(0)2]
,
ηfinf
4Lf

)
.

Since I locN is non-negative we can follow from (54) that

T1 ≤ P

λLf
f2
inf

∣∣∣∣∣∣ 1
4mN + 2

2mN+1∑
j=−2mN

I locN (ωj)

∣∣∣∣∣∣ > η

2

 = P

(
λLf

2πf2
inf

Γ̂locN (0) > η

2

)
.

From Lemma 7.2 we have Γ̂locN (0) P−→
N→∞

E[Ỹu(0)2], such that

P

(
λLf

2πf2
inf

Γ̂locN (0) > η

2

)
≤ P

(∣∣∣Γ̂locN (0)− E[Ỹu(0)2]
∣∣∣ > E[Ỹu(0)2]

)
−→
N→∞

0.

Using (55) it holds for T2

T2 ≤ P
(
λLf
finf

>
η

2

)
≤ P

(1
2 > 1

)
= 0,

which concludes the proof.
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