Inference for Lévy-driven time series models based on high-frequency data

Peter Brockwell

(joint work with Vincenzo Ferrazzano and Claudia Klüppelberg, TU Munich)

Lévy-driven continuous-time autoregressive moving average (CARMA) processes have recently been used widely in the modeling of non-uniformly spaced data and as a tool for dealing with high-frequency data of the form $Y_{n\Delta}$, $n = 0, 1, 2, \ldots$, where Δ is small and positive. Such data occur in many fields of application, particularly in finance and the study of turbulence. We examine the properties of the sampled process $(Y_{n\Delta})_{n \in \mathbb{Z}}$, as $\Delta \to 0$ and their application to statistical inference for the underlying CARMA process. Extension of the ideas to a larger class of continuous-time moving average processes will also be discussed.