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Abstract

For a given bivariate Lévy process (Ut, Lt)t≥0, necessary and sufficient condi-
tions for the existence of a strictly stationary solution of the stochastic differential
equation dVt = Vt− dUt + dLt are obtained. Neither strict positivity of the stochas-
tic exponential of U nor independence of V0 and (U,L) are assumed and noncausal
solutions may appear. The form of the stationary solution is determined and shown
to be unique in distribution, provided it exists. For noncausal solutions, a sufficient
condition for U and L to remain semimartingales with respect to the corresponding
expanded filtration is given.

1 Introduction

Let (ξ, η) = (ξt, ηt)t≥0 be a bivariate Lévy process. The generalised Ornstein–Uhlenbeck
process (GOU) associated with (ξ, η) is

Vt = e−ξt

(
V0 +

∫ t

0

eξs−dηs

)
, t ≥ 0, (1.1)

where V0 is a finite random variable, independent of (ξ, η). See Lindner and Maller [14]
and Maller et al. [16] for further information and references on GOUs. In [14], necessary
and sufficient conditions for a GOU to be strictly stationary were obtained, and properties
of the strictly stationary solution studied.

As pointed out in Equation (15) in [16], the GOU in (1.1) is the unique solution of the
stochastic differential equation

dVt = Vt−dUt + dLt, t ≥ 0, (1.2)

∗Corresponding author, Technische Universität Braunschweig, Institut für Mathematische Stochastik,
Pockelsstraße 14, D-38106 Braunschweig, Germany, email: a.behme@tu-bs.de, tel.:+49/531/3917562,
fax:+49/531/3917564

†Technische Universität Braunschweig, Institut für Mathematische Stochastik, Pockelsstraße 14, D-
38106 Braunschweig, Germany, email: a.lindner@tu-bs.de

‡Centre for Mathematical Analysis, and School of Finance & Applied Statistics, Australian National
University, Canberra, ACT, email: Ross.Maller@anu.edu.au

1



when (U, L) is another bivariate Lévy process, constructed from (ξ, η) by

(
Ut

Lt

)
=

(
−ξt +

∑
0<s≤t

(
e−∆ξs − 1 + ∆ξs

)
+ t σ2

ξ/2

ηt +
∑

0<s≤t(e
−∆ξs − 1)∆ηs − t σξ,η

)
, t ≥ 0. (1.3)

Here (∆ξt, ∆ηt) = (ξt − ξt−, ηt − ηt−) denotes the jump process of (ξ, η) at time t, and
σ2

ξ and σξ,η denote the (1, 1) and (1, 2) elements of the Gaussian covariance matrix in the
Lévy-Khintchine representation of the characteristic function of (ξ, η). The definition of U
in (1.3) is equivalent to saying that E(U)t = e−ξt , where E(U) denotes the Doléans-Dade
stochastic exponential of U (see Protter [17], Theorem II.37). In general the stochastic
exponential may take zero or negative values, but in satisfying E(U)t = e−ξt , we see that
this version of E(U) must be strictly positive, which is equivalent to the Lévy measure of
U having no mass on (−∞,−1].

The purpose of the present paper is to extend the results of [14] to the more general
setting of solutions to the stochastic differential equation (1.2), where (U, L) is an arbitrary
bivariate Lévy process. In particular, we do not assume that the Lévy measure ΠU of U is
concentrated on (−1,∞), but also allow jumps of size less than or equal to −1. As a second
generalisation, we shall allow possible dependence between the starting random variable
V0 and (U, L). Even in the case when ΠU((−∞,−1]) = 0, this represents a sharpening
of the results of [14]. As in time series analysis, we will call a solution with V0 being
independent of (U, L) a causal or non-anticipative solution. We shall see that non-causal
solutions can appear in some important cases.

Dealing with the non-causality is nontrivial as it introduces a possible problem regarding
the filtration with respect to which the stochastic differential equation (1.2) is defined,
such that U still remains a semimartingale. Hence, in the following, possible non-causal
solutions (relevant in the case ΠU({−1}) = 0) will be interpreted in the following sense.
First, (1.2) is solved assuming that U is a semimartingale for a suitable filtration to
which V is adapted. This is achieved, with the general solution given by (2.7) below.
In Equation (2.7), however, the semimartingale problem is avoided since V0 enters in an
additive fashion there and does not have to be measurable with respect to the filtration for
which the stochastic integrals are defined. The problem of finding all stationary solutions
is thus reduced to finding all possible choices of V0, without assuming independence, such
that the process given by (2.7) is strictly stationary.

This we do in Theorems 2.1 and 2.2 of the next section. After that, Section 3 sets notation,
verifies that the solution to (1.2) is as given in Equations (2.3) and (2.7) of Theorems
2.1 and 2.2, and introduces various auxiliary processes used throughout the paper. Also
in Section 3 necessary and sufficient conditions for the almost sure convergence of the
integrals

∫∞

0
E(U)s− dLs and

∫∞

0
[E(U)s−]−1 dηs, in terms of the characteristic triplets of

the underlying Lévy processes are given. These are essential results for characterising the
existence of a stationary solution to (1.2).

Section 4 gives the proofs of Theorems 2.1 and 2.2, and of two useful corollaries also stated
in Section 2. The semimartingale problem described above is taken up again in Section 5.
In the situation of Theorem 2.1 (b), noncausal solutions of (2.7) appear, and Section 5 is
concerned with the question of filtration enlargements such that the noncausal solution
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is adapted and U remains a semimartingale with respect to it. It is shown that absolute
continuity of

∫∞

0
[E(U)s−]−1 dηs is a sufficient condition for this to hold and examples when

this condition is satisfied are mentioned.

We shall not deal with applications in this paper, but only remark at this stage that
the GOU and stationary solutions of the SDE (1.2) are important in the analysis of the
COGARCH (Continuous Time GARCH model) due to Klüppelberg et al. [11]. An option
pricing model based on COGARCH, and incorporating the possibility of default, has
recently been proposed by Szimayer; see Klüppelberg et al. [12]. For the solution of (1.2),
in a financial process setting, a jump of U of size −1 can be interpreted as the occurrence
of default, and jumps of size less than −1 have interpretations when U describes the value
of a certain contract, when a positive value enforces an obligation to pay.

2 Main Results

Let (U, L) be a bivariate Lévy process with characteristic triplet (γU,L,

(
σ2

U σU,L

σU,L σ2
L

)
,

ΠU,L) defined on a complete probability space (Ω,F , P ), and correspondingly denote the
characteristic triplets of the coordinate processes U and L by (γU , σ2

U , ΠU) and (γL, σ2
L, ΠL),

respectively. Here and in the following, the characteristic triplet is taken as in Sato [18],
Definition 8.2. To avoid trivialities assume throughout that neither U nor L is the zero-
Lévy process. Let F = (Ft)t≥0 be the smallest filtration satisfying the “usual hypotheses”
(cf. Protter [17], Section I.1) such that both U and L are adapted. Then U and L are
semimartingales with respect to F. Denote by

E(U)t := eUt−tσ2
U

/2
∏

0<s≤t

(1 + ∆Us)e
−∆Us, t ≥ 0, (2.1)

the Doléans-Dade exponential of U (e.g. [17, Theorem II.37]). The exponential E(U) is the
unique semimartingale Z (with respect to F) such that Zt = 1+

∫
(0,t]

Zs− dUs. It is strictly

positive if and only if ΠU((−∞,−1]) = 0, and nowhere zero if and only if ΠU({−1}) = 0.

The main theorems of this paper give necessary and sufficient conditions for the existence
of a strictly stationary solution of (1.2) in all cases, in particular including ΠU((−∞,−1)) ≥
0 and ΠU({−1}) ≥ 0. Even in the case ΠU((−∞,−1]) = 0 (the only one treated in [14])
they sharpen the results of [14], since independence of V0 and (U, L) is not assumed a
priori in our present results, whereas it was a crucial ingredient in [14] for the proof in
the oscillating case.

We first deal with the case ΠU({−1}) = 0. Define an auxiliary process η by

ηt := Lt −
∑

0<s≤t
∆Us 6=−1

∆Us∆Ls

1 + ∆Us

− tσU,L, t ≥ 0. (2.2)

As will be seen in Proposition 3.2 below, the general solution to (1.2) is given by (2.7),
which in the case ΠU({−1}) = 0 simplifies to (2.3).
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Theorem 2.1. Let (U, L) be a bivariate Lévy process such that ΠU({−1}) = 0. Let (Vt)t≥0

be given by

Vt = E(U)t

(
V0 +

∫

(0,t]

[E(U)s−]−1 dηs

)
, t ≥ 0, (2.3)

where the stochastic integral in (2.3) is with respect to F.

(a) Suppose that limt→∞ E(U)t = 0 a.s. Then a finite random variable V0 can be
chosen such that (Vt)t≥0 is strictly stationary if and only if

∫
(0,∞)

E(U)s−dLs converges

almost surely. If this condition is satisfied, then the strictly stationary solution is unique
in distribution when viewed as a random element in D[0,∞), and it is obtained by choosing
V0 to be independent of (U, L) and to have the same distribution as

∫
(0,∞)

E(U)s−dLs.

(b) Suppose that limt→∞[E(U)t]
−1 = 0 a.s. Then a finite random variable V0 can be cho-

sen such that (Vt)t≥0 is strictly stationary if and only if
∫
(0,∞)

[E(U)s−]−1dηs converges a.s.

In this case the stationary solution is unique and given by Vt = −E(U)t

∫
(t,∞)

[E(U)s−]−1dηs

a.s., t ≥ 0.

(c) Suppose that E(U)t oscillates in the sense that

0 = lim inf
t→∞

|E(U)t| < lim sup
t→∞

|E(U)t| = +∞ a.s.

Then Vt admits a strictly stationary solution if and only if there exists k ∈ R\{0} such
that U = −L/k. In this case the strictly stationary solution is indistinguishable from the
constant process t 7→ k.

The possibilities for the asymptotic behaviour of E(U)t in (a), (b) and (c) of Theorem
2.1 are mutually exclusive and exhaustive, see Theorem 3.5 in Section 3. Conditions for
the almost sure convergence of the integrals

∫
(0,∞)

E(U)s− dLs and
∫
(0,∞)

[E(U)s−]−1 dηs are

given in Theorem 3.6 and Corollary 3.7, respectively. Observe that the solutions obtained
in Theorem 2.1(a), (c) are equal in distribution to a causal solution, while the solution in
part (b) is purely noncausal.

The case when ΠU({−1}) > 0 is treated in the next theorem. Again, the solutions turn
out to be equal in distribution to a causal solution. We will need some other auxiliary
processes:

Ũt = Ut −
∑

0<s≤t
∆Us=−1

∆Us and η̃t = ηt −
∑

0<s≤t
∆Us=−1

∆ηs, t ≥ 0, (2.4)

and

K(t) := number of jumps of size −1 of U in [0,t], (2.5)

T (t) := sup{s ≤ t : ∆Us = −1}, (2.6)

all for t ≥ 0. It is easy to see that (U, L, η, K) is a Lévy process. Also, for 0 ≤ s < t define

E(U)(s,t] := e(Ut−Us)−σ2
U

(t−s)/2
∏

s<u≤t

(1 + ∆Uu)e
−∆Uu ,

E(U)(s,t) := e(Ut−−Us)−σ2
U

(t−s)/2
∏

s<u<t

(1 + ∆Uu)e
−∆Uu ,

4



while for s ≥ t let E(U)(s,t] := 1, and define similar quantifies for E(Ũ). Recall again that
(2.7) gives the general solution of (1.2) as will be seen in Proposition 3.2.

Theorem 2.2. Let (U, L) be a bivariate Lévy process such that ΠU({−1}) > 0. Let η and
K be as defined in (2.2) and (2.5), respectively, and let (Vt)t≥0 be given by

Vt = E(U)t

(
V0 +

∫

(0,t]

[E(U)s−]−1 dηs

)1{K(t)=0}

+E(U)(T (t),t]

(
∆LT (t) +

∫

(T (t),t]

[
E(U)(T (t),s)

]−1
dηs

)1{K(t)≥1}, t ≥ 0, (2.7)

where the stochastic integrals in (2.7) are with respect to F. Then the following hold:

(a) A finite random variable V0 can be chosen such that (Vt)t≥0 is strictly stationary.

More precisely, with Ũ and η̃ as defined in (2.4), define

Zt = E(Ũ)t

(
Y +

∫

(0,t]

[E(Ũ)s−]−1dη̃s

)
, t ≥ 0, (2.8)

where Y is a random variable, independent of (U, L), with distribution

PY (dy) =
ΠU,L({−1}, dy)

ΠU({−1})
,

i.e., Y has the same distribution as ∆LT1 , where T1 denotes the time of the first jump
of U of size −1. Let τ be an exponentially distributed random variable with parameter
λ := ΠU({−1}), independent of (U, L) and Y . Then if V0 is chosen to be independent of
(U, L) and to have the same distribution as Zτ , the process (Vt)t≥0 is strictly stationary.

(b) Any two strictly stationary solutions (Vt)t≥0 are equal in distribution when viewed
as random elements of D[0,∞), having the same distribution as the process specified in
(a).

The necessary and sufficient conditions for strictly stationary solutions of (1.2) in the
specific cases can be summarised as follows:

Corollary 2.3. Let (U, L) be a bivariate Lévy process, and let (ηt)t≥0 and V = (Vt)t≥0 be
defined by (2.2) and (2.7). Then a finite random variable V0 can be chosen such that V
is strictly stationary if and only if one of the conditions (i), (ii) or (iii) below holds:

(i) There is k 6= 0 such that U = −L/k;
(ii) The integral

∫ t

0
E(U)s− dLs converges almost surely to a finite random variable as

t → ∞;
(iii) ΠU({−1}) = 0 and the integral

∫ t

0
[E(U)s−]−1 dηs converges almost surely to a

finite random variable as t → ∞.
If one of the conditions (i) to (iii) is satisfied, then the distributions of V0 and of the
corresponding strictly stationary process V are unique.
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A natural question is how close the stationary solution of Theorem 2.2 is to the stationary
solution of Theorem 2.1 (a) if ΠU({−1}) is small. The following shows that the stationary
marginal distribution of Theorem 2.1 can be obtained as a limit of stationary marginal
distributions with ΠU({−1}) > 0 under certain conditions, and more generally that the
corresponding stationary processes converge weakly in the J1-Skorokhod topology. Recall
that this is the unique topology on D[0,∞) making it a Polish space and such that a
sequence (αn)n∈N in D[0,∞) converges to α ∈ D[0,∞) if and only if there is a sequence
(γn)n∈N of continuous bijections on [0,∞) with γn(0) = 0 such that

lim
n→∞

sup
s≥0

|γn(s) − s| = 0 and lim
n→∞

sup
0≤s≤N

|αn(γn(s)) − α(s)| = 0 for all N ∈ N,

see e.g. Jacod and Shiryaev [8], Section VI.1.

Corollary 2.4. Let (U, L) be a bivariate Lévy process with ΠU({−1}) = 0 and such
that

∫
(0,∞)

E(U)s− dLs converges almost surely. Let V = (Vt)t≥0 be the strictly stationary

solution of (2.3) specified in Theorem 2.1 (a). Let (U
(n)

, L
(n)

) be a sequence of bivariate
compound Poisson processes, independent of (U, L), with Lévy measure λnσ, where σ is a
probability distribution on {−1} × R and λn > 0 for each n ∈ N with λn → 0 as n → ∞.

Let (U (n), L(n)) := (U + U
(n)

, L + L
(n)

), and let V (n) = (V
(n)
t )t≥0 be the strictly stationary

solution of the process associated with (U (n), L(n)) as specified in Theorem 2.2 (a). Then
V (n) converges weakly to V as n → ∞ when viewed as random elements in D[0,∞)
endowed with the J1-Skorokhod topology.

3 Preliminary Results

Throughout the paper, “
P
→” and “

D
→” will denote convergence in probability and distri-

bution, respectively, while “
D
=” denotes equality in distribution of two random variables.

Solving the SDE

We begin with the following lemma, which is a generalisation of Proposition 2.3 in [14]
and can be proved analogously. As usual, [·, ·] denotes the quadratic covariation of two
semimartingales, and the integrals and quadratic covariation below are understood with
respect to F.

Lemma 3.1. Let (Ut, Lt)t≥0 be a bivariate Lévy process with ΠU({−1}) = 0 and (ηt)t≥0

defined by (2.2). Then for every t ≥ 0, we have

∫

(0,t]

E(U)s−dLs =

∫

(0,t]

E(U)s−dηs + [E(U), η]t (3.1)

and (
E(U)t

E(U)t

∫
(0,t]

[E(U)s−]−1 dηs

)
D
=

(
E(U)t∫

(0,t]
E(U)s−dLs

)
. (3.2)

6



We can now verify that (2.3) and (2.7) solve the stochastic differential equation (1.2). In
the case that both U and L remain semimartingales for H in the following Proposition, the
result can be found in Exercise V.27 of Protter [17], who refers to an unpublished note by
Yoeurp and Yor. In the case that additionally ΠU((−∞,−1]) = 0, see also Equation (15)
of Maller et al. [16]. Given that U and L are semimartingales and ΠU({−1}) = 0 the result
is also given in Jaschke [9, Theorem 1]. Since the result is of fundamental importance for
this paper, we shall give a short sketch of its proof in the case when both U and L remain
semimartingales and then extend it to the case when only U remains a semimartingale.

Proposition 3.2. Let V0 be a finite random variable and let H = (Ht)t≥0 be the smallest
filtration satisfying the usual hypotheses which contains F and is such that V0 is H0 mea-
surable. Let η, K, T be as defined in (2.2), (2.5) and (2.6), respectively. Assume that U
remains a semimartingale with respect to H. Then the unique adapted càdlàg solution to
(1.2), or, equivalently, to the integral equation

Vt = V0 + Lt +

∫

(0,t]

Vs−dUs, t ≥ 0, (3.3)

is given by (2.7). If ΠU({−1}) = 0, then the unique solution is given by (2.3).

Proof. By Theorem V.7 in Protter [17], (3.3) has a unique H-adapted càdlàg solution,
so that it only remains to show that the process given by (2.7) satisfies (3.3). For that,
suppose first that V0 is F0-measurable, so that H = F, in which case the result is known
from Exercise V.27 in [17], but again it is useful to give a short sketch: since the solution of
(3.3) clearly satisfies Vt = ∆Lt if ∆Ut = −1, the equation renews itself with starting value
∆Lt whenever a jump in K occurs at time t, so that by (2.7) it suffices to consider the case
ΠU({−1}) = 0, thus, K(t) = 0. Then writing At = E(U)t and Bt = V0 +

∫
(0,t]

E(U)−1
s− dηs,

the process V given by (2.3) satisfies Vt = AtBt and A, B, V are semimartingales with
respect to F. Partial integration then gives

Vt − V0 =

∫

(0,t]

As−dBs +

∫

(0,t]

Bs−dAs + [A, B]t

=

∫

(0,t]

dηs +

∫

(0,t]

Bs−d (E(U)s) +

∫

(0,t]

[E(U)s−]−1d ([E(U), η]s)

=

∫

(0,t]

dLs +

∫

(0,t]

Vs−dUs,

where we have used the facts that dE(U)t = E(U)t− dUt and d[E(U), η]t = E(U)t−d(Lt−ηt)
(the latter follows from (3.1)). Thus (3.3) holds.

Now suppose that V0 is not necessarily F0-measurable and that U remains a semimartin-
gale with respect to H. Let Vt be the unique H-adapted càdlàg solution of (3.3) and define
a process V ′ by

V ′
t := Vt − V0E(U)t1{K(t)=0} = Vt − V0E(U)t, t ≥ 0. (3.4)
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Substituting for Vt in (3.3) gives

V ′
t = V0 + Lt +

∫

(0,t]

V ′
s− dUs +

∫

(0,t]

V0E(U)s− dUs − V0E(U)t

= Lt +

∫

(0,t]

V ′
s− dUs + V0

(
1 +

∫

(0,t]

E(U)s− dUs − E(U)t

)

= Lt +

∫

(0,t]

V ′
s− dUs.

Since V ′
0 = 0 is F0-measurable it follows from the part already proved that V ′

t is of the
form (2.7) with V ′

0 = 0, and (3.4) then shows that Vt satisfies (3.3). 2

As already pointed out in the Introduction, when seeking stationary solutions of the
SDE (1.2), in Theorems 2.1 and 2.2 we more conveniently look for stationary solutions
of Equation (2.7), since no semimartingale problems with respect to H arise in (2.7), the
integrals being defined in terms of F there. The arising semimartingale problem for the
SDE (1.2) for noncausal solutions as in Theorem 2.1 (b) is taken up again in Section 5.
In the case that V0 is chosen independent of (U, L), as in Theorems 2.1 (a), (c) and
Theorem 2.2, there are no problems with the filtration, since then, further, U, L and η
all remain semimartingales for H by Corollary 1 to Theorem VI.11 in [17]. In that case,
(Vt)t≥0 is also a time homogeneous Markov process and we give its transition functions in

the following lemma. Recall Ũ and η̃ defined in (2.4).

Lemma 3.3. Let (Vt)t≥0 be as defined in (2.7) and suppose that V0 is independent of
(Ut, Lt)t≥0. Then (Vt)t≥0 is a time-homogeneous Markov process. More precisely, defining

As,t := E(Ũ)(s,t]1{K(t)=K(s)} and Bs,t := E(Ũ)(s,t]

∫

(s,t]

[
E(Ũ)(s,u)

]−1

dη̃u (3.5)

for 0 ≤ s < t, with Ũ and η̃ given by (2.4), we have

Vt = As,tVs + Bs,t1{K(t)−K(s)=0} +
[
AT (t),t∆LT (t) + BT (t),t

]1{K(t)−K(s)>0}, (3.6)

with (As,t, Bs,t, K(t) − K(s))t≥s being independent of Hs and

(As,t, Bs,t, K(t) − K(s))
D
= (As+h,t+h, Bs+h,t+h, K(t + h) − K(s + h)) (3.7)

for every h ≥ 0 and t ≥ s. Here, Hs is as defined in Proposition 3.2.

Proof. These are direct consequences of (2.7) and the strong Markov property of Lévy
processes, respectively. 2

It should be noted that Equation (3.6) also holds with As,t, Bs,t1{K(t)−K(s)=0}, AT (t),t and
BT (t),t1{K(t)−K(s)>0} being replaced by the corresponding quantities using (U, η) in the

definition of (3.5) rather than (Ũ , η̃), but the advantage of the definition using (Ũ , η̃) in
(3.5) is that Bs,t can be defined for any s ≤ t and hence allows a statement like (3.7).

8



Other Auxiliary Processes and their Properties

In the case that ΠU({−1}) = 0 it is helpful to introduce the processes N = (Nt)t≥0,

Û = (Ût)t≥0 and W = (Wt)t≥0 defined by

Nt := number of jumps of size < −1 of U in [0, t], (3.8)

Ût := −Ut + σ2
U t/2 +

∑

0<s≤t

[∆Us − log |1 + ∆Us|] , (3.9)

Wt := −Ut + σ2
U t +

∑

0<s≤t

(∆Us)
2

1 + ∆Us

. (3.10)

Then (U, L, η, N, Û, W ) is a Lévy process. We are interested in the characteristic triplets

of Û and W and their expectations when they exist, which appear in Theorem 3.5 and
Corollary 3.7, respectively.

Lemma 3.4. Let U have characteristic triplet (σ2
U , ΠU , γU) and suppose that ΠU({−1}) =

0. Let N , Û and W be as defined in (3.8)–(3.10). Then we have:

(a) The process Û is a Lévy process satisfying

E(U)t = (−1)Nte−
bUt , t ≥ 0, (3.11)

and the characteristic triplet (σ2
bU
, ΠbU , γbU) of Û has σ2

bU
= σ2

U , (ΠbU)|R\{0} = X(ΠU)|R\{0}

and

γbU = −γU + σ2
U/2 +

∫

R

(
x1{|x|≤1} − (log |1 + x|)1{x∈[−e−1,−1−e−1]∪[e−1−1,e−1]}

)
ΠU(dx),

where X(ΠU) is the image measure of ΠU under the transformation

X : R \ {−1} → R, x 7→ X(x) = − log |1 + x|. (3.12)

We have E|Û1| < ∞ if and only if

∫

|x|≥e

log |x|ΠU(dx) < ∞ and

∫

(−3/2,−1/2)

∣∣ log |1 + x|
∣∣ΠU(dx) < ∞, (3.13)

in which case

EÛ1 = −γU + σ2
U/2 +

∫

R

(x1{|x|≤1} − log |1 + x|)ΠU (dx). (3.14)

(b) The process W is a Lévy process satisfying

[E(U)t]
−1 = E(W )t, t ≥ 0, (3.15)

and its characteristic triplet (σ2
W , ΠW , γW ) is given by σ2

W = σ2
U , ΠW = Y (ΠU) for the

transformation

Y : R \ {−1} → R \ {−1}, x 7→ Y (x) =
−x

1 + x
,
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and

γW = −γU + σ2
U +

∫

R

(
x1{|x|≤1} −

x

1 + x
1{x≥−1/2}

)
ΠU(dx).

We have E|W1| < ∞ if and only if

∫

(−3/2,−1/2)

|1 + x|−1 ΠU (dx) < ∞, (3.16)

in which case

EW1 = −γU + σ2
U −

∫

[−1,1]

x2

1 + x
ΠU(dx) −

∫

|x|>1

x

1 + x
ΠU(dx). (3.17)

Proof. (a) Equation (3.11) is immediate from (2.1), (3.8) and (3.9). From (3.9) we obtain

∆Ût = − log |1 + ∆Ut|, t ≥ 0,

which implies (ΠbU)|R\{0} = X(ΠU)|R\{0}. The Brownian motion components of Û and U
satisfy BbUt

= −BUt
, so that σ2

bU
= σ2

U . For the calculation of γbU , take ε > 0 and let

Cε := [−1 − eε,−1 − e−ε] and Dε := [−1 + e−ε,−1 + eε]. Omitting the summation index
0 < s ≤ 1 in the following calculations, it then follows from the Lévy-Itô decomposition
([18], Theorem 19.2) of Û that

γbU + BbU1
= Û1 − lim

ε↓0



∑

|∆ bUs|>ε

∆Ûs −

∫

|x|∈(ε,1]

x ΠbU(dx)


 .

By (3.9), the latter is equal to

−U1 + σ2
U/2 + lim

ε↓0




∑

∆Us∈R

(∆Us − log |1 + ∆Us|) −
∑

|∆ bUs|>ε

∆Ûs +

∫

|x|∈(ε,1]

x ΠbU(dx)



 .

Now, because ∆Ûs = − log |1 + ∆Us|, we have |∆Ûs| ≤ ε if and only if ∆Us ∈ Cε ∪ Dε.
Thus

γbU + BbU1
= −U1 + σ2

U/2

+ lim
ε↓0

(
∑

∆Us∈Cε∪Dε

(∆Us − log |1 + ∆Us|) +
∑

∆Us /∈Cε∪Dε

∆Us +

∫

|x|∈(ε,1]

x ΠbU(dx)

)
.

Since Cε and Dε shrink to the points −2 and 0 as ε ↓ 0, since ∆Us − log |1 + ∆Us| =
O(∆Us)

2 for ∆Us near 0 and limε↓0

∑
∆Us∈Dε

(∆Us)
2 = 0, this leaves

γbU + BbU1
= −U1 + σ2

U/2 + lim
ε↓0

(
∑

∆Us /∈Dε

∆Us +

∫

|x|∈(ε,1]

x ΠbU(dx)

)
.
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Using the Lévy-Itô decomposition ([18], Theorem 19.2) again, but now for the process U ,
we obtain

γbU + BbU1
= σ2

U/2 − γU − BU1 + lim
ε↓0

(∫

|x|∈[−1,1]\Dε

x ΠU(dx) +

∫

|x|∈(ε,1]

x ΠbU(dx)

)
.

Together with BbU1
= −BU1 and ΠbU = X(ΠU) this implies the given representation for

γbU .

Next, observe that E|Û1| < ∞ if and only if
∫
|x|>1

|x|ΠbU(dx) < ∞ ([18], Example 25.12),

which is equivalent to (3.13) since ΠbU = X(ΠU) on R \ {0}. Equation (3.14) then follows

from the representation of γbU and the fact that EÛ1 = γbU +
∫
|x|>1

x ΠbU(dx).

(b) Equation (3.15) was obtained by Léandre [13] and detailed proofs can be found in
Karandikar [10, Theorem 1] or Jaschke [9, Lemma A.1].
The remaining assertions follow similarly to the ones proved in (a). 2

Similarly, it can be shown that the Lévy measure of η as defined in (2.2) is the restriction
to R \ {0} of the image measure of ΠU,L under the mapping (R \ {−1}) × R → R,
(x, y) 7→ y

1+x
, and moment conditions for η can be expressed in terms of the characteristic

triplet of (U, L). We omit further detail here.

Convergence of E(U)t and Integrals Involving it

In the case ΠU({−1}) = 0 the characterisation of the existence of stationary solutions in
Section 4 will be achieved in terms of the almost sure convergence of

∫∞

0
E(U)s− dLs and∫∞

0
[E(U)s−]−1 dηs. So, finally in this section, we obtain necessary and sufficient conditions

for convergence of these integrals, which are also interesting in their own right.

We need also necessary and sufficient conditions for a Lévy process to drift to ±∞ in
terms of its characteristic triplet. The following is a reformulation of a result of Doney
and Maller (see Theorem 4.4 in [3]) for the process Û in terms of the characteristics of U .

In the case when E|Û1| = ∞, it describes in particular how the large time behaviour of

Û is determined by the behaviour of ΠU around −1 and for large values.

Theorem 3.5. Let U be a non-zero Lévy process with ΠU({−1}) = 0, let Û be defined by
(3.9), and recall (3.11).
(a) The following are equivalent:

(i) E(U)t converges almost surely to 0 as t → ∞.

(ii) Ût converges almost surely to ∞ as t → ∞.

(iii) 0 < EÛ1 ≤ E|Û1| < ∞, or
∫
(−3/2,−1/2)

∣∣ log |1 + x|
∣∣ΠU(dx) = ∞ and

∫

R\[−e,e]

log |x|ΠU(dx)

1 +
∫ 1/e

1/|x|
ΠU

(
(−1 − z,−1 + z)

)
z−1dz

< ∞.

(b) The following are equivalent:
(i) [E(U)t]

−1 converges almost surely to 0 as t → ∞.
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(ii) Ût converges almost surely to −∞ as t → ∞.

(iii) 0 < −EÛ1 ≤ E|Û1| < ∞, or
∫
|x|≥e

log |x|ΠU(dx) = ∞ and

∫

(−1−e−1,−1+e−1)

− log |1 + x|ΠU(dx)

1 +
∫ 1/|1+x|

e
ΠU

(
R \ [1 − z, z − 1]

)
z−1dz

< ∞.

(c) If none of the conditions in (a) or (b) is satisfied, then Û oscillates, equivalently,

0 = lim inf
t→∞

|E(U)t| < lim sup
t→∞

|E(U)t| = +∞.

Proof of Theorem 3.5: Let us prove (a). The equivalence of (i) and (ii) is clear from

(3.11). Further, by Theorem 4.4 in [3], Ût converges almost surely to ∞ if and only if

0 < EÛ1 ≤ E|Û1| < ∞, or

lim
x→∞

A+
bU
(x) = ∞ and

∫ −1

−∞

|x|ΠbU(dx)

A+
bU
(|x|)

dx < ∞,

where

A+
bU
(x) := 1 +

∫ x

1

ΠbU

(
(y,∞)

)
dy, x ≥ 1.

Using ΠbU = X(ΠU) (cf. (3.12)), it is then easy to see that this is equivalent to the condition
(iii). The proof of (b) is similar, and assertion (c) is well known (e.g. [18], Theorem 48.1).
2

The following is a version for the stochastic exponential of Theorem 2 of Erickson and
Maller [4], who characterised almost sure convergence of the integral

∫∞

0
e−ζs−dχs for a

bivariate Lévy process (ζ, χ).

Theorem 3.6. Let (U, L) be a bivariate Lévy process such that ΠU({−1}) = 0. Then the
following are equivalent:

(i)
∫ t

0
E(U)s−dLs converges almost surely to a finite random variable as t → ∞.

(ii)
∫ t

0
E(U)s−dLs converges in distribution to a finite random variable as t → ∞.

(iii) E(U)t converges almost surely to 0 as t → ∞ and

IU,L :=

∫

R\[−e,e]

log |y|ΠL(dy)

1 +
∫ 1/e

1/|y|
ΠU

(
(−1 − z,−1 + z)

)
z−1dz

< ∞. (3.18)

In the case of divergence, we have: if limt→∞ E(U)t = 0 a.s. but IU,L = +∞, then
∣∣∣∣
∫

(0,t]

E(U)s−dLs

∣∣∣∣
P
→ ∞, t → ∞, (3.19)

and if E(U)t does not tend to 0 a.s. as t → ∞, then (3.19) holds or there exists k ∈ R\{0}
such that

P

(∫

(0,t]

E(U)s−dLs = k(1 − E(U)t) ∀t ≥ 0

)
= 1. (3.20)

12



Proof of Theorem 3.6: Using E(U)t = (−1)Nte−
bUt , it follows in complete analogy to

the proof of Erickson and Maller [4] that
∫ t

0
(−1)Ns−e−

bUs− dLs converges almost surely to

a finite random variable if and only if Ût converges almost surely to +∞ as t → ∞ and

∫

R\[−e,e]

(
log |y|

1 +
∫ log |y|

1
ΠbU

(
(x,∞)

)
dx

)
ΠL(dy) < ∞,

which by Lemma 3.4 can be seen to be equivalent to (iii). The remaining assertions follow
similarly as in [4]. 2

Corollary 3.7. Let (U, L) be a bivariate Lévy process such that ΠU({−1}) = 0. Let (W, η)
be defined by (3.10) and (2.2). Then the following are equivalent:

(i)
∫ t

0
[E(U)s−]−1dηs converges almost surely to a finite random variable as t → ∞.

(ii)
∫ t

0
[E(U)s−]−1dηs converges in distribution to a finite random variable as t → ∞.

(iii) [E(U)t]
−1 converges almost surely to 0 as t → ∞ and IW,η < ∞, where IW,η is

defined similarly to (3.18), with ΠL being replaced by Πη and ΠU by ΠW .

Proof. This is an immediate consequence of Theorem 3.6 since [E(U)t]
−1 = E(W )t for

every t ≥ 0 by (3.15). 2

4 Proofs of Main Results

Proof of Theorem 2.1 (a) Suppose that Ût → ∞ a.s. as t → ∞. Then E(U)tV0 converges
a.s. to 0. Thus if a stationary solution (Vt)t≥0 exists, E(U)t

∫
(0,t]

[E(U)s−]−1 dηs tends to

V0 in distribution as t → ∞. By (3.2) this means that
∫
(0,t]

E(U)s−dLs
D
→ V0 as t →

∞ and hence
∫∞

0
E(U)s− dLs converges almost surely by Theorem 3.6. Let n ∈ N and

h1, . . . , hn ≥ 0. Since limt→∞ E(U)t = 0 a.s., and since

(Vh1 , . . . , Vhn
)

D
= (Vt+h1 , . . . , Vt+hn

), t ≥ 0,

an application of Slutsky’s Lemma shows that (Vh1, . . . , Vhn
) has the same distribution as

the distributional limit as t → ∞ of
(
E(U)t+h1

∫ t+h1

0

[E(U)s−]−1 dηs, . . . , E(U)t+hn

∫ t+hn

0

[E(U)s−]−1 dηs

)
.

This does not depend on V0. Hence any two stationary solutions have the same finite
dimensional distributions and hence the same distributions when viewed as random ele-
ments in D[0,∞).

Conversely, suppose that
∫∞

0
E(U)s− dLs converges almost surely to a finite random vari-

able and take V0 independent of (U, L) and with the same distribution as
∫∞

0
E(U)s− dLs.

Then, by (3.2), Vt converges in distribution to V0 as t → ∞, since limt→∞ E(U)t = 0.
Together with Lemma 3.3 this shows that

Vt = At−h,tVt−h + Bt−h,t
D
→ A0,hV0 + B0,h = Vh, t → ∞,
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for every h ≥ 0. Since also Vt
D
→ V0 as t → ∞ it follows that Vh

D
= V0. Since (Vt)t≥0 is a

Markov process by Lemma 3.3, this implies strict stationarity of (Vt)t≥0.

(b) Suppose that Ût → −∞ and hence [E(U)t]
−1 → 0 as t → ∞. Then if (Vt)t≥0 is a

strictly stationary solution, it follows that

V0 +

∫

(0,t]

[E(U)s−]−1 dηs = [E(U)t]
−1Vt

P
→ 0, t → ∞.

Hence −
∫∞

0
[E(U)s−]−1 dηs converges almost surely to V0 by Corollary 3.7, and this im-

mediately yields Vt = −E(U)t

∫
(t,∞)

[E(U)s−]−1dηs a.s.

Conversely, if
∫
(0,∞)

[E(U)s−]−1 dηs converges a.s., let V0 := −
∫
(0,∞)

[E(U)s−]−1 dηs. Then

Vt = −E(U)t

∫

(t,∞)

[E(U)s−]−1dηs =

∫

(t,∞)

(−1)(Ns−−Nt)e
bUs−−bUt dηs, t ≥ 0,

which is strictly stationary since (N, Û, η), as a Lévy process, has stationary increments.

(c) Suppose that Ût oscillates and let (Vt)t≥0 be a strictly stationary solution of (2.3).
By Theorem 3.6 this implies that (3.19) or (3.20) must hold. Suppose first that (3.19)

holds. Together with (3.2) this gives |E(U)t

∫
(0,t]

[E(U)s−]−1dηs|
P
−→ ∞ as t → ∞. Since Vt

is strictly stationary this and (2.3) imply that |V0E(U)t| and thus |E(U)t| tend to ∞ in
probability, too. Hence V0+

∫
(0,t]

[E(U)s−]−1dηs = [E(U)t]
−1Vt converges to 0 in probability,

hence in distribution, so
∫
(0,t]

[E(U)s−]−1dηs
D
→ −V0 as t → ∞, contradicting Corollary 3.7

because [E(U)t]
−1 does not converge to 0. Hence (3.19) cannot occur.

Now suppose that (3.20) holds, i.e. there is a constant k ∈ R\{0} such that for all t > 0 we
have

∫
(0,t]

E(U)s−dLs = k(1 − E(U)t) a.s., equivalently 1 +
∫
(0,t]

E(U)s−d(−Ls/k) = E(U)t

a.s. But since the unique adapted càdlàg solution to the stochastic differential equation
1+
∫
(0,t]

Zs−d(−Ls/k) = Zt is given by Zt = E(−L/k)t, we see that (3.20) is equivalent to

E(U) = E(−L/k) and hence to U = −L/k. From (2.2) and (3.10), this implies

ηt = −kUt +
∑

0<s≤t

k∆U2
s

1 + ∆Us

+ ktσ2
U = kWt,

so that
∫

(0,t]

[E(U)s−]−1dηs = k

∫

(0,t]

E(W )s−dWs = k(−1 + E(W )t) = (−k)(1 − [E(U)t]
−1) a.s.

by (3.15). We conclude that

Vt = E(U)t

(∫

(0,t]

[E(U)s−]−1dηs + V0

)
= E(U)t(V0 − k) + k, t ≥ 0, (4.1)

so Vt − k = E(U)t(V0 − k) a.s. Since Vt was assumed to be strictly stationary this yields

|V0 − k|
D
= |E(U)t||V0 − k| = e−

bUt|V0 − k|, because E(U)t = (−1)Nte−
bUt . Since |Ût|

P
−→ ∞,
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we get V0 − k = 0 a.s. and hence Vt = k a.s. for all t ≥ 0. So V is indistinguishable from
the constant process, since it has càdlàg paths.

Conversely, if there is a k ∈ R \ {0} such that U = −L/k, and V0 := k, then it follows
from (4.1) that Vt = k for all t ≥ 0, which is a strictly stationary solution. 2

Proof of Theorem 2.2: (a) Choose V0 to be independent of (U, L) with V0
D
= Zτ . Then

(Vt)t≥0 is a Markov process by Lemma 3.3, hence it suffices to show that Vt
d
= V0 for every

t > 0. Fix t > 0 and for k ∈ N0 let pk := P (K(t) = k) and let Tk be the time of the kth
jump of size −1 of U . Then by (2.7) we get, for x ∈ R,

P (Vt ≤ x) = p0P

(
E(U)t

(
V0 +

∫

(0,t]

[E(U)s−]−1dηs

)
≤ x

∣∣∣∣K(t) = 0

)

+
∑

k≥1

pkP

(
E(U)(Tk ,t]

(
∆LTk

+

∫

(Tk ,t]

[E(U)(Tk,s)]
−1dηs

)
≤ x

∣∣∣∣K(t) = k

)

=: A(x) + B(x), say.

By (2.4), U = Ũ and η = η̃ on {K(t) = 0}. Thus

A(x) = p0P

(
E(Ũ)t

(
V0 +

∫

(0,t]

[E(Ũ)s−]−1dη̃s

)
≤ x

)
.

Since τ and (Ũ , η̃) are independent, an application of the strong Markov property to the

Lévy process (K̃, Ũ , η̃), where K̃ is a Poisson process with parameter λ, independent of

(Ũ , η̃) and first jump time τ , shows that (Ũt+τ , η̃t+τ )t≥0 is a Lévy process with the same

distribution as (Ũt, η̃t)t≥0, independent of Zτ and V0. Together with V0
d
= Zτ this shows

E(Ũ)t

(
V0 +

∫

(0,t]

[E(Ũ)s−]−1dη̃s

)
D
= E(Ũ)(τ,t+τ ]

(
Zτ +

∫

(τ,t+τ ]

[E(Ũ)(τ,s)]
−1dη̃s

)
.

Hence we obtain for A(x), recalling that p0 = e−λt,

p0P

(
E(Ũ)(τ,t+τ ]

(
E(Ũ)τ

(
Y +

∫

(0,τ ]

[E(Ũ)s−]−1dη̃s

)
+

∫

(τ,t+τ ]

[E(Ũ)(τ,s)]
−1dη̃s

)
≤ x

)

= p0P

(
E(Ũ)t+τ

(
Y +

∫

(0,t+τ ]

[E(Ũ)s−]−1dη̃s

)
≤ x

)

= p0P (Zt+τ ≤ x)

= e−λt

∫

(0,∞)

P (Zt+y ≤ x) dPτ(y)

= λ

∫

(t,∞)

P (Zy ≤ x)e−λydy.

For B(x), recall that the times of jumps of size −1 on an interval [0, t] of the Lévy process U
given the value of K(t) = k have the same distribution as the order statistics of k uniformly
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distributed random variables on [0, t]. In particular, P (Tk ≤ y|K(t) = k) = (y/t)k for all
0 ≤ y ≤ t. Defining a random variable υ(k) with this distribution, independent of (U, L),
we conclude, recalling that pk = e−λt(λt)k/k!,

B(x) =
∑

k≥1

pkP

(
E(Ũ)(Tk,t]

(
Y +

∫

(Tk,t]

[E(Ũ)(Tk ,s)]
−1dη̃s

)
≤ x

∣∣∣∣K(t) = k

)

=
∑

k≥1

pkP

(
E(Ũ)t−υ(k)

(
Y +

∫

(0,t−υ(k)]

[E(Ũ)s−]−1dη̃s

)
≤ x

)

=
∑

k≥1

pkP (Zt−υ(k) ≤ x)

=
∑

k≥1

e−λt(λt)k

k!

∫

(0,t]

P (Zt−y ≤ x)d(y/t)k

= λe−λt

∫

(0,t]

P (Zt−y ≤ x)eλydy

= λ

∫

(0,t]

P (Zy ≤ x)e−λydy.

Summing A(x) and B(x) we obtain

P (Vt ≤ x) = λ

∫

(0,∞)

P (Zy ≤ x)e−λydy = P (Zτ ≤ x) = P (V0 ≤ x),

so that Vt
d
= V0, giving strict stationarity of (Vt)t≥0.

(b) Let (Vt)t≥0 be a strictly stationary solution of (2.7). Then for any n ∈ N and
h1, . . . , hn ≥ 0 we have

(Vt+h1 , . . . , Vt+hn
)

D
→ (Vh1, . . . , Vhn

), t → ∞,

and since K(t) → +∞ a.s. as t → ∞, it can be seen from (2.7) that the last expression
does not depend on V0. Hence any two strictly stationary solutions have the same finite
dimensional distributions and hence are equal as random elements in D[0,∞). 2

Proof of Corollary 2.3: To show sufficiency of each of the conditions (i)–(iii), it is
enough to suppose ΠU({−1}) = 0, since otherwise a strictly stationary solution exists by
Theorem 2.2. Then by Theorem 3.6 and Corollary 3.7, convergence of

∫∞

0
E(U)s− dLs and∫∞

0
[E(U)s−]−1 dηs imply limt→∞ E(U)t = 0 a.s. and limt→∞[E(U)t]

−1 = 0, respectively, so
that Theorem 2.1 (a), (b) shows sufficiency of conditions (ii) and (iii). By Theorem 2.1 (c),
condition (i) is sufficient if Û oscillates, but its proof shows that (i) is sufficient whenever
ΠU({−1}) = 0, since U = −L/k clearly implies Equation (4.1) by the same argument.
The uniqueness assertion is clear from Theorems 2.1 and 2.2.

To see that the existence of a strictly stationary solution implies at least one of the
conditions (i)–(iii), observe that this is clear from Theorem 2.1 if ΠU({−1}) = 0. In the
case that ΠU({−1}) > 0, denote by T1 the time of the first jump of U of size −1. Then
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T1 is finite almost surely and it is the case that E(U)t = 0 for t ≥ T1. Hence the integral∫∞

0
E(U)s− dLs converges almost surely, which is condition (ii). 2

Proof of Corollary 2.4: In the following we denote the quantities corresponding to
(U (n), L(n)) as needed in Theorem 2.2 (a) by η̃(n), T

(n)
1 , τ (n), etc. Observe that Ũ (n) = U and

η̃(n) = η. Further observe that convergence of
∫
(0,∞)

E(U)s− dLs implies that E(U)t → 0

a.s. as t → ∞ by Theorem 3.6. But since the distribution of ∆L
(n)

T
(n)
1

is σ for each n, it

follows that E(U)τ (n)Y (n) P
→ 0 as n → ∞ since λn → 0. Next, observe that

E(U)τ (n)

∫

(0,τ (n)]

[E(U)s−]−1 dηs
D
=

∫

(0,τ (n)]

E(U)s− dLs,

which follows from (3.2) by conditioning on τ (n) = t and using that τ (n) is independent of

(U, L). This, together with E(U)τ (n)Y (n) P
→ 0 implies that

V
(n)
0

D
= Z

(n)

τ (n)

D
→

∫

(0,∞)

E(U)s− dLs
D
= V0, n → ∞,

so that the marginal stationary distributions converge weakly. By Skorokhod’s theorem
we can then assume that V

(n)
0 and V0 are additionally chosen such that V

(n)
0 →V0 a.s. as

n → ∞, since this does not alter the distributions of the processes V (n) and V , respectively,

and we are only concerned with weak convergence. But since λn → 0 we have K
(n)
t

P
→ 0

as n → ∞ for fixed t ≥ 0, and hence it follows from (2.3) and (2.7), for any t > 0 and
ε > 0,

lim
n→∞

P

(
sup

0≤s≤t
|Vs − V (n)

s | > ε

)
= 0,

giving weak convergence of V (n) to V in the J1-Skorokhod topology (cf. Jacod and
Shiryaev [8], Lemma VI.3.31, p. 352). 2

5 Filtration Expansions

Having determined all strictly stationary solutions of (2.7), it is natural to ask whether the
strictly stationary process (Vt)t≥0 still satisfies (3.3) for the smallest filtration H = (Ht)t≥0

containing F, satisfying the usual hypotheses and which is such that V0 is H0-measurable.
In other words, we pose the question: does U at least remain a semimartingale with respect
to H?

In the causal cases described in Theorem 2.1 (a),(c) and Theorem 2.2, this is indeed the
case, as a consequence of Jacod’s criterion ([6], Théorème (1.1); see also [17], Corollary
1 to Theorem VI.11). For the noncausal cases, this is not at all evident. Clearly, if U is
of bounded variation, then U remains an H-semimartingale, but the general case is not
clear. The following theorem presents a sufficient condition for all F-semimartingales to
remain H-semimartingales. The proof is along the lines of Theorem (3.6) of Jacod [7],
who considered the case U = λt with λ > 0 below, in which case the distribution of V0 is
either degenerate, or absolutely continuous.
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Theorem 5.1. Let (U, L) be a bivariate Lévy process such that ΠU({−1}) = 0 and suppose
that limt→∞[E(U)t]

−1 = 0 a.s. and that V0 := −
∫
(0,∞)

[E(U)s−]−1 dηs converges a.s., where

η is defined by (2.2). Denote by Vt = −
∫
(t,∞)

[E(U)(t,s)]
−1 dηs, t ≥ 0, as in Theorem 2.1 (b),

the unique solution of (2.3), and suppose that the distribution of V0 is absolutely contin-
uous or a Dirac measure. Then every F-semimartingale is also an H-semimartingale. In
particular, U and L are H-semimartingales and (Vt)t≥0 solves (1.2) when considered as
an SDE with respect to the filtration H and is an H-semimartingale.

Proof of Theorem 5.1: First observe that

V0 = −

∫

(0,∞)

[E(U)s−]−1 dηs = −

∫

(0,t]

[E(U)s−]−1 dηs + [E(U)t]
−1Vt, (5.1)

so that (Vt)t≥0 is clearly adapted to H, and if V0 is a constant random variable, then
F = H and there is nothing to prove. So suppose that the law µ of V0 is absolutely
continuous. Since

∫
(0,t]

[E(U)s−]−1 dηs and [E(U)t]
−1 are measurable with respect to Ft but

Vt = −
∫
(t,∞)

[E(U)(s,t)]
−1 dηs is independent of Ft, and has distribution µ by stationarity

of V , (5.1) shows that the regular conditional distribution of V0 given Ft is given by

P (V0 ∈ B|Ft)(ω) = µ
(
E(U)t(ω)B + E(U)t(ω)

∫

(0,t]

[E(U)s−]−1 dηs(ω)
)

for every Borel set B in R and ω ∈ Ω. Hence if the Lebesgue measure of B is zero,
the Lebesgue measure of E(U)t(ω)B +E(U)t(ω)

∫
(0,t]

[E(U)s−]−1 dηs(ω) is zero as well, and

since µ is absolutely continuous it follows that P (V0 ∈ B|Ft)(ω) = 0. But this means that
the regular conditional distribution of V0 given Ft is almost surely absolutely continuous,
and hence by Jacod’s criterion ([6], Théorème (1.1); see also [17], Thoerem VI.10) every F-
semimartingale is an H-semimartingale. That then also V is an H-semimartingale follows
from Theorem V.7 in [17]. 2

The problem of characterising when the law µ of V0 := −
∫∞

0
[E(U)s−]−1 dηs appearing

in Theorem 5.1 is absolutely continuous is an open question. As pointed out by Watan-
abe [19], it follows from Theorem 1.3 in Alsmeyer et al. [1] that µ is either absolutely
continuous, continuous singular, or a Dirac measure, i.e. a pure types theorem holds for

µ. Watanabe’s proof is based on the fact that, by (5.1), V0
D
= Vt

D
= µ satisfies a distribu-

tional fixed point equation Vt
D
= V0 = MtVt + Qt, with Vt being independent of (Mt, Qt)

and P (Mt = 0) 6= 0, for which Theorem 1.3 in [1] applies. The same pure types theorem
holds by the same argument for the causal solutions of Theorem 2.1 (a).

While it follows from the arguments of Theorem 2.2 in Bertoin et al. [2] that V0 as defined
in Theorem 2.1 (b) is constant if and only if U = kL for some constant k 6= 0 (equivalently
that W = −kη as seen in the proof of Theorem 2.1 (c)), the question when this law is
absolutely continuous or continuous singular is much more involved. Lindner and Sato [15]
investigate the distribution −

∫
(0,∞)

[E(U)s−]−1 dηs when Ut = (1 − c−1)Rt for a constant

c > 1 and independent Poisson processes R and η, showing that the distribution can be
absolutely continuous or continuous singular, depending in an intrinsic way on c and the
ratio of the rates of the Poisson processes R and η.
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We conclude by mentioning that if ΠU((−∞,−1]) = 0 and ΠU 6= 0, U and L are
independent with L being of bounded variation with nonzero drift term, and V0 =
−
∫∞

0
[E(U)s−]−1 dηs converges almost surely, then it follows from Theorem 3.9 in Bertoin

et al. [2] that V0 is absolutely continuous. Further examples for absolutely continuous V0

with independent U and L can be found in Gjessing and Paulsen [5], covering also cases
when U is Brownian motion with drift.
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