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Abstract

A CARMA(p, q) process Y is a strictly stationary solution Y of the pth-order formal

stochastic differential equation a(D)Yt = b(D)DLt, where L is a two-sided Lévy

process, a(z) and b(z) are polynomials of degrees p and q respectively, with p > q,

and D denotes differentiation with respect to t. Since estimation of the coefficients

of a(z) and b(z) is frequently based on observations of the ∆-sampled sequence

Y ∆ := (Yn∆)n∈Z, for some ∆ > 0, it is crucial to understand the relation betwen Y

and Y ∆. If EL2
1 < ∞ then Y ∆ is an ARMA sequence with coefficients depending

on those of Y and the crucial problems for estimation are the determination of the

coefficients of Y ∆ from those of Y (the sampling problem) and the determination of

the coefficients of Y from those of Y ∆ (the embedding problem). In this paper we

consider both questions and use the results to determine the asymptotic distribution,

as n→∞, with ∆ fixed, of
√
n∆(β̂ββ −βββ), where β̂ββ is the quasi-maximum-likelihood

estimator of the vector of coefficients of a(z) and b(z), based on n consecutive

observations of Y ∆.
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1 Introduction

Let L = (Lt)t∈R be a Lévy process, i.e. a process with homogeneous independent incre-

ments, continuous in probability, with càdlàg sample paths and L0 = 0. We shall make
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the additional assumption in this paper that EL2
1 <∞. Then ELt = mt for some m ∈ R

and Var(Lt) = ν2t for some ν ≥ 0.

For integers p and q such that p > q , let a1, . . . , ap, b0, . . . , bp−1 be real valued coef-

ficients such that bj = 0 for j > q, and bq = 1. Define the polynomials a(z) and b(z)

by

a(z) = zp + a1z
p−1 + . . .+ ap =

p∏
k=1

(z − λk), (1.1)

and

b(z) = b0 + b1z + . . .+ bqz
q =

q∏
k=1

(z − µk) (1.2)

Denote by D the differential operator with respect to t. A natural continuous-time ana-

log of the difference equations defining an ARMA(p, q) sequence is the formal pth-order

stochastic differential equation

a(D)Yt = b(D)DLt. (1.3)

Since the derivatives on the right of this equation do not exist in the usual sense we

interpret this equation by means of a state-space formulation. More precisely, we define

the p× p matrix and p× 1 vectors,

A :=


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1

 , ep :=


0

0
...

0

1

 , and b :=


b0

b1

...

bp−2

bp−1

 ,

with A defined to be (−a1) if p = 1. A CARMA(p, q) process Y driven by L and with

characteristic polynomials a(z) and b(z) is then defined as a strictly stationary solution

of the equations

Yt = bTXt, t ∈ R, (1.4)

and

dXt = AXt dt+ ep dLt,

i.e.

Xt = X0 +

∫ t

0

AXs ds+ epLt, (1.5)

(see Brockwell (2001)). We shall assume throughout that the zeroes of a(z) are distinct

and distinct from those of b(z) and that the zeroes of both polynomials lie in the open

left half of the complex plane, i.e. that the process is causal and invertible. Then the
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mean value of the process Y is EYt = b0m/ap and the autocovariance function of Y is (see

Brockwell (2001b)),

κY (h) = ν2

p∑
j=1

Kje
λj |h|, h ∈ R, (1.6)

where

Kj =
b(λj)b(−λj)
a′(λj)a(−λj)

, j = 1, . . . , p. (1.7)

We shall also assume throughout the paper that m = 0 so that ELt = EYt = 0 for all

t ∈ R. Results derived under this assumption can easily be translated to the case when

m 6= 0 by adding b0m/ap to Yt for each t ∈ R.

Parameter estimation for a Lévy-driven CARMA process Y is often carried out (see,

e.g. Garcia et al. (2011)) by quasi-maximum-likelihood (QML) estimation, which maxi-

mizes the Gaussian likelihood of the observations. These observations are frequently made

at uniformly spaced times n∆, n ∈ Z, for some fixed ∆ > 0. We shall refer to the se-

quence obtained by sampling Y at such times as the ∆-sampled sequence Y ∆ := (Yn∆)n∈Z.

QML estimation of the parameters of a (possibly multivariate) CARMA process based

on uniformly spaced observations has been shown by Schlemm and Stelzer (2012) to be

consistent and asymptotically normal under mild conditions.

The Gaussian likelihood under a specified CARMA model can be calculated, even

when the observations are irregularly spaced in time, by using the Kalman recursions as

described by Jones (1981) and maximizing numerically to obtain the QML estimate β̂ββ of

the coefficient vector, βββ = (a1 . . . ap b0 . . . bq−1)T .

An alternative approach, pioneered by Phillips (1959), Durbin (1961), Phillips (1973),

Robinson (1977) and Bergstrom (1985) focuses on the ∆-sampled sequence which is

known, when EL2
1 < ∞, to have an ARMA structure. If an ARMA model is fitted to

the sampled data it is important to know whether or not there is a CARMA process of

which it is the sampled sequence and if so to determine the parameters of the CARMA

model. It is critical in this approach to have a clear understanding of the relations between

the parameters of the sampled ARMA sequence and those of the underlying CARMA pro-

cess. A clear specification of these relations also enables well-known asymptotic properties

of the ARMA estimates to yield asymptotic properties of the CARMA estimates. In Sec-

tion 2 we show how to determine the ∆-sampled ARMA parameters from the parameters

of a CARMA(p, q) process by solving a polynomial equation of degree at most p − 1. In

Section 3 we give conditions under which a specified ARMA(p, q) process has the autoco-

variances of a ∆-sampled CARMA process with autoregressive order p and show how to

determine the parameters of the CARMA process, again by solving a polynomial equation

of degree at most p− 1.
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Based on the likelihood of a complete realization (Yt)t∈[0,T ] of a Gaussian CARMA pro-

cess, Pham-Din-Tuan (1977) gave an explicit expression for the asymptotic distribution

of
√
T (β̂ββ − βββ) as T → ∞. In Section 4 we use the results of Sections 2 and 3 together

with the complex-valued information matrix (see Liu et al. (2014)) for the reciprocals of

the zeros of the autoregressive and moving-average polynomials of an ARMA sequence

(generalizing eq. (7.2.21) of Box et al. (2016) which applies only to real-valued autoregres-

sive and moving-average zeros) to determine the asymptotic distribution of
√
n∆(β̂ββ − βββ)

as n → ∞ with fixed ∆ > 0, where β̂ββ here denotes the QML estimator of βββ based on

observations of Y∆, . . . , Yn∆. This is the relevant asymptotic distribution when estimation

is based on observations of the ∆-sampled sequence rather than on a complete realiza-

tion of Y . The results of Pham-Din-Tuan however provide a useful approximation to our

results when ∆ is small, as illustrated in the case of a particular CARMA(2, 1) process.

For completeness we also include in Section 4 a brief account of the use of the Kalman

recursions to compute the Gaussian likelihood and QML estimators of the parameters of

a CARMA process.

Many numerical algorithms are available for the determination of the ∆-sampled se-

quence of a CARMA(p, q) process, including an asymptotic solution as ∆→ 0 (see Brock-

well et al. (2013)), however the algorithm provided by Theorem 2.1 reduces the problem of

determining the exact ARMA parameters essentially to the factorization of a polynomial

of order at most p− 1. The embedding problem has been investigated by many authors,

starting with Phillips (1959). More recently Huzii (2006) and Thornton and Chambers

(2013) have given conditions for embeddability and applied them to low-order ARMA

processes. However easily verifiable conditions under which an ARMA(p, q) sequence can

be embedded in a CARMA(p, r) process for some r < p have not previously been stated.

Such conditions are provided in Theorem 3.5.

2 The sampling problem

As stated in Section 1 we assume (without loss of generality from a second-order point of

view) that the p zeroes, λ1, . . . , λp, of a(z) all lie in the open left half-plane of C (i.e. that

the process is causal) and that m = EL1 = 0.

The ∆-sampled sequence (Y ∆
n )n∈Z of the CARMA process Y is defined to be the

sequence,

Y ∆
n = Yn∆, n ∈ Z.

If we define

φ(B) :=

p∏
i=1

(1− eλi∆B) = (1− d1B − . . .− dpBp),
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then the ∆-sampled sequence (Y ∆
n )n∈Z of Y satisfies (see Brockwell and Lindner (2009))

φ(B)Y ∆
n = Y ∆

n − d1Y
∆
n−1 − . . .− dpY ∆

n−p = Z1
n + Z2

n−1 + . . .+ Zp
n−p+1,

where

Zr
n :=

∫ n∆

(n−1)∆

bT

(
e(r−1)A∆ −

r−1∑
j=1

dje
(r−1−j)A∆

)
eA(n−u)∆ep dLu, r = 1, . . . , p.

This means that the ∆-sampled sequence satisfies an autoregressive equation of order p

driven by a (p−1)-dependent sequence. Since we are assuming throughout that E(L2
1) <∞

this implies (Brockwell and Davis (1991)) that

p∏
j=1

(1− eλj∆B)Y ∆
n =

p−1∏
j=1

(1− ηjB)Zn, n ∈ Z, (2.1)

where (Zn)n∈Z is zero-mean white noise with variance σ2 and η1, . . . , ηp−1 are moving-

average coefficients, some of which may be zero. The sampling problem is to determine

the coefficients ηj and the white noise variance σ2. The following theorem reduces this

problem to finding the zeroes of a polynomial of order at most p−1. The asymptotic form

of the coefficients as ∆→ 0 was determined by Brockwell et al. (2012) and (2013).

Theorem 2.1. Regular sampling of a CARMA process

Suppose that L is a zero-mean Lévy process with Var(L1) = ν2 <∞ and let Y be the

strictly stationary causal invertible CARMA(p, q) process defined by the formal equation,

p∏
j=1

(D − λj)Yt =

q∏
j=1

(D − µj)DLt, (2.2)

where eλi∆ 6= eλj∆ if i 6= j and λi 6= µj for all i and j. As usual, D denotes differentiation

with respect to t and the autoregressive and moving-average polynomials, a(z) =
∏p

j=1(z−
λj) and b(z) =

∏q
j=1(z − µj), are assumed to have real-valued coefficients.

Define, as in (1.7),

Kj :=
b(λj)b(−λj)
a′(λj)a(−λj)

, j = 1, . . . , p,

and the polynomial of degree r ≤ p− 1,

k(z) :=

p∑
j=1

Kj sinh(λj∆)
∏
i 6=j

(z − cosh(λi∆)).

Denoting by k1, . . . , kr the zeroes of k(z), we define ηj, for j = 1, . . . , r, to be the value

of kj ±
√
k2
j − 1 with absolute value less than 1 and ηj, for j > r, to be zero.
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Then Y ∆
n := Yn∆, n ∈ Z, satisfies the causal invertible ARMA(p, r) equations,

p∏
j=1

(1− eλj∆B)Y ∆
n =

r∏
j=1

(1− ηjB)Zn, n ∈ Z, (2.3)

where the sequence (Zn)n∈Z is zero mean white noise with variance

σ2 =
ν2
∏p

j=1 e
λj∆∏r

j=1 ηj
(−2)p−rcr, (2.4)

and cr is the coefficient of zr in k(z). (If cp 6= 0, then r = p− 1.)

Proof. The autocovariance function of the CARMA process Y (see (1.6)) is

κY (h) = ν2

p∑
j=1

Kje
λj |h|, h ∈ R.

The autocovariance function γ∆ of the sampled sequence Y ∆ coincides at lag n, n ∈ Z,

with the autocovariance function of Y at lag n∆. Hence

γ∆(n) = ν2

p∑
j=1

Kje
λj∆|n|, n ∈ Z. (2.5)

The function γ∆ is the autocovariance function of an ARMA sequence satisfying the

difference equations (2.1), with some of the moving average parameters ηj possibly zero.

Since γ∆ is the absolutely summable autocovariance function of a covariance stationary

sequence, it has the corresponding spectral density,

f∆(ω) =
1

2π

∞∑
n=−∞

γ∆(n)e−inω, − π ≤ ω ≤ π. (2.6)

Substituting from (2.5) into (2.6) we find that

f∆(ω) =
ν2

2π

p∑
j=1

Kj sinh(λj∆)

cosω − cosh(λj∆)
=
ν2

2π

k(cosω)∏p
j=1(cosω − cosh(λj∆))

. (2.7)

Since Y ∆ satisfies (2.1) for some η1, . . . , ηp−1 and σ2, we can write

f∆(ω) =
σ2
∏p−1

j=1(1 + η2
j − 2ηj cosω)

2π
∏p

j=1(−2eλj∆)
∏p

j=1(cosω − cosh(λj∆))
(2.8)

(where some of the parameters ηj may be zero). Comparing (2.7) and (2.8) we see at once

that the polynomial in cosω in the numerator of (2.8) is zero if and only if cosω is equal

to one of the zeros kj of the polynomial k(z).

6



If
∑p

j=1Kj sinh(λj∆) 6= 0, then k(z) has p − 1 zeros, k1, . . . , kp−1, so the parameters

ηj, j = 1, . . . , p− 1 satisfy the equations,

η2
j − 2kjηj + 1 = 0, j = 1, . . . , p− 1,

and the invertible version of the sampled process is obtained by choosing each ηj to

have absolute value less than 1. The white-noise variance σ2 is then found by equating

the coefficients of (cosω)p−1 in the two expressions for f∆(ω)
∏p

j=1(cosω − cosh(λj∆))

obtained from (2.7) and (2.8).

If
∑p

j=1Kj sinh(λj∆) = 0, then k(z) has order r < p − 1, the polynomial in cosω in

the numerator of (2.8) is of order r and the parameters η1, . . . , ηr satisfy the equations,

η2
j − 2kjηj + 1 = 0, j = 1, . . . , r,

where k1, . . . , kr are the zeros of k(z). For invertibility, the values of ηj with absolute

values less than 1 are chosen and the value of the white-noise variance σ2 is then obtained

by equating the coefficients of (cosω)r in the two expressions for f∆(ω)
∏p

j=1(cosω −
cosh(λj∆)) obtained from (2.7) and (2.8).

Remark 2.2. Repeated autoregressive zeros. If the distinct zeros λ of a(z) have multiplic-

ities m(λ), where
∑

λm(λ) = p, then

κ(h) = ν2
∑
λ

eλ|h|
m(λ)−1∑
j=0

Kλ,j|h|j, h ∈ R,

where the coefficients Kλ,j can be found from equation (2.14) of Brockwell (2001b). Then

γ∆ in (2.5) must be replaced by

γ∆(n) = ν2
∑
λ

eλ|∆n|
m(λ)−1∑
j=0

Kλ,j|n∆|j, n ∈ Z.

Equations (2.6) and (2.8) are unchanged but, on the right-hand side of (2.7), k(cosω)

becomes a more complicated polynomial in cosω of degree less than or equal to p − 1,

specifically,

k(cosω) =

p∏
j=1

(cosω − cosh(λj∆))
∞∑

n=−∞

ν−2γ∆(n)e−inω.

If we replace k in the statement of Theorem 2.1 by this more general polynomial, the

theorem is valid also when a(z) has zeros of multiplicity possibly greater than 1.

Remark 2.3. If λi 6= λj for all i 6= j but for some i 6= j, eλi∆ = eλj∆, as is the case

if λi and λj differ by an integer multiple of 2πi/∆, then Y ∆ is an ARMA(d, s) process
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with d equal to the number of distinct values of eλj∆ and s < d. For example, if Y is a

CARMA(2, 1) process with λ1 = −1 + iπ and λ2 = −1− iπ, then the sequence obtained

by sampling at integer times is an AR(1) sequence. Such cases are rather special and,

since they can be treated by the same arguments as used in the proof of the preceding

theorem, we shall omit the details. 2

Example 2.4. For the causal invertible CARMA(2,1) process with a(z) = (z−λ1)(z−λ2)

and b(z) = z−µ, where λ1 6= λ2, µ 6= λ1 and µ 6= λ2, we have, K1 = [µ2−λ2
1]/[2λ1(λ2

1−λ2
2)]

and K2 = [µ2−λ2
2]/[2λ2(λ2

2−λ2
1)] . The parameter η1 in the invertible representation (2.3)

is therefore the root with absolute value less than 1 of the equation,

z2 − 2k1z + 1 = 0,

where

k1 =
K1 sinh(λ1∆) cosh(λ2∆) +K2 sinh(λ2∆) cosh(λ1∆)

K1 sinh(λ1∆) +K2 sinh(λ2∆)
.

From η1 the white-noise variance σ2 is found directly from (2.4). As ∆→ 0 we easily find

that η1 = 1 + µ∆ + o(∆) and σ2 ∼ ν2∆. 2

Remark 2.5. High frequency approximations.

The factorization of k(z) required in the application of Theorem 2.1 cannot be carried

out in an algebraically explicit manner for CARMA(p, q) processes with p > 5 since then

the polynomial k(z) is of order greater than 4. However general asymptotic expressions

(as ∆→ 0) for the moving-average coefficients and white-noise variance in the represen-

tation (2.3) were found by Brockwell et al. (2012) and (2013) and applied to inference

for the kernel of the underlying CARMA process when observations are made at times

∆, 2∆, . . . , n∆, with ∆ small and n large. Applying Theorem 1 of Brockwell et al. (2013)

to Example 2.4 we find that η1 = 1 +µ∆ + o(∆) and σ2 ∼ ν2∆, as in the example above.

2

3 The embedding problem

The second-order properties of a CARMA process (see Section 1) depend only on the

coefficient vector βββ = (a1, . . . , ap, b0, . . . , bq−1)T and the variance ν2 of the driving Lévy

process at time 1.

The problem of determining parameters βββ and ν2 of a real-valued CARMA process Y

such that the autocovariances of Y at n∆, n ∈ Z, coincide with the autocovariances at

lags n, n ∈ Z, of a given causal ARMA(p, q) sequence U with p > q is more complicated.

If such a βββ and ν2 exist we shall say that U is ∆-embeddable in Y . Depending on U , there

may be more than one such set of coefficients or possibly none at all.
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The embedding theorem in this section gives readily verifiable conditions under which

an ARMA(p, q) process is ∆-embeddable in a CARMA(p, r) process for some r ≤ p − 1

and specifies the parameters of such a CARMA process. The result depends on the follow-

ing characterization of CARMA autocovariance functions. From (1.6) every real-valued

causal CARMA(p, q) process with distinct λ1, . . . , λp, has an autocovariance function of

the form κ(h) :=
∑p

j=1 cje
λj |h|, h ∈ R, for some c1, . . . , cp ∈ C. The following theorem

establishes conditions under which such a linear combination of exponentials is in fact the

autocovariance function of a CARMA process and specifies the parameters of a CARMA

process which has κ as its autocovariance function.

Theorem 3.1. Characterization of CARMA autocovariance functions

Suppose that κ is a real-valued function of the form,

κ(h) :=

p∑
j=1

cje
λj |h|, h ∈ R,

where cj ∈ C, Re(λj) < 0, j = 1, . . . , p and λi 6= λj if i 6= j. Then the following statements

are equivalent:

(i) κ is the autocovariance function of a mean-square continuous covariance stationary

process, (Yt)t∈R.

(ii) κ is non-negative definite.

(iii) g(z) :=
∑p

j=1 cjλj
∏

m6=j(z + λ2
m) ≤ 0 for all z ≥ 0.

(iv) κ is the autocovariance function of a real-valued CARMA(p, q) process Y satisfying

the formal differential equation,

p∏
j=1

(D − λj)Yt =

q∏
j=1

(D + rje
iθj)DLt,

where q is the order of the polynomial g, E(L1) = 0, E(L2
1) = −2K, and K and rje

iθj ,

j = 1, . . . q, are found by writing g(z) = K
∏q

j=1(z+ r2
j e

2θji),with rj > 0 and −π/2 < θj ≤
π/2.

Proof. If (i) holds then (ii) is an immediate consequence of Bochner’s Theorem since κ is

continuous at zero.

If (ii) holds, then, since κ is continuous and f(ω) := 1
2π

∫
R κ(h)e−iωh dh, ω ∈ R, is

integrable, we can write

κ(h) =

∫
R
eiωhf(ω) dω.

In other words f is the spectral density of κ, so f(ω) ≥ 0 for all ω ∈ R. Direct evaluation

of the integral defining f gives

f(ω) = −
∑p

j=1 cjλj
∏

m 6=j(λ
2
m + ω2)

π
∏p

j=1(λ2
j + ω2)

, ω ∈ R.
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and non-negativity of f implies condition (iii).

If (iii) holds then g(z) is factorizable as

g(z) = K

q∏
j=1

(z + r2
j e

2θji),

where rj > 0, −π/2 < θj ≤ π/2, q < p is the order of the polynomial g(z) and K < 0 is

the coefficient of zq. This implies that f is the spectral density and κ is the autocovariance

function of the stationary CARMA(p, q) process satisfying the formal differential equation,

p∏
j=1

(D − λj)Yt =

q∏
j=1

(D + rje
iθj)DLt,

with E(L1) = 0 and E(L2
1) = −2K. (If

∑p
j=1 cjλj 6= 0 then q = p− 1.)

If (iv) holds then clearly (i) holds so we have established the required equivalence.

Remark 3.2. The same theorem holds for the real-valued function

κ(h) =
∑
λ

eλ|h|
m(λ)−1∑
j=0

cλ,j|h|j, h ∈ R,

where cλ,j ∈ C, Re(λ) < 0, m(λ) is the multiplicity of λ,
∑

λ denotes summation over

distinct values of λ,
∑

λm(λ) = p, and we replace the polynomial g(z) in (iii) by the more

complicated polynomial of degree at most p− 1, namely,

g(z) = −1

2

[∏
λ

(z + λ2)m(λ)

]∫
R
κ(h)e−ih

√
zdh, z ≥ 0,

where
∏

λ denotes multiplication over the distinct values of λ. 2

A similar argument leads to a discrete-time analogue of Theorem 3.1 which we state

without proof.

Proposition 3.3. Suppose that γ is a real-valued function of the form,

γ(h) :=

p∑
j=1

cje
λj |h|, h ∈ Z,

where cj ∈ C, Re(λj) < 0, j = 1, . . . , p, and eλi 6= eλj if i 6= j. Then the following

statements are equivalent:

(i) γ is the autocovariance function of a covariance stationary sequence (Un)n∈Z.

(ii) γ is non-negative definite.

(iii) h(z) :=
∑p

j=1 cj sinh(λj)
∏

m 6=j(cosh(λj)− z) ≤ 0 for all z ∈ [−1, 1].

(iv) γ is the autocovariance function of a real-valued ARMA(p, q) process where q is

the order of the polynomial h(z).
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We need one further result for ARMA sequences.

Proposition 3.4. Suppose that (Un)n∈Z is the ARMA(p, q) sequence satisfying the equa-

tions, with p > q,

φ(B)Un = θ(B)Zn, n ∈ Z, (3.1)

where (Zn)n∈Z is zero-mean white noise with variance σ2 > 0, B is the backward shift

operator, φ(z) :=
∏p

j=1(1− ξjz) and θ(z) :=
∏q

j=1(1− ηjz). Suppose also that ξi 6= ξj, for

i 6= j, that ξi 6= ηj for all i and j, that 0 < |ξi| < 1 and 0 < |ηj| < 1 for all i and j, and

that the coefficients of the polynomials φ(z) and θ(z) are real-valued. Define

Gj = −ξj
θ(ξj)θ(ξ

−1
j )

φ(ξj)φ′(ξ
−1
j )

. (3.2)

Then the autocovariance function γ of (Un)n∈Z can be expressed as

γ(h) = σ2

p∑
j=1

Gje
|h| log ξj , h ∈ Z. (3.3)

Proof. See Brockwell (2001b). 2

For the ARMA sequence in Proposition 3.4 to be ∆-embeddable in a CARMA(p, r)

process for some r < p there must exist parameters ν2 and βββ = (a1, . . . , ap, b0, . . . , br−1)T ,

or equivalently θθθ = (λ1, . . . , λp, µ1, . . . , µr)
T , such that the autocovariance at lag n∆ of a

CARMA process with these parameters coincides with that of U at lag n. The following

theorem gives conditions under which this is the case and specifies a set of parameters

(λ1, . . . , λp, µ1, . . . , µr)
T and ν2 of a CARMA process into which the ARMA process is

∆-embeddable.

Theorem 3.5. Embedding an ARMA sequence

Suppose that (Un)n∈Z, is the ARMA(p, q) sequence specified in Proposition 3.4. With

Gj as in (3.2), define the (real-valued) polynomial of degree r ≤ p− 1,

g(z) := σ2∆−1

p∑
j=1

Gj log(ξj)
∏
m 6=j

(z + ∆−2(log ξm)2), (3.4)

where log(ξj), j = 1, . . . , p, are any specified values of the logarithms such that if ξj = ξk

then log ξj = log ξk. (If
∑p

j=1Gj log(ξj) 6= 0 then r = p− 1.)

If g(z) ≤ 0 for all z ≥ 0, then g(z) can be factorized as

g(z) = S

r∏
j=1

(z + r2
j e

2iθj),
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where r ≤ p − 1, rj > 0, θj ∈ (−π/2, π/2] and S < 0. Under these conditions U has the

autocovariance function of the ∆-sampled sequence obtained from the stationary CARMA

process Y satisfying the causal invertible equation,

p∏
j=1

(D −∆−1 log ξj)Yt =
r∏
j=1

(D + rje
iθj)DLt. (3.5)

where L is any driving Lévy process such that EL1 = 0, E(L1)2 = ν2 and

ν2 = −2σ2S. (3.6)

Proof. The autocovariance function of the ARMA process defined by (3.1) is

γ(h) = σ2

p∑
j=1

Gjξ
|h|
j , h ∈ Z.

Consider the function,

κ(h) = σ2

p∑
j=1

Gje
|h|∆−1 log ξj , h ∈ R. (3.7)

The values κ(h∆) clearly coincide with γ(h), h ∈ Z, as required.

By Theorem 3.1 with cj = σ2Gj and λj = ∆−1 log ξj, j = 1, . . . , p, κ is the autocovari-

ance function of a CARMA process with autoregressive order p if and only if g(z) ≤ 0

for all z ≥ 0, and in this case it is the autocovariance function of the process specified by

(3.5) and (3.6).

Corollary 3.6. Define θθθ := (λλλT ,µµµT )T , where λλλ = (λ1, . . . , λp)
T and µµµ = (µ1, . . . , µq)

T

are respectively the vectors of autoregressive and moving-average zeros, in any prescribed

order, of a causal invertible CARMA process satisfying the conditions of Theorem 2.1,

let Θ denote the set of all such parameter vectors, and let T be the mapping T : θθθ 7→ ψψψ

where ψψψ = (ξξξT , ηηηT )T with ξξξ = (ξ1, . . . , ξp)
T and ηηη = (η1, . . . , ηp−1)T , the autoregressive and

moving-average parameter vectors of the ∆-sampled ARMA sequence respectively.

Then, for any given θθθ0 = (λλλT0 ,µµµ
T
0 )T ∈ Θ, the restriction T0 of T to Θ0 := {θθθ ∈ Θ :

|Im(λj − λ0j)| < π, j = 1, . . . , p} is a bijective mapping onto T0Θ0. 2

Proof. The inverse mapping T−1
0 is specified by Theorem 3.5 with the logarithm of each

ξj chosen so that

|Im(∆−1 log ξj − λ0j)| < π, j = 1, . . . , p.

Remark 3.7. If g(z) > 0 for some z ≥ 0 then the function κ in (3.7) is not non-negative

definite and is therefore not the autocovariance function of any CARMA process. There

may however be alternative choices of the logarithms, equal modulo(2iπ) to those specified

in the theorem, for which the condition g(z) ≤ 0 for all z ≥ 0 is satisfied. In this case the

conclusions hold with the revised values of the logarithms. 2

12



Remark 3.8. Since g(z) is a polynomial, the condition that g(z) ≤ 0 for all z ≥ 0 is

easily checked by evaluating g(0), limz→∞ g(z) and the values of g at each of the positive

values of z where g′(z) = 0. 2

Remark 3.9. If exactly m of the parameters ξi, say ξ1, . . . , ξm, are strictly negative real

numbers then the theorem continues to hold with p replaced by p+m, log ξj := log |ξj|+iπ,

log ξp+j := log |ξj| − iπ, j = 1, . . . ,m, and Gp+j = Gj = − ξjθ(ξj)θ(ξ−1
j )

2φ(ξj)φ′(ξ−1
j )

, j = 1, . . . ,m. 2

Remark 3.10. Repeated autoregressive parameters. An ARMA(p, q) sequence with q < p

and autoregressive parameters ξ having multiplicities m(ξ), where
∑

ξm(ξ) = p, has

autocovariance function of the form,

γ(h) = σ2
∑
ξ

ξ|h|
m(ξ)−1∑
j=0

Gξ,j|h|j, h ∈ Z,

where the coefficients Gξ,j can be found from Brockwell(2001b), equation (3.12). Theorem

3.5 holds for such sequences if g(z) is redefined as in Remark 3.2 with λ replaced by

∆−1 log ξ and cλ,j replaced by σ2∆−jGξ,j.

2

Example 3.11. Sampling and recovering a CARMA(2,1) process

(i) Consider the ∆-sampled sequence Y ∆, with ∆ = .1, of the stationary CARMA(2,1)

process defined by the formal differential equation,

(D + .5)(D + 1)Yt = (D + .25)DLt, (3.8)

where D as usual denotes differentiation with respect to t and the driving Lévy process L

has moments EL1 = 0 and E(L2
1) = 1. Taking λ1 = −.5 and λ2 = −1, we find immediately

that the constants K1 and K2 in Theorem 2.1 are given by

K1 = −.25 and K2 = .625.

Since K1 sinh(−1) + K2 sinh(−2) 6= 0, we deduce from the theorem that the ∆-sampled

sequence Y ∆ with ∆ = .1 satisfies the ARMA(2,1) equation,

(1− e−.05B)(1− e−.1B)Y ∆
n = (1− ηB)Zn, {Zn} ∼WN(0, σ2), (3.9)

where η and σ2 are to be determined. From Example 2.4, k1 = 1.0003132479211. Hence,

by Theorem 2.1,

η = k1 −
√
k2

1 − 1 = 0.9752813889

and

σ2 = 2(K1 sinh(.05) +K2 sinh(.1))e−.15/η = .08842703.
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(ii) Suppose on the other hand that we start with an ARMA sequence satisfying (3.9)

with η and σ2 as specified, and wish to find a CARMA(2, r) process with r ≤ 1 of which

it is the ∆-sampled sequence with ∆ = 0.1. To do so we apply Theorem 3.5.

With ξ1 = e−.05, ξ2 = e−.1, log ξ1 = −.05, log ξ2 = −.1 and η = .9752813889, we

readily find that G1 and G2 as defined in (3.2) are

G1 = −2.8271899 and G2 = 7.0679747.

Hence
∑2

j=1Gj log ξj = −.56543798 and g(z) = −z/2 − 1/32. From g(z) and Theorem

3.5 we see at once that λ1 = −.5, λ2 = −1, µ = −.25 and ν2 = 1. In other words we have

recovered the CARMA model defined by (3.8). 2

4 Inference for CARMA(p, q) processes

In this section we consider quasi-maximum-likelihood (QML) estimation for a zero-mean

causal CARMA(p, q) process Y defined by the formal stochastic differential equation,

a(D)Yt = b(D)DLt,

based on observations Y ∆
1 , . . . , Y ∆

n made at times ∆, . . . , n∆. Recall that causality implies

that the zeros λ1, . . . , λp, of the polynomial a(z) (which are the same as the eigenvalues of

the matrix A in Section 1) have strictly negative real parts. QML estimation is estimation

based on the (not necessarily valid) pretense that the process Y is Gaussian. We shall

therefore take L, in the analysis of this section, to be νB where 0 < ν < ∞ and B is

standard Brownian motion.

From (1.4) and (1.5) we immediately obtain the following discrete state-space repre-

sentation of Y ∆
1 , . . . , Y ∆

n .

Y ∆
i = bTSi, i = 1, . . . , n, (4.10)

and

Si+1 = eA∆Si + ν

∫ (i+1)∆

i∆

eA(u−i∆)epdBu, i = 1, 2, . . . , (4.11)

where Si := Xi∆ and Xt is the state-vector in (1.4). The causality assumption implies

that Xt =
∫∞

0
eA(t−u)e dBu, so that Si has the multivariate normal distribution with mean

0 and covariance matrix ν2
∫∞

0
eAtepe

T
p e

AT t dt.

The observation equation (4.10) and state equation (4.11) are in precisely the form

required for application of the discrete-time Kalman recursions for calculation of the best

one-step linear predictors of Y ∆
1 , . . . , Y ∆

n , their mean-squared errors, and hence the Gaus-

sian likelihood of the observations. This is a special case of the state-space representation
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used by Jones (1981) for fitting Gaussian CARMA processes to irregularly spaced ob-

servations. A similar approach was also used in a more general setting by Bergstrom

(1985).

To apply the Kalman recursions to (4.10) and (4.11) we rewrite them in the notation

of Brockwell and Davis (1991; Proposition 12.2.2) as

Y ∆
i = bTSi, i = 1, 2, . . . , (4.12)

and

Si+1 = FSi + Vi, i = 1, 2, . . . , (4.13)

where

F = eA∆ and Vi = ν

∫ (i+1)∆

i∆

eA(u−i∆)ep dBu.

The random vectors Vi are iid multivariate Gaussian with mean 0 and covariance matrix

Q = ν2

∫ ∆

0

eAuepe
T
p e

ATu du.

Now let Ŝi and Ŷ ∆
i denote the orthogonal projections in L2 of Si and Y ∆

i onto the

closed linear span of {1, Y ∆
j , j < i}. Then by the Kalman recursions (see Brockwell and

Davis (1991; Proposition 12.2.2), the predictors Ŝi and their error covariance matrices

Ωi = E[(Si − Ŝi)(Si − Ŝi)
T ] are uniquely determined by the initial conditions,

Ŝ1 = 0, Π1 = σ2

∫ ∞
0

eAtepe
T
p e

AT t dt, Ψ1 = 0p×p, Ω1 = Π1 −Ψ1,

and the recursions, 

∆i = bTΩib

Θi = FΩib

Πi+1 = FΠiF
T +Q

Ψi+1 = FΨiF
T + Θi∆

−1
i ΘT

i

Ωi+1 = Πi+1 −Ψi+1

and

Ŝi+1 = FiŜi + Θi∆
−1
i (Y ∆

i − bT Ŝi).

The best linear predictor of Y ∆
i in terms of {1, Yk, k < i} is

Ŷ ∆
i = bT Ŝi

and its mean squared error is

E[(Y ∆
i − Ŷ ∆

i )2] = bTΩib.
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Notice that we can write

E[(Y ∆
i − Ŷ ∆

i )2] = ri−1ν
2, i = 1, 2, . . . , (4.14)

where the coefficients r0, r1, . . . , are equal to the corresponding mean squared errors when

ν2 is replaced in the Kalman recursions by 1.

The best linear predictors Ŷ ∆
i are not affected by the value of ν so we can use the

Kalman recursions with ν set equal to 1 to determine both the predictors and the constants

ri in (4.14).

The likelihood of the observations Y ∆
1 , . . . , Y ∆

n under the Gaussian CARMA model

with parameters a := (a1, . . . , ap)
T , b := (b0, . . . , bq−1)T and ν2 can then be written as

(cf. Brockwell and Davis (1991; equ. (8.7.4)),

L
(
a,b, ν2

)
=

1√
(2πν2)n r0 · · · rn−1

exp

− 1

2ν2

n∑
j=1

(
Y ∆
j − Ŷ ∆

j

)2

rj−1

 . (4.15)

Differentiating logL (a,b, ν2) partially with respect to ν2 and noting that Ŷ ∆
j and rj

are independent of ν2, we find that the QML estimators â, b̂, and ν̂2 satisfy the following

equations:

ν̂2 = n−1S
(
â, b̂

)
, (4.16)

where

S (a,b) =
n∑
j=1

(
Y ∆
j − Ŷ ∆

j

)2

/rj−1, (4.17)

and â, b̂ are the values of a, b that minimize

`(a,b) = log
(
n−1S(a,b)

)
+ n−1

n∑
j=1

log rj−1. (4.18)

For any given parameter vectors a and b, the reduced likelihood, `(a,b), can be computed

from the data and the Kalman recursions as described above. A numerical search algorithm

is then used to determine the values of a and b which minimize `(a,b). These are the QML

estimators of a and b respectively. The corresponding QML estimator of ν2 is obtained

by substituting these values in (4.16).

Remark 4.1. Notice that the reduced likelihood of the data depends only on a, b and

the observed data, so that the QML estimation of a and b can be carried out regardless

of the nature of the driving Lévy process L, and in particular when E(L2
1) = ∞ as in

Garcia et al. (2011). 2
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4.1 Asymptotic behaviour of the estimators

As in Corollary 3.6 we shall denote by Θ the set of parameter vectors θθθ = (λλλT ,µµµT )T such

that the components λ1, . . . , λp and µ1, . . . , µq have strictly negative real parts, eλi 6= eλj

for i 6= j and λi 6= µj for all pairs i and j. We also introduce the parameters

ξi := eλi∆, i = 1, . . . , p, (4.19)

and

ηi, i = 1, . . . , p− 1, (4.20)

where the parameters ηi, i = 1, . . . , p − 1, were defined in Theorem 2.1. The sampled

sequence Y ∆ then satisfies the causal invertible ARMA equations,

p∏
i=1

(1− ξiB)Y ∆
n =

p−1∏
i=1

(1− ηiB)Zn, (4.21)

where the sequence Z is iid noise with mean zero and variance as specified in Theorem

2.1.

Introducing the parameter vectors,

ψψψ := (ξξξT , ηηηT )T = Tθθθ, θθθ ∈ Θ,

where

ξξξ := (ξ1 · · · ξp)T and ηηη := (η1 · · · ηp−1)T ,

we recall from Corollary 3.6 that for any θθθ0 ∈ Θ the restriction T0 of the mapping

T to Θ0 := {θθθ ∈ Θ : |Im(∆−1 log ξj − λ0j)| < π, j = 1, . . . , p} maps Θ0 bijectively

onto T0Θ0 ⊂ {ψψψ : maxj |ψj| < 1}. Values of θθθ (uniquely related in the obvious way to

the coefficient vectors a and b) which minimize the reduced likelihood of the sampled

observations will be mapped into values of ψψψ which minimize the reduced likelihood of

the observations of Y ∆ under the model (4.21).

Let θθθ0 be the true parameter vector of the CARMA process and let ψψψ0 denote T0θθθ0.

By the results of Schlemm and Stelzer (2012) we know that the QML estimator ψ̂ψψ of

ψψψ0 is consistent and that

√
n(ψ̂ψψ −ψψψ0)⇒ N(0, I(ψψψ0)−1), as n→∞, (4.22)

where I(ψψψ) is the information matrix for ψψψ per observation of the ∆-sampled sequence.

Knowing the mapping T0 and its inverse, we can use this result to deduce the asymptotic

distribution of the QML estimator of θθθ0 and hence that of of (a1, . . . , ap, b0, . . . , bq−1)T .

First we need a generalization of the expression for I(ψψψ) given by Box et al. (2016; eq.

(7.2.21) to allow for possibly complex components of ψψψ. Noting that our definition of I(ψψψ)
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is per observation and using the definition of Liu et al. (2014; eq. (3)), we obtain the Hermi-

tian information matrix for the possibly complex-valued parameters ξ1, . . . , ξp, η1, . . . , ηq,

I(ψψψ) =



(1− ξ1ξ1)−1 · · · (1− ξpξ1)−1 −(1− η1ξ1)−1 · · · −(1− ηp−1ξ1)−1

...
. . .

...
...

...
...

(1− ξ1ξp)
−1 · · · (1− ξpξp)−1 −(1− η1ξp)

−1 · · · −(1− ηp−1ξp)
−1

−(1− ξ1η1)−1 · · · −(1− ξpη1)−1 (1− η1η1)−1 · · · (1− ηp−1η1)−1

... · · · ...
...

. . .
...

−(1− ξ1ηp−1)−1 · · · −(1− ξpηp−1)−1 (1− η1ηp−1)−1 · · · (1− ηp−1ηp−1)−1


.

(4.23)

Since

log ξj = ∆λj, j = 1, . . . , p,

and

µj = fj(ξ1, . . . , ξp, η1, . . . , ηp−1), j = 1, . . . , p− 1,

where the functions fj are determined by Corollary 3.6, the Jacobian of T−1
0 is

J =
∂θθθ

∂ψψψ
=

[
∂λλλ
∂ξξξ

0
∂µµµ
∂ξξξ

∂µµµ
∂ηηη

]
, (4.24)

where

∂λλλ

∂ξξξ
= ∆−1


e−λ1∆ 0 · · · 0

0 e−λ2∆ · · · ...
...

...
. . . 0

0 · · · 0 e−λp∆

 ,
∂µµµ

∂ξξξ
=

[
∂µi
∂ξj

]
q×p

and
∂µµµ

∂ηηη
=

[
∂µi
∂ηj

]
q×(p−1)

.

It then follows from (4.22) that the QML estimator θ̂θθ of θθθ0 satisfies

√
n(θ̂θθ − θθθ0)⇒ N(0, JI(ψψψ0)−1J

T
), as n→∞, (4.25)

with I(ψψψ) as in (4.23).

The coefficients ai, i = 1, . . . , p and bj, j = 1, . . . , q are expressed in terms of the zeros

λ1, . . . , λp and µ1, . . . , µq by the familiar relations,

ai = (−1)i
∑

λj1 . . . λji , i = 1, . . . , p, (4.26)

where the sum is over all distinct subsets {j1, . . . , ji} of {1, . . . , p}, and

bq−i = (−1)i
∑

µj1 . . . µji , i = 1, . . . , q, (4.27)
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where the sum is over all distinct subsets {j1, . . . , ji} of {1, . . . , q}. Defining

βββ := (a1 · · · ap b0 · · · bq−1),

we find from (4.25) that the QML estimator β̂ββ of βββ0 satisfies

√
n∆(β̂ββ − βββ0)⇒ N(0,∆KJI(ψψψ0)−1J

T
K
T

), as n→∞ with ∆ fixed, (4.28)

where

K :=
∂βββ

∂θθθ
=

[
∂aaa
∂λλλ

0

0 ∂bbb
∂µµµ

]
(4.29)

can be readily evaluated from (4.26) and (4.27).

Example 4.2. CARMA(2,1)

For the CARMA(2,1) process defined in Example 3.11 with parameters λ1 = −0.5,

λ2 = −1.0 and µ = −0.25, the parameters of the sequence sampled at intervals of length

∆ = 1 are ξ1 = e−.5, ξ2 = e−1 and, from Theorem 2.1, η = 0.7595699. The coefficient G1

in Theorem 3.5 is given by

G1 =
ξ1(1− ηξ1)(1− ηξ−1

1 )

(1− ξ2
1)(1− ξ1ξ2)(ξ1 − ξ2)

and the coefficient G2 is the same with ξ1 and ξ2 interchanged.

By Corollary 3.6 the moving average zero µ can be expressed in terms of ξ1, ξ2 and η

as

µ = ∆−1

[
log ξ1 log ξ2

G1 log ξ2 +G1 log ξ1

G1 log ξ1 +G2 log ξ2

]1/2

.

From this expression it is easy to evaluate numerically the derivatives ∂µ
∂ξ1

, ∂µ
∂ξ2

and ∂µ
∂η

at

ξ1 = e−0.5, ξ2 = e−1.0 and η = 0.7595699, and hence the Jacobian matrix in (4.24), which

takes the value

J =

 1.64872 0 0

0 2.71828 0

−0.24747 −0.15210 1.57833

 .
The matrix K in (4.29) is easily evaluated from (4.26) and (4.27) as

K =

 −1 −1 0

λ2 λ1 0

0 0 −1

 =

 −1 −1 0

−1 −.5 0

0 0 −1

 .
At ψψψ = (e−0.5 e−1.0 .9752813889)T the matrix I(ψψψ) is easily evaluated from (4.23) as

I(ψψψ) =

 1.58198 1.28722 −1.85426

1.28722 1.15652 −1.38779

−1.85426 −1.38779 2.36377

 .
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The matrix ∆KJI(ψψψ)−1J
T
K
T

in (4.28) is therefore

∆KJI(ψψψ)−1J
T
K
T

=

 22.0217 15.7619 −9.27685

15.7619 66.7833 −41.7082

−9.27685 −41.7082 27.1195

 , if ∆ = 1.0 (4.30)

For the same CARMA model sampled at intervals of lengths ∆ = 0.1 and ∆ = 0.01,

analogous calculations give

∆KJI(ψψψ)−1J
T
K
T

=

 11.1168 15.8567 −9.8981

15.8567 34.4869 −20.5699

−9.8981 −20.5699 12.8352

 , if ∆ = 0.1 (4.31)

and

∆KJI(ψψψ)−1J
T
K
T

=

 11.0056 15.9804 −9.98774

15.9804 33.5816 −20.0510

−9.98774 −20.0510 12.5319

 , if ∆ = 0.01. (4.32)

Equation (4.30) shows that if observations of this CARMA process are made at unit

intervals over a large time interval T (= n∆), the approximate variances of the components

â1, â2 and b̂0 of the QML estimator β̂ββ are 22.0/T, 66.8/T and 27.1/T respectively. If, for

the same time interval, observations are made at intervals ∆ = .1, equation (4.31) shows

that these variances are reduced substantially to 11.1/T , 34.5/T and 12.8/T respectively.

However equation (4.32) shows that there is only a very slight further improvement, to

11.0/T , 33.6/T and 12.5/T respectively, gained by using observations made at intervals

of length ∆ = .01. This indicates that there is little point in taking observations at time

intervals less than 0.1 for this model. Lower bounds for these asymptotic variances can

be found from the results of Pham-Din-Tuan (1977), as discussed below.

4.1.1 High frequency observations

For the causal invertible CARMA(p, q) process defined by (1.3), the information matrix

I(ψψψ) in (4.23) for the parameters of the sampled sequence can be re-expressed in terms of

the parameters λi and µi of the underlying CARMA process. By appropriately ordering

the rows and columns, we then readily find that

∆I(ψψψ)→M = [Mij]
2p−1
i,j=1 , as ∆→ 0,
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where

Mij =



−(λi + λj)
−1, 1 ≤ i ≤ p, 1 ≤ j ≤ p,

(λi + µj)
−1, 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q,

(µi + λj)
−1, p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ p,

−(µi + µj)
−1, p+ 1 ≤ i ≤ p+ q, p+ 1 ≤ j ≤ p+ q,

0, otherwise.

. (4.33)

With corresponding ordering of rows and columns,

∆J → L = [Lij]
p+q, 2p−1
i=1, j=1 , as ∆→ 0, (4.34)

where

Lij =

1, if i = j,

0, otherwise.
.

Using the inversion formula for block matrices, we find that the upper-left (p+q)× (p+q)

truncation of (∆I(ψψψ))−1 converges as ∆ → 0 to M−1
p+q, the inverse of the upper-left

(p+ q)× (p+ q) truncation of the matrix M defined in (4.33).

From these limits we find that

lim
∆→0

∆JI(ψψψ)−1J
T

= M−1
p+q.

and recalling from (4.25) that for any fixed ∆ > 0,

√
n∆(θ̂θθ − θθθ)⇒ N(0,∆JI(ψψψ)−1J

T
), as n→∞, (4.35)

we see that the asymptotic covariance matrix on the right of (4.35) converges as ∆ → 0

to M−1
p+q. Correspondingly, for the QML estimator of βββ = (a1 . . . ap b0 . . . bq−1)T we have

√
n∆(β̂ββ − βββ)⇒ N(0,∆KJI(ψψψ)−1J

T
K
T

), as n→∞, (4.36)

and the asymptotic covariance in (4.36) converges as ∆→ 0 to KM−1
p+qK

T
.

This result gives an easily calculated approximation, KM−1
p+qK

T
, to the variance of

the asymptotic normal distribution of
√
n∆(β̂ββ − βββ) in(4.36) when ∆ is small. Applying

this approximation to Example 4.2, we find that

KM−1
p+qK

T
=

 11.00 16.00 −10.00

16.00 33.50 −20.00

−10.00 −20.00 12.50

 ,
which is a good approximation to the corresponding exact matrices in (4.31) and (4.32).
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Pham-Dinh-Tuan (1977) showed that if the CARMA process Y is Gaussian, the exact

maximum likelihood estimator θ̂θθ of θθθ = (λ1 . . . λp µ1 . . . µq)
T based on (Yt)t∈[0,T ] satisfies

√
T (θ̂θθ − θθθ)⇒ N(0, R−1), as T →∞, (4.37)

where

Rjk =
1

2π

∫ ∞
−∞

∂

∂θj

[
a(iω)

b(iω)

]
∂

∂θk

[
a(−iω)

b(−iω)

] ∣∣∣∣ b(iω)

a(iω)

∣∣∣∣2 dω, j, k = 1, . . . , p+ q.

Using contour integration it can be shown that, if λ1, . . . , λp, are distinct,

R = Mp+q.

Hence the asymptotic covariance in (4.35) converges as ∆→ 0 to the asymptotic co-

variance in (4.37) based on continuous observation of the corresponding Gaussian CARMA

process on the time interval [0, T ]. Similarly the asymptotic covariance in (4.36) converges

as ∆ → 0 to the asymptotic covariance KR−1K
T

of
√
T (β̂ββ − βββ), where β̂ββ is the maxi-

mum likelihood estimator of βββ based on (Yt)t∈[0,T ] when Y is Gaussian. Pham-Dinh-Tuan

(1977) also gives an algorithm for approximating the maximum likelihood estimator β̂ββ

in the Gaussian case which can be used as an initial approximation for numerical QML

estimation via the Kalman recursions when ∆ is small.

5 Conclusions

We have established a simple algorithm for determining the parameters of the ∆-sampled

ARMA sequence of a second-order CARMA process and derived conditions under which

an ARMA(p, q) sequence with q < p has the autocovariance function of a ∆-sampled

CARMA(p, r) process for some r < p , determining, under these conditions, the param-

eters of such a CARMA process. The results were used to determine the asymptotic

behaviour of the QML estimators of the coefficients of a CARMA process based on ob-

servations made at time intervals of length ∆. These results provide information, for any

given parameter vectors a and b, on the frequency of observations on [0, T ] beyond which

only marginal improvement in estimation accuracy is possible. The asymptotic results

as ∆ → 0 were also related to the corresponding results of Pham-Dinh-Tuan (1977) on

maximum likelihood estimation for a Gaussian CARMA process based on continuous

observation of the process on [0, T ].
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Brockwell, P.J., 2001, Lévy-driven CARMA processes. Ann. Inst. Statist. Math. 52,

1–18.

Brockwell, P.J., 2001b, Continuous-time ARMA Processes. Handbook of Statistics 19;

Stochastic Processes: Theory and Methods, D.N. Shanbhag and C.R. Rao, (eds),

pp. 249–276, Elsevier, Amsterdam.

Brockwell, P.J. and Davis, R.A., 1991, Time Series: Theory and Methods, 2nd edition.

New York, Springer.-Verlag.

Brockwell, P.J. and Lindner, A., 2009, Existence and uniqueness of stationary Lévy-
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