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Abstract

De Haan and Karandikar [12] introduced generalized Ornstein—Uhlenbeck pro-
cesses as one-dimensional processes (V;)i>0 which are basically characterized by the
fact that for each h > 0 the equidistantly sampled process (V,n)nen, satisfies the
random recurrence equation Vo = A nyannVin—1n + Bn—1)ann 1 € N, where
(A=) hnh> Bn—1)h,nh)nen is an i.i.d. sequence with positive Agj for each h > 0.
We generalize this concept to a multivariate setting and use it to define multivariate
generalized Ornstein—-Uhlenbeck (MGOU) processes which occur to be characterized
by a starting random variable and some Lévy process (X,Y) in R"™*"™ x R™. The
stochastic differential equation an MGOU process satisfies is also derived. We fur-
ther study invariant subspaces and irreducibility of the models generated by MGOU
processes and use this to give necessary and sufficient conditions for the existence
of strictly stationary solutions of MGOU processes under some extra conditions.
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1 Introduction

Let (&,m) = (&, m)1>0 be a bivariate Lévy process and V) a random variable, independent
of (¢,n). Then, following De Haan and Karandikar [12] and Carmona et al. [6], the one-
dimensional process (V;):>0, given by

V,=e & (Vb +/ egs‘dns) , >0, (1.1)
(0,2]
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is called a generalized Ornstein—Uhlenbeck (GOU) process. We refer to Maller et al. [19] for
further information and references regarding GOU processes. A key feature of these pro-
cesses is that for any h > 0, the random sequence (V,,;,)nen, satisfies the random recurrence
equation Vin = Am—1)nnnVin—1)n + Bn—1)hnn, 1 € N, where (Ap—1)hnhs Bn-1)hnh)nen 18
an i.i.d. (independent and identically distributed) sequence with Ay ; > 0 almost surely.
Without assuming independence of V; and (£, ), processes of the form (1.1) are the only
processes having this property for any A > 0 and which satisfy some natural extra con-
ditions, as shown by De Haan and Karandikar [12]. In the present paper we extend the
setting of De Haan and Karandikar [12] to random matrices with real valued entries, i.e.
we aim to construct a process

(Vi)i=0, with V; = (V;g(i’j))lgz’gm e R™x!

1<j<i

in continuous time which fulfills the random recurrence equation
Vi=AsVi+ Bsy as., 0<s<t, (1.2)

for random functionals (Ag;)o<s<t, (Bst)o<s<: such that Ay, € R™™ and B,,; € R™*,
the Ay, are supposed to be non-singular and (Au—1)nnh: Brn-1)hnn), n € N, are iid.
for all h > 0. We also aim to characterize all processes in continuous time which have
this property and satisfy some natural extra conditions. The obtained solutions will be
called multivariate generalized Ornstein—Uhlenbeck (MGOU) processes since they extend
the key feature of one-dimensional generalized Ornstein—Uhlenbeck processes canonically.
Observe that the question of when a solution of (1.2) exists can be treated separately
for each column of (V;)i>o. Thus, if not stated otherwise, for simplicity we set [ = 1
throughout this paper, hence V; and B, are elements in R™.

To motivate the mentioned extra conditions, following the lines of De Haan and Karandikar
[12] observe that the condition of (1.2) to hold for all 0 < s < ¢ yields

Au,tVu + Bu,t = V; = As,t‘/s + Bs,t = As,tAu,sVu + As,tBu,s + Bs,ty 0<u<s<t.

Assuming that (Asy, Bst)o<s<t 1S unique now leads to Assumption 1(a) given below while
extending the i.i.d. property of (Am-1)nnh, Bn—1)hnn), 7 € N, for all A > 0 into the
continuous time setting yields the requirements 1(b) and (c). Finally, it is natural to
impose that (Ao)i>0 and (Byy):>o are continuous in probability at 0 since this, together
with 1(a),(b) and (c), implies the existence of cadlag modifications of the processes

(At)tzo = (AO,t)tZO and (Bt)tzo = (BO,t)tZO

as will be shown in Lemma 2.1 below. This motivates Assumption 1(d) below. We denote
the set of all invertible real m x m-matrices by GL(R, m), the identity matrix by I and by
0 the vector (or matrix) having only zero entries. We write «Lr for equality in distribution
and “P-lim” for limits in probability.

Assumption 1. Suppose the GL(R, m) x R™-valued random functional (Asy, Bst)o<s<t
with Ayy = 1 and B,y = 0 a.s. for all t > 0 satisfies the following four conditions.



(a) For all 0 <u < s <t almost surely

Aut = As,tAu,s and Bu,t == As,tBu,s + Bs,t‘ (13)

)

(b) For all0 < a <b<c<d the families of random matrices {(Ass, Bst),a < s <t <
b} and {(Asy, Bsyt),c < s <t <d} are independent.

(c) For all 0 < s <t it holds

(Asts Bog) = (Ao Boas). (14)
(d) It holds
P-lim Ay, =1 and P-lim By, =0. (1.5)
t10 £,0

The first main result of the paper will be a characterization of all random functionals
(Ast, Bst)o<s<t which satisfy Assumption 1, in terms of appropriate driving Lévy pro-
cesses. This will be achieved in Theorem 3.1 and then be used to define MGOU processes
as processes which satisfy (1.2) with (A, Bst)o<s<t subject to Assumption 1. It will be
also shown in Section 3 that MGOU processes satisfy the stochastic differential equation
(SDE) dV; = dU,V,_ + dL, for appropriate Lévy processes U and L if the starting random
variable Vj is independent of (Ao, Bot)i>0, extending a corresponding one-dimensional
result of De Haan and Karandikar [12].

A new aspect compared to the one-dimensional GOU process is the possibility of the
existence of affine subspaces H of R™ which are invariant under the model (1.2) in the
sense that Ay, H + B,y C H holds for all 0 < s < ¢. In Section 4 we give necessary and
sufficient conditions for the existence of an invariant affine subspace of the model (1.2)
and show that given the existence of a d-dimensional invariant affine subspace H, after an
appropriate orthogonal transformation of the underlying space, the MGOU process with
Vo € H consists of an (m — d)-dimensional constant process and an R-valued MGOU
process. Subsequently in Section 5 strictly stationary solutions of MGOU processes are
treated. Under some extra conditions we give necessary and sufficient conditions for their
existence and determine their form, extending corresponding one-dimensional results of
Behme et al. [3] and Lindner and Maller [18]. The proofs for the results of Sections 3-5
are given in Sections 6-8. A crucial ingredient for the derivation of the necessary and
sufficient conditions for stationarity are the results on stationary solutions of random
recurrence equations by Bougerol and Picard [4]. Section 8 also contains several auxiliary
results about multivariate stochastic exponentials. Some preliminary results are collected
in Section 2, where we also set further notation used throughout the paper.

Random recurrence equations have many applications in finance, biology or fractal im-
ages, to name just a few, see e.g. Wong and Li [27], Tong [26], or Diaconis and Freed-
man [7]. Hence multivariate generalized Ornstein—Uhlenbeck processes as their contin-
uous time counterparts have considerable potential for applications. In one dimension,
various applications of the GOU process are known. For example, the volatility of the
COGARCH(1,1) process of Kliippelberg et al. [16] or the risk process of Paulsen [20] are
one-dimensional GOU processes. As an example of an application of the MGOU process



to finance, we present in Example 3.6 the state vector process of the volatility process of
the COGARCH(q, p) model of Brockwell et al. [5] as a special case of an MGOU process.
Further applications of MGOU processes as multivariate volatility models seem possible,
but we shall not pursue this topic further in this paper but leave it to future research.

Finally, we mention that major parts of the results of this paper have been obtained in
the first named author’s doctoral thesis [2, Chapter 5].

2 Preliminaries

Throughout this paper for any matrix M € R™*" we write M~ for its transpose and let
M) denote the component in the ith row and jth column of M. Limits in distribution
will be denoted by “d-lim” or “i”, limits in probability by “P-lim” or “£>”, and “almost
surely” will be abbreviated by “a.s.”. The law of a random matrix Y will be denoted by
L(Y). We write N = {1,2,...}, Ny = {0,1,2,...} and log™ (z) := logmax{z, 1} for z € R.
Jumps of a matrix valued cadlag process X = (X;);>o will be denoted by AX; := X; — X,
with X;_ = limg X for ¢ > 0 and the convention Xy_ := 0.

Multiplicative Lévy processes

Recall that an (additive) Lévy process X = (X;)i>0 with values in R™*! is a process
with stationary and independent (additive) increments which has almost surely cadlag
paths and starts at 0. Here, an increment of X is given by X; — X, for s < t. We refer
to Applebaum [1] or Sato [23] for further information regarding Lévy processes. In the
following it will be also necessary to consider multiplicative Lévy processes with values in
the general linear group GL(IR, m) of order m, where the group operation is matrix mul-
tiplication. For that, remark that the group structure allows us to define (multiplicative)
left increments X, X ;' and (multiplicative) right increments X;'X; for 0 < s <t < o0
of a GL(R,m)-valued process. We say that the process (X;);>o in GL(R,m) has inde-
pendent left increments if for any n € N, 0 < t; < ... < t,, the random variables
Xo, X0, Xo o X, thll_ are independent. The process has stationary left increments if

n 1

X X! 2 X,_sX; " holds for all s < t. Stationarity and independence of right increments
is understood analogously. Now following the notations in the book of Liao [17] a cadlag
process (X¢)i>o in GL(R,m), m > 1, with Xy = I a.s. is called a (multiplicative) left Lévy
process, if it has independent and stationary right increments. Similarly, a cadlag process
(X¢)i>0 in GL(R,m), m > 1, with X, = I a.s. is called a (multiplicative) right Lévy pro-
cess, if it has independent and stationary left increments. Given a filtration F = (F);>o,
a left Lévy process (X;)i>o in GL(R,m) is called a left F-Lévy process, if it is adapted
to F and for any s < t the right increment X;'X; is independent of F,. Right F-Lévy
processes and (additive) F-Lévy processes are defined similarly.

The following lemma gives the connection between the random functionals A, ; satisfying
Assumption 1 and multiplicative Lévy processes.



Lemma 2.1.

(a) For any (Ast)o<s<t fulfilling Assumption 1 the process (At)iso = (Aot)i>o has a
cadlag modification which is a right Lévy process in GL(R, m). Conversely, if (At)i>o
is a right Lévy process in GL(R, m), then (Asi)o<s<t defined by Ay = Ay A fulfills
Assumption 1.

(b) For any (Asy, Bst)o<s<t fulfilling Assumption 1 the process (As, Bi)iso = (Aot, Bot)i>0
has a cadlag modification.

Proof. (a) Since by Assumption 1(a) we have A,A;' = A, it follows directly from
Assumption 1(b) and (c), that (A;);>0 is a stochastic process in GL(R, m) with stationary
and independent left increments. It is everywhere continuous in probability from the right
since by 1(a), (c¢) and (d)

-1 — - i = > .
P léﬂ)l At+h P 1}1?(’)1 At7t+hAt At7 t = 0

Similarly due to

Rt —_ P -1 _ DT -1 _ >
P lﬁngt_h P %ﬂ)lAtAt—h,t AP l}g{)lAh Ay, t>0,

it is also continuous in probability from the left such that by [25, Theorem V.3| a cadlag
modification exists which is a right Lévy process in GL(R,m) as specified above.

The converse is true by the definition of right Lévy processes.

(b) Since Byyn = Ay nA; ' By + Bigip, the process (By)iso is by Assumption 1(c) and (d)
everywhere continuous in probability from the right and similarly from the left. Hence it
admits a cadlag modification which can be shown by a simple extension of the proof in
the one-dimensional case given in [12, Lemma 2.1]. O

Since every set (Ast, Bst)o<s<t of random functionals satisfying Assumption 1 admits a
cadlag modification (A¢, B:)i>o by the preceding lemma, we may and do restrict attention
to such functionals with cadlag paths.

Matrix valued stochastic integrals

Given a filtration F = (F;);>o satisfying the usual hypotheses (cf. [21, p. 3]), a matrix-
valued stochastic process M = (M;);>o is called an F-semimartingale or simply a semi-
martingale if every component (Mt(i’j ))tZO is a semimartingale with respect to the fil-
tration F. For a semimartingale M in R™*™ and a locally bounded predictable process
H in R>*™ the R™*"-valued (left) stochastic integral I = [ HdM is given by 19 =
Sty S HOPAM®) and in the same way for M € R>*™ H € R™ ", the R -valued
stochastic (right) integral J = [ dMH is given by J9) = 377" [ HkI @M R Stochas-
tic integrals of the form [ HdM H' for locally bounded predictable processes H and H’
are defined similarly in the obvious way.

Given two semimartingales M and N in R™™ and R™*" the quadratic variation [M, N]
in R" is defined by its components via [M, N|:9) = S [M@R NED] Similarly its



continuous part [M, N]¢ is given by ([M,N]¢)®) = S0 [MGER NEIe With these
notations, for two semimartingales M and N in Rme and two locally bounded pre-
dictable processes G and H in R™*™ we have the following a.s. equalities as stated e.g.
in Karandikar [15]

[/ G dMs,/ dNH] — [ G NLH, t>o0, (2.1)
0] t

(0s¢]

[ ] - [[ men]. e e
(07'] t (0"] t

and the integration by parts formula takes the form

(MN), = [ M,_dN, +/ dM, N,_ +[M,N],, t>0. (2.3)
(0,¢] (0,¢]

The multivariate stochastic exponential

Stochastic exponentials of R™*™-valued Lévy processes will play a crucial rule in our con-
siderations. We first recall the definition of left and right stochastic exponentials from [21,
p. 325-326].

Definition 2.2. Let (X;)i>0 be a semimartingale in R™*™. Then its left stochastic ex-
<

ponential £(X); is defined as the unique R™ ™ -valued, adapted, cadlag solution of the
integral equation

7, = 1+/ Z. dX,, >0, (2.4)
(0.4

while the unique adapted, cadlag solution of

Zt:I+/ iX. 7, t>0, (2.5)
(04

- — -
will be called right stochastic exponential and denoted by E(X);. Both £(X) and E(X)
are semimartingales.

Unfortunately, unlike for one-dimensional stochastic exponentials as e.g. in [21, Theo-
rem 11.37], no closed form expression is available for general multivariate stochastic expo-
nentials, which makes their treatment more difficult. The SDE of the stochastic exponen-
tial for processes with values in arbitrary Lie groups has been studied by Estrade [10].

Remark that replacing Z and X by their transposes in (2.4) leads to the SDE (2.5) and
vice versa. Hence we have

E(X)E = (XY, (2.6)

As has been observed by Karandikar [15] a necessary and sufficient condition for non-
singularity of the left stochastic exponential of an R™*"-valued process X at time ¢, is to



claim that (I + AXj) is invertible for all 0 < s < t. Due to the above stated relationship
between left and right exponential this result holds true also for right exponentials and
hence any stochastic exponential is invertible for all ¢ > 0 if and only if

det(/ + AX;) #0 forall t>0. (2.7)

For GL(RR, m)-valued semimartingales, the stochastic logarithm is defined as follows.

Definition 2.3. Let (Z;)i>0 be a GL(R, m)-valued semimartingale with Zy = 1. Then the
— —
left stochastic logarithm Log Z and right stochastic logarithm Log Z of Z are defined by

— —
Log (Z;) = / Z'dZ,, and Log(Z;) = / Az, 7', t>0, (2.8)
(0,t] (0,]

respectively.

It is clear from the defining SDE dZ; = Z,_dX, for left stochastic exponentials that if
—
X is a semimartingale satisfying (2.7) with Xy, = 0, then Log £(X) = X and X is the
— —

unique semimartingale Y satisfying Yy = 0 and £(Y') = £(X). The same is true for right
stochastic exponentials and right stochastic logarithms.

The following one-to-one relation between multiplicative Lévy processes and stochastic
exponentials of additive Lévy processes is a key observation for the investigations in this
paper.

Proposition 2.4. Let F = (F,)i>0 be a filtration satisfying the usual hypotheses. Then

for every F-Lévy process (X¢)eso0 in R™™ fulfilling (2.7), the stochastic exponential Z; =

( Ve (resp. Zy = 5( )e) is a left (resp. right) F-Lévy process in GL(R,m). Con-

versely, if Z = (Zy)io0 is a left (resp. right) F-Lévy process in GL(R,m), then Z is an
— —

F-semimartingale and Log Z (resp. Log Z ) is an additive Lévy process in R™*™ satisfying
(2.7).

Sketch of Proof. The first part follows by simple calculations using the Markov property
of X, and we refer to [2, Prop. 5.5] for a complete proof. The converse has been observed
by Holevo [13] as a conclusion of results by Skorokhod [24]. Actually, there it is only
observed that Z is a semimartingale with respect to its augmented natural filtration, H

sy, and that Log Z and Log Z, resp., are H-Lévy processes, | but it is easy to see | that then

Log Z and Log Z are even F-Lévy processes, and since 3 (Log Z) =7 and F: (Log Z) =2,
resp., it follows that Z is an F-semimartingale. Again we refer to [2, Prop. 5.5] for detailed
calculations. O

Since the inverse and the transpose of a left Lévy process in GL(R,m) are right Lévy
processes and vice versa, for any additive Lévy process (X;)¢>o fulfilling (2.7) the process

-
(E(X); Yso is a right Lévy process and hence by the above proposition it is the right



stochastic exponential of another Lévy process (Up)i>o. In fact (see [15, Theorem 1]) if
(X¢)t>0 is a semimartingale such that (2.7) is fulfilled, then it holds

— «— —
EX) M =[EUN) T =£U), t20

with

U= =X+ [X, X+ > (I +AX,) = T+AX,), t>0. (2.9)

0<s<t
Remark that it follows from (2.9) by standard calculations that the processes U and X
fulfill the relation
Ut = —Xt - [X, U]t, t Z O7 (210)

and that if X is a Lévy process, then so is U and vice versa.

3 Multivariate Generalized Ornstein-Uhlenbeck
Processes

In this section we will characterize all families of random functionals (As;, Bs+)o<s<t sat-
isfying Assumption 1 and then will use this to define multivariate generalized Ornstein-
Uhlenbeck processes. Further, we show that every multivariate generalized Ornstein-
Uhlenbeck process (V;):> is a solution of the SDE

AV, =dU, V,_ +dL,

for a suitable R™*™ x R™-valued Lévy process (U, L). Conversely, provided that Vj is
Fo-measurable for some filtration F = (F;);>¢ satisfying the usual hypotheses such that
the Lévy process (U, L) is a semimartingale with respect to IF, the solution to this SDE is
a multivariate generalized Ornstein—Uhlenbeck process. The proofs for the results of this
section are given in Section 6.

The following theorem characterizes all choices of random functionals (As;, Bst)o<s<t
fulfilling Assumption 1. Recall that A; = Ay, B, = By, and that by Lemma 2.1 we can
restrict to cadlag versions of (A, By)i>o.

Theorem 3.1. Suppose that (As+, Bs)o<s<t satisfies Assumption 1 and that (At)i>o and
(By)i>0 are chosen to be cadlag. Then there is a unique Lévy process (X,Y) in R™*™ x R™
such that X satisfies (2.7) and such that

— 71<—
(As,t)_ _EOTEX),
By EQ [y E(X)u-dY,

The Lévy process (X,Y) is given by

—
Xi Log A;*

= . >0, 3.2

( Yi ) ( Joo Au- d(AT' B.) N 32



where the integral is defined as a stochastic integral with respect to the natural augmented
filtration of (At, Bt)i>o, for which (At)i>o and (Bi)i>o are semimartingales.

Conversely, if (X,Y) is a Lévy process in R™*™ x R™ such that X satisfies (2.7), then
(Ast, Bst)o<s<t defined by the right hand side of (3.1) satisfies Assumption 1.

Since a multivariate generalized Ornstein-Uhlenbeck process (V;);>o was supposed to sat-
isfy (1.2) with (As¢, Bst)o<s<t satisfying Assumption 1, Theorem 3.1 motivates the fol-
lowing definition.

Definition 3.2. Let (X,Y) = (X, Yi)i>0 be a Lévy process in R™*™ x R™ such that X
satisfies (2.7) and let Vi be a random variable in R™. Then the R™-valued process (Vi)i>o0,
given by

Vo £ ) (v0+ / E(X)s_dys>, £>0, (33)
(0,t]

will be called multivariate generalized Ornstein-Uhlenbeck (MGOU) process driven by
(X, Yi)es0. The MGOU process will be called causal or non-anticipative, if Vy is inde-
pendent of (X,Y), and strictly non-causal if V; is independent of (X, Ys)o<s<t for all
t>0.

It is easy to see that an MGOU process indeed satisfies (1.2). Remark that even for m = 1
Definition 3.2 is generalizing the standard definition of a generalized Ornstein-Uhlenbeck
process since we do not assume a priori that V4 is independent of (X, ¥;);>0 and also the
condition of £(X); ! to be strictly positive is dropped. Nevertheless it seems natural to us
to include these cases in the class of generalized Ornstein-Uhlenbeck processes. Observe
that any MGOU process with starting random variable 1, independent of (X,Y) is a
time-homogeneous Markov process.

Example 3.3.

— —
(a) If X; = At for some A € R™ ™ is a pure drift process then £(X); = £(X), = eM
and the MGOU process

t
%ze“(%+/eMdYs), t>0,
0

driven by (X,Y) is the usual multivariate Ornstein—Uhlenbeck type process driven
by Y as introduced in [22].

(b) If (X,,Y,) = (diag(X™, ..., x™™ ), v,V ..., v,"™)4), fe. if X is a Lévy pro-
cess concentrated on the diagonal matrices, and X satisfies condition (2.7), then
— —
E(X) = E(X); = diag(E(XEY),, ..., E(X™m),), where £(-) denotes the usual
one-dimensional stochastic exponential, and the ith component V@ of the MGOU
process (V;)¢>o driven by (X,Y) satisfies

AR (%“>+ e(X“v“)s_dn(“)? 120 i=1..m

(0,¢]



It follows that V@ is a one-dimensional MGOU process driven by (X Yy @) If
additionally X does not have jumps of size less than or equal to —1 and if Vo(i)
is independent of (X @) V(@) then V® is a GOU process. Observe that in general
components of MGOU processes are no MGOU processes if X is not concentrated
on the diagonal matrices.

An MGOU process can also be characterized by the stochastic differential equation it
satisfies.

Theorem 3.4.

(a)

Let (X,Y) be a Lévy process in R™*™ x R™ such that (2.7) holds, and let (V;)i>o
be the MGOU process driven by (X,Y') with starting random variable Vyy. Let F =
(Fi)i>0 be some filtration satisfying the usual hypotheses such that (X,Y) is a semi-
martingale with respect to F and Vyy is Fo-measurable. Then (V;)i>o solves the SDE

th == dUtV;f_ + st, (34)

where (U, L) is the Lévy process in R™™ x R™ with U as defined in (2.9) and L
given by

Li=Y,+ Y (I+AX)"'=I)AY, - [X,Y];, t>0. (3.5)

0<s<t

The process U satisfies
det(I + AU;) #0  for all t>0. (3.6)

Conversely, if (U, L) is a Lévy process in R™™ x R™ such that U satisfies (3.6),
F = (F)wo0 is a filtration satisfying the usual hypotheses such that (U,L) is an
F-semimartingale and Vjy is an R™-valued Fy-measurable starting random variable,
then the solution to (3.4) is an MGOU process driven by (X,Y), where (X,Y) is
the Lévy process defined by

X\ _ Log (£(U);)
(3) (Ltﬂﬁg(?w)-l),ut)’ = o

and X satisfies (2.7).

Observe that under the natural assumption that V; is independent of (X,Y") (i.e. for a
causal MGOU process), the smallest filtration F which satisfies the usual hypotheses and
is such that Vj is Fy measurable and (X, Y') is adapted to F is a filtration such that X, Y, U
and L are semimartingales with respect to it (cf. Corollary 1 of Theorem VI.11 in [21]),
as required in the statement of (a). A similar remark holds for (b) if V4 is independent of
(U, L).

In the following proposition we state some cross-relations between (X,Y) and (U, L)

defined by (2.9) and (3.5).
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Proposition 3.5. Let (X,Y) be a Lévy process in R™*™ x R™ such that X satisfies (2.7)
and let (U, L) be defined by (2.9) and (3.5). Then

L,=Y,+[UY], t>0, (3.8)

and

Finally, we show in the next example that the state vector of the COGARCH(q,m)
volatility process is an m-dimensional MGOU process.

Example 3.6. Let m,g € N, g < m, ¢1,...,¢pn,do,...,dp—1 € R with ¢,, # 0 and
dg-1#0,dy = ... = dp—1 = 0. Denote

0 1 0 0 0 do
0 0 1 0 0 dq
C= : , e= ,d=
0 0 0 1 0 s
—Cm —Cmpe1 —Cm—2 '+ —C1 1 A1

with C' € R™*™ e,d € R™, and let M be a one-dimensional Lévy process with non-trival
Lévy measure. Let § > 0. Then, as defined in [5], the COGARCH(q, m) process, driven
by M and with parameters C, § and d has (right-continuous) volatility process (St)i>o
given by

Sy=pB+d"V, t>0, (3.10)

where the state vector process V' = (V});>¢ is the unique cadlag solution of the stochastic
differential equation

AV, = CV,_dt + eS,_ d[M, M)\ = CV,_dt + e(8 + d*V,_)d[M, M)\, t>0, (3.11)

with initial value V), independent of (M;);>o. Here, [M, M]Ed) = D st (AM)? denotes
the discrete part of the quadratic variation of M. If the process (S;)i>¢ is non-negative
almost surely, conditions for which are given in Section 5 of [5], then G = (G})s>0, defined
by
G[) - O, th =\ St, th,

is called a COGARCH(q, m) process with parameters C, d, § and driving Lévy process
M.

It follows from [5, Theorem 3.3] and its proof that the state vector process (V;);>o satisfies
(1.2) with random functionals (As, Bs:) which satisfy Assumption 1, so that (V});>0 is
an MGOU process. Using the SDE (3.11) and Theorem 3.4, we get another proof of this,
observing that

AV, = CV,_dt+ Bed™V,_ d[M, M\" + Bed[M, M)\”
= (Cdt + Bed™ d[M, M|\\V,_ + Be d[M, M]\”
— AU, Vi + dLy,
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where

U, =Ct+ B[M,M|\Yed™ and L, = B[M, M]"e. (3.12)

Since the jumps of [M, M]@ are non-negative, it follows that U satisfies condition (3.6)
and hence that V' is a causal MGOU process by Theorem 3.4.

4 MGOU Processes Carried by Affine Subspaces

In this section we will classify MGOU processes which are carried by affine subspaces of
R™. To do that, we introduce the notion of irreducibility which we mainly adopt from
Bougerol and Picard [4] who studied generalized autoregressive models in discrete time.
The proofs for the results of this section are given in Section 7.

Definition 4.1. Suppose (Xi, Yy)i>o0 is a Lévy process in R™™ x R™ such that X satisfies
(2.7) and define (Ast, Bst)o<s<t by (3.1). Then an affine subspace H of R™ is called
invariant under the autoregressive model (1.2) if As;H + Bsy C H, almost surely, holds
for all 0 < s < t. If R™ is the only invariant affine subspace, the model (1.2) is called
irreducible.

Obviously, by Assumption 1(c), it is enough to require the above condition for s = 0
and all ¢ > 0. Remark that the given definition of invariant subspaces is more restrictive
than the one in [4], since e.g. setting Y; = B, = 0 and letting A; be a rotation operator
with angle 27t implies that in the discrete time model V,, = A,,_1,V;,-1 + B—14, n € N,
every point is a zero-dimensional invariant affine subspace, while only the rotation axis is
invariant for all ¢ > 0.

Accordingly, irreducibility of the continuous time model does not directly imply that for
all b > 0 the discrete time model V.., = Agi—1)n,nnVin—1)n + Bn-1)nnn, n € N, is irreducible
in the sense of [4]. But we can show the following proposition which states that at least
there is some h > 0 for which the corresponding discrete time model is irreducible. This
will be an important ingredient when proving Theorems 5.3, 5.4 and 5.7 below on the
existence of strictly stationary solutions.

Proposition 4.2. Suppose (X;,Y:)i>0 is a Lévy process in R™™ x R™ such that X
satisfies (2.7) and define (Ast, Bsit)o<s<t by (3.1). Suppose that the autoregressive model
(1.2) s irreducible. Then there exists h > 0 for which the discrete-time autoregressive
model

Von = A(n,l)hth(n,Uh + Bi—vhnn, m €N, (4.1)

1s 1rreducible in the sense that there exists no affine subspace H of R™, H # R™, such
that for alln € N, Ap—iypnn + Bin—1yhnn © H almost surely.

The next theorem treats MGOU processes where the corresponding autoregressive model
admits a d-dimensional invariant affine subspace H. It turns out that in this case we can
split up the process carried by H in a constant part and an R™~%valued MGOU process.
For convenience we first assume that H is parallel to the axes.
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Theorem 4.3. Suppose (Vi)i>o is an MGOU process with starting random variable Vj,
driven by the Lévy process (X, Yi)iso in R™™ x R™, where X fulfills (2.7), and let
(Ast, Bst)o<s<t as defined in (3.1).

(a) Assume that H = {(k1, ..., kg, hat1s - h) b hagt, oo by € RY with 1 < d < m

and constants ki, ..., kg € R is an invariant, affine subspace of R™ with respect to

the model (1.2). Then, given that Vo € H a.s., it holds V, = (5) € H a.s. for
t

eacht > 0 with K = (ky, ..., kq)*t and V; € R™~? and the Lévy processes X andY
satisfy for all t > 0

1

X, = (%ZQ f)%’) a.s. where X} € R™  and (4.2)
1 1

Y, = (3%)—(361;;{) a.s. where Yl € RY, (4.3)

The process (Vi) is an MGOU process driven by the Lévy process

(X, Y7 — X/ K) (4.4)

t>0

in RUn=Dx(m=d) 5 c Rm=d_ Fyrther, if (U, L) is defined as in (2.9) and (3.5), and if V;
is Fo-measurable for a filtration F = (F;)i>o0 satisfying the usual assumptions such
that U and L are semimartingales with respect to F (hence (V;)i>o solves the SDE
(3.4) by Theorem 3.4), then we have a.s. for each t >0

u; 0 L} : 1 dxd p1 d
Uy = e w and Ly = L2 with U, € R L, € RY, (4.5)
where L' = —U'K a.s. and (V;);>o solves the SDE

AV, = AUV, +d(L° +1CK), > 0. (4.6)

Conversely, if (4.2) and (4.3) hold for K = (ky,...,ks)* € R constant, then the
affine subspace H = {(ky, ..., ka,har1s - hm) 5 hasts - - hy € R} of R™ ds invari-
ant with respect to the model (1.2) and for any starting random variable Vo € H the

MGOU process defined by (3.3) can be written as V; = <{7() a.s., where (Vi)i>o is
t

an MGOU process driven by the Lévy process (4.4).

Remark 4.4. Observe that if in the setting of Theorem 4.3 the invariant affine subspace
H is not parallel to the azes, then there exists an orthogonal transformation matrixz O,
such that OH fulfills the assumptions of Theorem 4.3 for the transformed MGOU process
V' = OV. The process (V{)i>o fulfills the random recurrence equation V; = A, V! + B,
for 0 <s <t where A, = OA,;,O~" and B,,, = OBy, and hence by Theorem 3.1 it is an
MGOU process driven by (OX,07, OY;)i>0. Thus the study of arbitrary invariant affine
subspaces reduces to the case treated in Theorem 4.3.
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This observation and Theorem 4.3 imply the following characterization of irreducibility
of the model (1.2).

Corollary 4.5. Suppose (X, Y:)i>0 in R™ ™ x R™ is a Lévy process such that X ful-
fills (2.7). Then the autoregressive model (1.2) with (A, Bst)o<s<t as defined in (3.1)
is irreducible if and only if there exists no pair (O, K) of an orthogonal transformation
O € R™™ and a constant K = (ky, ..., kq)t € R4, 1 < d < m, such that a.s.

1 1
0X,07! = <3ng 9(6)3) and OY; = (xggK) where Xp € R ¢ >0, (4.7
t M t

With (U, Lt)i>o0 as defined in (2.9) and (3.5), Equation (4.7) is further equivalent to

1 T
OU,0™! = (35 £3> and OL; = ( %’;K) a.s. with U € R, (4.8)
t W t

5 Stationary Solutions of MGOU Processes

In this section we investigate conditions for the existence of strictly stationary solutions
of multivariate generalized Ornstein-Uhlenbeck processes. The proofs of the results are
given in Section 8.

Given some extra information on the limit behaviour of <g‘?(X ) our first theorem provides
necessary and sufficient conditions for the existence of stationary solutions of MGOU
processes. Before we state it we give the following lemma on stochastic exponentials
which is interesting in its own right.

Lemma 5.1. Let (X;)i>0 be a Lévy process in R™*™. Then for any t > 0 fized we have
that
d —

In particular this implies

P-lim £(X), =0 & P-lim &(X); = 0. (5.1)

t—o00 t—o00

— — —
Since £(U); = £(X); !, the condition P-lim,_,., £(U), = 0 appearing in Theorem 5.2(a)
—

below is equivalent to P-lim; . £(X), L—o. Hence, Theorem 5.2 gives necessary and
— —

sufficient conditions for stationarity if either P-lim; ,o, £(X); ! = 0 or P-lim;_,, £(X); =
0 and thus extends [3, Theorem 2.1].

Theorem 5.2. Suppose (V;)i>0 is an MGOU process driven by the Lévy process (X, Yy)i>o
in R™™ x R™ such that X satisfies (2.7). Let (U, Lt)i>0 be the Lévy process defined in
(2.9) and (3.5).
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H
(a) Suppose limy_,o E(U); = 0 in probability. Then a finite random variable Vi can be

e
chosen such that (Vy)s>o is strictly stationary if and only if the integral f(O,t] E(U)s_dLy
converges in distribution for t — oo to a finite random variable. In this case, the
distribution of the strictly stationary process (V;)i>o is uniquely determined and is 0b-

pl
tained by choosing Vi independent of (X, Y3 )10 with Vo 44 limy o f(o q E(U)s—dLs.
—

(b) Suppose lim;_,, E(X); = 0 in probability. Then a finite random variable Vi can be

(_
chosen such that (V;)i>o is strictly stationary if and only if the integral f(O,t] E(X)s_dYs
converges in probability to a finite random variable ast — oo. In this case the strictly
stationary solution is unique and given by

—
Vi = —S(X)t_l/ E(X)s_dY; a.s. for all t>0.
(t,00)

Observe that the solution obtained in Theorem 5.2(a) is causal and that the one in (b) is
strictly non-causal. By adding the assumption of irreducibility of the underlying model,
as characterized in Corollary 4.5, the above theorem can be sharpened as follows.

Theorem 5.3. Suppose (X, Yy;)i>0 @5 a Lévy process in R™*™ x R™ such that X satisfies
(2.7) and such that the corresponding autoregressive model (1.2) with (Ast, Bst)o<s<t aS
defined in (3.1) is irreducible. Let (V;)i>o be the MGOU process driven by (Xt, Y;)i>0 and
let (U, Lt)i>o be the Lévy process defined in (2.9) and (3.5).

(a) A finite random wvariable Vy, independent of (X, Y:)i>0, can be chosen such that
F
(Vi)i>o is strictly stationary if and only if limy_,oo E(U): = 0 in probability and the

Pl
integral f(o 1 E(U)s_dLg converges in distribution for t — oo to a finite random
variable.

(b) A finite random variable Vi can be chosen such that (V;)i>o is strictly stationary and
<
strictly non-causal if and only if limy_, E(X); = 0 in probability and the integral
E
Jou €(X)s—dY converges in probability as t — oo.

Given that the processes U and L have a finite log-moment Theorem 5.3 can be sharpe-
nend to obtain a necessary and sufficient condition for the existence of strictly stationary
solutions of MGOU processes in terms of the driving Lévy process as stated in Theo-
rem 5.4. To explain its conditions (iv) and (v) and relate it to the corresponding discrete
time results, let || - || be a fixed, submultiplicative matrix norm. Recall that the top Lya-
punov exponent of an R™™-valued i.i.d. sequence (C,)nen with Eflog™ ||Cy]|] is given
by

1
v = inf ~Eflog|Cy - -~ Call]. (5.2)

It is independent of the specific submultiplicative matrix norm used and it holds

1 1
v = lim —log||Cy---Cy|| = lim —log||C,,---C4|| as., (5.3)
n—oo N n—oo N
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cf. Furstenberg and Kesten [11] and Bougerol and Picard [4]. In [4, Theorem 2.5] it is
also shown that if the discrete time model W,, = C,,W,,_1 + D,,, n € Z, is irreducible,
where (C,,, Dp)nez is an i.i.d. R™™ x R™-valued sequence with E[log" ||Cy]]] < oo and
Elog™® || Dy||] < oo, then the discrete model admits a strictly stationary causal solution if
and only if the top Lyapunov exponent of the sequence (C),),en is strictly negative.

<7
Now if X and U are as in Theorem 5.4 (v), then E[log* ||U;||] < oo implies Eflog™ ||E(U)4]|] <
oo for every t > 0 as will be shown in Proposition 8.4 below. Since for each h > 0 the

— — —
sequence (Ap—1)hnn = S(U)nhS(U)(l_l)h)neN is ii.d. and E(U)nn = Am—1)hmh -+ Aops

n

it follows that there is A > 0 such that the top Lyapunov exponent of (A(n,l)h,nh)neN is

4>
strictly negative if and only if there is to > 0 such that Eflog® ||€(U)s,||]] < oo, which is
equivalent to condition (iv) below by Lemma 5.1.

Theorem 5.4. Suppose (Xi,Yy;)i>0 @5 a Lévy process in R™*™ x R™ such that X satisfies
(2.7) and that the corresponding autoregressive model (1.2) with (As, Bst)o<s<t as defined
in (3.1) is irreducible. Let (Vi)i>o be the MGOU process driven by (X, Y:)i>o and let
(Uy, Lt)¢so0 be the Lévy process defined in (2.9) and (3.5). Suppose that Ellog™ ||Ui||] < oo
and Ellog® ||L1||]] < co. Then the following are equivalent:

(i) A finite random variable Vo, independent of (Xy, Y:)i>0, can be chosen such that
(Vi)eso is strictly stationary.
— —
(ii) It holds lim;_,o, E(U); = 0 in probability and the integral f(O,t] E(U)s—dLg converges
in distribution for t — oo to a finite random variable.

—
(iif) 7t holds limy o E(U): = 0 a.s. and the integral [
t — oo to a finite random variable.

(—
(iv) There exists to > 0 such that Ellog ||E(U)4]|] < 0.

—
0.] E(U)s—dLg converges a.s. for

If additionally U is a compound Poisson process with jump heights (Sk)ken, then the above
conditions (i) to (iv) are further equivalent to

(v) The top Lyapunov exponent of the sequence (I 4+ Sk)ren is strictly negative.

Remark 5.5.

(a) A similar result as Theorem 5.4 also holds true for strictly non-causal strictly sta-
tionary solutions of MGOU processes in the irreducible case.

(b) The proof of Theorem 5.4 given in Section 8 shows that the implications “(iv) =
(i) = (ii) = ()7 and “(v) = (iii) = (ii) = (1)” also hold without assuming
wrreducibility of the underlying model.

Example 5.6. Consider the state vector process (V;);>¢ of the COGARCH(g, m)-volatility
process (St)i>o as defined in Example 3.6 with dV; = dU; V;— + dL; and (U, Lt)¢>0 given
by (3.12). Suppose that m = 2. Then it follows from Corollary 4.5 by a straightfor-
ward but tedious calculation, using that ¢y # 0, that the corresponding autoregressive

16



model (1.2) is irreducible. In particular, by Theorem 5.3(a), a strictly stationary (causal)
F
COGARCH(q, 2)-volatility state vector process exists if and only if lim; ,o, £(U); = 0 in
— —
probability and [, E(U)s—dLs = B3 <, €(U)s—e(AM;)? converges in distribution to

a finite random variable as t — oo. If in addition f‘x log || vas(dx) < oo, where vy

[>1
denotes the Lévy measure of M, then Elog" |U;]| < oo and Elog™ ||L;]] < oo, and by
—

Theorem 5.4 the above conditions are equivalent to Elog™ ||€(U)y,|| < 0 for some t, > 0.
That the latter condition is sufficient for a (causal) strictly stationary state vector to
exist was already observed in Remark 3.4(a) of [5], but having the irreducibility of the
model we now also know that it is necessary under the finite log-moment assumption on
var. Observe however that the volatility process (S;);>o defined in (3.10) may be strictly
stationary even without (V;);>o being strictly stationary, since it is only a specific linear
combination of (V;);>0 plus a constant. We shall not pursue the issue of strict stationarity
of (S¢)i>0 further. Also, we have not investigated if the autoregressive model (1.2) for the
COGARCH(q, m) volatility process with m > 3 is always irreducible.

-
In the case that the underlying model is not irreducible, P-lim; .o, £(U); = 0 is not
necessary for the existence of a causal strictly stationary solution as shown in the following
theorem.

Theorem 5.7. Suppose (X, Yi)i>0 @5 a Lévy process in R™ ™ x R™ such that X satisfies
(2.7) and let (V3)i>0 be the MGOU process driven by (X, Y:)i>o0 satisfying the autoregres-
sive model (1.2) with (Asy, Bst)o<s<t as defined in (3.1). Define (U, Li)i>o via (2.9) and
(3.5).

Then a finite random variable Vi can be chosen such that (V;);>o is strictly stationary and

causal if and only if there exists a pair (O, K) of an orthogonal transformation O € R™*™

and a constant K = (ky,...,kg)*, 0 < d < m such that (4.7) and hence (4.8) hold and
+— +—

such that P-limy .., E(U?); = 0 and f(o q E(U),_d(L? + U2K) converges in distribution

to a finite random variable as t — oo.

If these conditions are satisfied a strictly stationary solution can be obtained by choosing Vy
independent of (Xt, Yy)i>0 with the same distribution as the distributional limit as t — oo

of

K
o1 < .
(f(o,ﬂ E(U), (L2 + uzm)

If d = 0 in the above conditions then L2 + U2K has to be interpreted as L%, and if
H

d = m then U3 is zero-dimensional and the convergence conditions regarding € (U3); and
—

f(o,t] E(UP)s_d(L2 +UEK) do not appear.

Remark 5.8. Using arguments as in the proof of Theorem 5.3(b) a similar result as
Theorem 5.7 for strictly noncausal strictly stationary solutions of MGOU processes can
be obtained, too.
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Remark 5.9. The results in Sections 3 and 5 remain valid if we treat an MGOU process
(Vy)is0 with V; € R™ and drop the condition of | = 1. As the value of | has no influence on
the proofs we can simply replace the vector valued processes (Y:)i>o and (Li)i>o by Rm™x*L.
valued processes. Theorem 4.3 may be applied column-by-column or, alternatively, it is
possible to interpret the MGOU process (V;)i=o in R™* driven by (X¢, Yi)iso0, X; € R™X™
Y, = (Y}, ..., YY) € R™ as an MGOU process in R™ driven by the Lévy process

X, 0 Y}
. , in lexml % le'

0 X,) \Y}

>0

6 Proofs for Section 3

Before proving Theorem 3.1 we give the following proposition which establishes in partic-
ular the semimartingale property of (A;):>o and (By)i>o.

Proposition 6.1. Suppose (A, Bst)o<s<t 15 a process satisfying Assumption 1 and such
that (As, Bt)i>o is cadlag. Let H be the natural augmented filtration of (As, Bi)i>o. Then
(Ap)i>0 and (By)i>o are H-semimartingales. Further, the R™*™ x R™ x R™*™ x R™- valued
process (U, Ly, Xt, Yy)i>0 defined by

U, Log A; = {z%] iAlA !
B, — B,_
)L(t = Joa . t>0, (6.4)
Yt LogA e f A, dA!
t

Jou As- d(A;lBs)
15 an H-Lévy process.

Proof. Observe that (A;);>o is a right H-Lévy process by Assumption 1 and Lemma 2.1
and hence an H-semimartingale by Proposition 2.4. It follows that (Uy, L;, X;)i>0 as given
in (6.4) is well defined. By computations similar to those in the proof of [12, Theorem
2.2] one can show that for 0 < s <t

Uy — Us f(s,t] d<As )u As i—
Li— L, | = Bo— Jgd(As ) Asi_Bs we |, 0<s<t (6.5)
X, — X, Jisn Ao (AT )

By Assumption 1(b,c) we observe that (Assiu, Bsstu)u>0 4 (Ao us Bow)uso and thus we
obtain from (6.5) that (U, L, X) has stationary increments. By Assumption 1(b), (U; —
Us, Ly — Ls, X; — X,) is independent from #H; for 0 < s < t, where H = (H;);>0. We also
know that (Uy, Lo, Xo) = 0 a.s., that the paths of (U, L, X) are cadlag since that held
true for (A, Br)i>o, and that clearly (U, L, X) is adapted to H. Hence (Uy, Ly, X¢)i>0 is an
H-Lévy process. In particular, L is an H-semimartingale, so that by (6.4),

(Bt)izo = (Lt +/ dAs A72Bs )0

(0s¢]
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is an H-semimartingale, too. Consequently Y as given in (6.4) is well defined. For 0 < s <t
we then have from Assumption 1(a) that

Y,—Y, = / Ay d(A;'By)
(s,]
_ / A A, d(ATYATIA, B, + ATUATIB, ),
(s,]

= As,u— d(A;lBs,)u

(s:t]

It now follows in complete analogy to the reasoning given above that (U, L, X,Y) is an
H-Lévy process. a

Proof of Theorem 3.1. Let (As;, Bst)o<s<t satisfy Assumption 1. By Proposition 6.1,
(A¢)e>0 and (By)s>o are semimartingales with respect to their natural augmented filtration,
and (X,Y) defined by (3.2) is a Lévy process. Clearly, X satisfies (2.7), and for 0 < s <t
it holds

— —
As,t = AtAs,_l = (At_l)_lAgl - E(X);IS(X)S,
Furthermore, A;'dY; = d(A; ' B;) from (3.2), so that

B, = A, / AL dY, = £(X); / £(X)u_dYi,
(0,¢] (0,¢]

giving

Bs,t = Bt_As,tBs
— — — — —
_ 200 [ S0 dv, — SO E(X)E(X) / £(X).,. dY,
(0,9]

(0,¢]

— —
= 5(X);1/ E(X)y_dY,,.
(5.t

This is (3.1). The uniqueness of (X,Y") is clear from (3.1).

For the converse, let (X,Y") a Lévy process in R™*™ x R™ such that X satisfies (2.7). Let
F be the augmented natural filtration of (X, Y;)i>0, then (As¢, Bst)o<s<t as given in (3.1)
H

is well defined with respect to F and we know from Proposition 2.4 that £(X), ! is a right
F-Lévy process in GL(R, m) whose left increments are given by A, ;. Thus we have that
for all 0 < s <wu <t almost surely A;; = A, A, holds. Also it follows directly from the
definitions of A;,; and B, that By = A, +Bsy + By a.s. such that Assumption 1(a) is
fulfilled.

For the common process (Agy, Bst)o<s<t observe that for 0 < s <t we have

(2= 4o EX)TE(X),
By EX)EX); [iog EXTTE(X),-dY,
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— —
Since (A;);>o is a right F-Lévy process the common increments (&€(X); € (X)s, Yi — Yy)i>s
are independent of (X, Y, )o<u<s. Hence it follows that {(As+, Bs),a < s <t < b} and
{(Ast, Bst),c < s <t <d} with b < ¢ are independent. Similarly we conclude that

-
( As,t > g - - g( )t 15£(X) - — ( AO,t—s >
Bo E(X) (X0 figg €(X)p E(X)u-dY, Bo—s
which yields Assumption 1(c).

The continuity in probability at 0 of A, = Ao, is clear, while for B, = By it follows from
that of A; and Y; and the continuity of the integral. O

Proof of Theorem 3.4. (a) It is easy to see that (U, L) as constructed in (2.9) and (3.5)
is a Lévy process and that U satisfies (3.6). Define A; = Ay, and B, = By, for t > 0 by
the right hand side of (3.1). Then V; = A,V, + B;. By the definition of U, we further have
that dA; = dU; A;_. Hence, denoting L} := B; — f(o,t] dA, Al B,_ as in (6.4), we obtain

d‘/;g — dAt‘/E) + dBt — dUtAt_% + dBt
== dUt(Atf‘/(] + Btf) + dBt - dUtBt, = dUt‘/tf + dBt - dAt A;}Bt,
= dUV,_ +dL,.

It remains to show that L' = L. Using the integration by parts formula (2.3) and (2.2),
we obtain

L, = B, - / dA, A7'B,_
(0.1

- E(X);l/ E(X),dv,— [ d(E / £(X),_dY,
(0. (0. (0

— )7 E(X)dy, - X)) [ E(X), dY,
(0,4 (0,4

T

+/ £(X)d (/
(0,¢] (0,s]

- [ EeorE. v+ [ [ aEE. q

(0"] t

= Y+ [U Y],

(X)u_dYu) + F(X)‘l, /(07']§(X)u_dYu}

That L' = L then follows from the definition of U in (2.9) since

[U>Y]t = _[va]t+[[XvX]c’Y]t+

Y (I+AX) 1 —T+AX,),Y

0<s<-

= (XY + ) ([+AX,)™ = 1) AY..

0<s<t
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(b) Is is clear that (X,Y’) as defined in (3.7) is a Lévy process with X satisfying (2.7).
Observe that the given definition of (X;);>¢ is equivalent to (2.9) and that from the
definition of (Y;):>o we deduce

Y, = L+ X, L]
= Li+ > (AX,AL)+[X, L]
0<s<t

= Li— Y (I+AX)™ = 1) (I+AX)AL +[X,LJ;, t>0.

0<s<t

Hence AY; = (I + AXy)AL; and [X,Y]f = [X, L] and we conclude that

Y, = Li— ) (I+AX)"' —1)AY, +[X, Y], t>0,

0<s<t

— —
which is equivalent to (3.5). Thus the MGOU process (E(X)t_l <V0 + f(O,ﬂ S(X)S_dYS>>t>O

solves the SDE (3.4) by part (a), giving the claim by the uniqueness of the solution to
(3.4). O

Proof of Proposition 3.5. Equation (3.8) has been established when showing that
L’ = L in the proof of Theorem 3.4(a). Equation (3.9) follows from the fact that by (3.5),
AL, = (I + AX,)"'AY; and [X, L]¢ = [X, Y], so that by the same calculation as in the
proof of Theorem 3.4(b),

Li+[X. Ly =L — Y ([+AX,)" —=I)AY, +[X,Y];, t>0.

0<s<t

By (3.5) this implies (3.9). O

7 Proofs for Section 4

In this section we give the proofs of the results of Section 4.

Proof of Proposition 4.2. For v € Ny let C,, := Ay -+, D, := Bjs-» and consider the
random affine transformation f, : R™ — R" . x — C,x + D,, v € Ny. For 0 < d < m, a
d-dimensional affine subspace H of R™ will be called an affine d-flat, and it is f,-invariant
if f,(H) =C,H + D, C H a.s., which by Assumption 1(c) is equivalent to saying that
H is invariant for the discrete time model Vi, = A@—1)nnnVin—1)n + Bn—1)hnh: 1 € N,
as defined in (4.1) with h = 27", Since by (1.3) any subspace which is invariant for the
model (4.1) for some h > 0 is also invariant for the model (4.1) for every h' := kh with
k € N, it is clear that any f, invariant affine d-flat is also f,_j-invariant. Hence, denoting
the set of all f,-invariant affine d-flats by H%, 0 < d < m, it follows that HZ , C H?
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for all v € Ny, 0 < d < m, such that HZL = lim,, o HE = (72, H< can be defined for
0 < d < m. We further denote

m—1 m—1 o)
= U.’J—Cl‘f for veNy and H, := Uf}fgozﬂf}fy.

d=0

The proof of the proposition will be given in two steps: first it will be shown that irre-
ducibility of the continuous time model (1.2) implies Ho, = 0, and in a second step that
Hoo = (0 implies the existence of some vy € Ny such that H,, = (), i.e. that the discrete
time model (4.1) is irreducible for h = 27%°

The first step will be shown by contradiction, i.e. we assume that H,, # 0, i.e. that there
exists an affine subspace H # R™ of R™ which is invariant under f, for all v € N. Thus,
as argued above, H is also invariant under the model (4.1) for all h = k27 k € N, v € N.
It then remains to show that Ay, H + By, C H holds for all £ > 0, i.e. that H is invariant
under (1.2). But this follows easily from the fact that (Ao;):>0 and (By:):>0 have almost
surely cadlag paths, so that for every number ¢ > 0 we can find a sequence (t,),en of the
form t,, = k,27"» converging from the right to ¢ such that almost surely,

AO,tH + BO,t = h_)m (AO,th + BO,tn) g H.

Hence H is an invariant affine subspace of the continuous time model (1.2) giving the
desired contradiction.

It remains to show that Ho, = (7=, H% = 0 implies the existence of some v such that
H,, = 0. Since any affine 0-flat H of the form H = {z} is f,-invariant if and only if
(f, — I)(z) = 0 a.s., and since f, — I is an affine linear mapping, its kernel is an affine
linear subspace of R™, S, say, and we have H% = {{z},z € S,}. Since S,;; C S,, it
follows that there is 11 € N such that S, ., = S,, for all n € Ny. Hence, Ho, = 0
implies that there is 14 € N such that fHB = () for all ¥ > 14, and in the following we can
concentrate on invariant affine d-flats with 0 < d < m.

Fix a family (O, K) = {(Opn, K ), H affine d-flat with0 < d < m} of pairs of an orthogonal
transformation Oy € R™*™ and a constant Ky € R™ such that H := OgH — Ky =
{0}m~4 x R?. Then given v € N and some affine d-flat H we obtain by easy computations
that H is invariant under f, : # — C,x + D, if and only if the subspace H' is invariant
under the mapping g, : R™ — R™ x C,z + D, with C, = OxC, Oy' and D,
OuD, + (OHCZ,OI}1 — I)Kpy. Using the special structure of H’ this yields that H’ is
invariant under g, if and only if it holds almost surely

Cld) =0 and DY =0 for all (i,7) € Jy = {(4,5),1 <i < d,d < j <m}.

This is by definition of 5’,, and lN),, equivalent to state that, almost surely,

S oRPekD 0 = 3T 0P oY) = 0 and (7.1)
k=1 k=1
> oF Dk 43" (Z oMol o ) KW — KD = 0 forall (i, j) € Jy. (7.2)
k=1 q=1 \k,l=1
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By introducing the matrices My ; ; and Ng; in R™*™ via
MiD = 0GM0%Y and NP =3 OGMOWIKD, ki=1,....m,
q=1

denoting the ith row of the matrix Oy by Og") and letting vec (-) : R™™ — R™ be the
vectorization operator which stacks the colums of a given matrix below one another, (7.1)
and (7.2) turn out to be equivalent to

vec (Mpy ;) vec (Cy) vec (Np,;) vec (C))
< 0 | D, > =0= < ©O%Nh: 1,1 D, > V(i) € Ju,
0 -1 KW -1

almost surely, where (-, -) denotes the standard scalar product in R™+m+1 Now set

vec (MHJ'J') vec (NH,Z)

R, := span U 0 , (Og,"))L (i,4) € Jy p CR™HmHL
HEH,N\HD 0 KW

where span denotes the linear span. Then by the above we have established that R, is
orthogonal to (vec (C,)*, D, —1)%, a.s., and that, given an affine d-flat H, 0 < d < m,
it is invariant under f, if and only if all corresponding vectors (vec (Mg, ;)*,0,0)* and
(vec (Ngi)*, 0% KN for (i, 5) € Jy are in R,

Finally, as R, is a vector space and we have that R,y C R, we observe that its limit
for v — oo can only be empty (which is equivalent to |J), H% = @) if there exists
some 15 € N such that for all v > v, we have R, = (). Hence it holds H, = 0 for all
v > vy := max{vy, 1} so that the discrete time model (4.1) is irreducible for all v > 1
as had to be shown. a

Proof of Theorem 4.3. (a) We start by verifying (4.2) and (4.3). Since H is an invariant
affine subspace we deduce from (1.2) that for any ¢ > 0 and all hgyq,...,h, € R the
equation

Ai(kry oo kg hait, - h)t A+ Be= (k1o kds Gaet, -, Gm) T A
has to admit a solution g4.1, ..., gn € R. This is equivalent to

ZkA<”+ZhA”>+b -k, Vi=1,....d

J=d+1

ZkA(”+ZhA”)+b = gy Vi=d+1l,....m

j=d+1

Thus we can conclude that Aff’j ) = 0 holds a.s. for i < d,7 > d. Observe by simple
algebraic calculations that if two matrices M and N in R™*™ have a d x (m — d) block of
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zero entries in the upper right corner, then so do M~! and M N. More detailed we have
for

- Ml 0 . Nl 0 mxm dxd
M = (M2 Ms) € GL(R,m) and N = (N2 Ng) eR , My, N7 € R4,

that M; and M3 are non-singular and it holds

1 M o My Ny 0
M _( M; MM J\/[ and - MN =N + 0N, MN; )

— — —
Now recall that 4, = £(X);* and thus we know that £(X); and £(X);* a.s. admit a
d x (m — d) zero block for all t > 0. Hence it follows from (2.8) that also X; a.s. has such
a zero block which is (4.2). Thus we deduce from (2.4) that

< & 0 I+ [lel ax! 0
Xe = - ’ Lt ey t> ‘
F= (82 8?) (fgeidx;+ fredaxz 1+ fleraxs) 170 (7.3)

“— —
and observe in particular that & = £(X'); and &} = £(X?); hold for ¢ > 0. Inserting the
previous results in (3.3) yields for all ¢ > 0 a.s.

= (0) = Cen e @) [(5)+/<} (e et )2

_ ()1 K
- (—(8?)183(85>1K+<8?>1vo> (74)
¥ )
—(ep)tee ! 81 dw S ES Y2+ [ e dy!

The equation for the first d entries of (7.4) is equivalent to

K+ | €0, dy =) K=K+ | &Y dX'K as.,t>0,
(0,¢] (0,t]

from where we deduce (4.3). From the equation for the second m — d entries of (7.4) we
derive under use of (4.3), (2.4) and (7.3) that

-
Y, — £(%), 1V,

- E(x3) (/ &5 qy? 4 / €2 dX'K — €2(e})! (1+/ e;_dx;) K)
0.4] (0.4 0.4

€3 dy? + / 2 X K — £28(X1) 1 E (XY, )
(0.1

([,
( &3 ay? 4 / eg_dx;K_( / &2 dx! + / sg_dxg) K)
0 t] (O,t} O,t] (O,t]

I
MT

—X2K) as., t>0,
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such that (4.4) is shown.

Finally let (Uy, L;)i>0 be the Lévy process defined in (2.9) and (3.5). By Theorem 3.4,
(Vi)i>0 solves the SDE (3.4) with respect to F. Observe that by the same argumentation

as for X or alternatively by (2.9) we deduce that for all ¢ > 0 it holds Ut(i’j ) =0 as.
for i < d,j > d. By inserting U and L as given in (4.5) in the SDE (3.4) we obtain
L' = —UW'K in the first and (4.6) in the second component. This completes the proof.

(b) Inserting (4.2) and (4.3) in (3.3) directly gives the assumption by calculations similar
as under (a). O

Proof of Corollary 4.5. By Remark 4.4, 1t only remains to shOW the equlvalence of (4. 7)

and (4.8). For that, observe that S(U) S(X) and thus S(OUO Dy = 5(OXO H!
Hence, as shown in the proof of Theorem 4.3, OXO~! has a dx (m—d) block of zero entrles

&
in the upper right corner, if and only if the same is true for £(OX0O™1), equivalently for

— —
E(OXO™1)™!, and hence equivalently for OUO™! = Log (£(OXO~')™!). It follows that
OX,07! is of the form as specified in (4.7) if and only if OU,O~! is of the form specified in

— —
(4.8), and as seen in the proof of Theorem 4.3, it further holds that £(U!), = £(X');*. To
see the equivalence of the relations regarding OY; and OL,, suppose first that Y; satisfies
(4.7). Then by (3.8),

_ XK ut o XK
OLt:O}/:‘,‘F[OUO 1,OY]t: ( ‘Q% > + |:<u2 ug) 5 ( yg ):|t,
and the upper d components on the right hand side of this equation are given by

XK + UL XK = —UW K

— —
where the last equation follows from (2.10) since £(U'); = £(X1),;*. It follows that L,
satisfies (4.8). Conversely, if (4.8) holds, then it follows from (3.9) that

B _1 (WK X0\ [—UK
O}/;g = OLt + [OXO ,OL]t = ( Lt2 + xQ xg ) [42 , )

and as above it follows from this equation and (2.10) that Y; satisfies (4.7). O

8 Proofs for Section 5

In this section we give the proofs for Section 5 along with a few results on multivariate
stochastic exponentials which will be needed but are also interesting in their own right.
We start by introducing an approximation of the stochastic exponential which will be a
useful tool. Namely, the following result is due to Emery [8].
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Lemma 8.1. Leto = (to = 0,t1,...,t;,...) witht; — 0o and |o| := sup ey [t;—t; 1] < o0
be a subdivision of the positive real line. Let X be a Lévy process in R™*™. Then the

— —
processes E(X)? given by £(X) =1 and
—
S(X)? = (_[ + th)(] + th - th) cee (I + th - th—l)(‘[ + Xt — th) (85)

-
fort; <t <t;41 converge to £(X) uniformly on compacts in probability when |o| tends to

— —
0. Similarly, by (2.6) it follows that the approzimating processes €(X )7 with £(X)§ =1
and
%
S(X)g - ([ —|‘ Xt - th)(j + th - thfl) e ([ + Xt2 — Xt1)<j —|— th) (86)

%
fort; <t <ty converge to £(X) uniformly on compacts in probability when |o| tends
to 0.

Now we can easily prove Lemma 5.1.

Proof of Lemma 5.1. Fix ¢ > 0 and for n € N let ¢ = (0,¢/n,2t/n,...) be a subdi-
vision of the positive real line. Then the approximations of the left and right stochastic
exponential as defined in (8.5) and (8.6) are given by

.
EX)] = I+ X))+ Xogyn — Xopn) -
T (I + X(n—l)t/n - X(n—?)t/n)(l + Xt - X(n—l)t/n> and

ﬁ
EX)] = (I+Xy = Xpn-ytm)U + Xn1)t/n — Xn—aytn) -
T ([ + X2t/n - Xt/n)([ + Xt/n)

o d

-
Since X is a Lévy process it has stationary and independent increments, so that &€ (X)¢

o
E(X)?. Letting n tend to infinity yields the assumption by Lemma 8.1. O

Apart from transposition and inversion, another connection between left and right Lévy
processes in GL(IR,m) is given via time reversal, which is treated in (8.7) of the following
lemma. Observe that X defined below has the same law as (—Xj)o<s<t-

Lemma 8.2. Let t > 0 be fized and suppose (X;)s>o is a Lévy process in R™ ™. Define
the time reversed process X = (X,)o<s<t by X5 := Xy—s— — Xy—. Then

EXEX)G ) = E(=X), as. forall 0<s<t, (8.7)

and

- — -
EX)trs)-E(X); ' = E(Xpr. — Xy)s—  a.s. for all s> 0. (8.8)

Proof. Due to similarity we only prove (8.7). For notational simplicity assume ¢ = 1. Let
o=(s0=0,81=1/n,80=2/n,...), n € N, be a partition of the positive real line. Then
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for any i = 0,...,n — 1 we have a.s. by (8.5)

E(-X)7, = (I-Xy)(-Xy +X,.)
= ([-Xy) - (I-X, —+Xo . )
= (I+X,, — X, ) I+ X, — X))
= (I+X,, = Xsy) (U + Xy, — X))
T+ X, —Xo, )T+ X )T+ X)) (T + X, — X, )7t

— E)EX)T)

where we have used the fact that at fixed time s; the process X and thus X a.s. does
— - — —
not jump. Hence we have established that £(—X)7_, = £(X){(E(X)J)~! a.s. holds for
—

all s € {0,1/n,2/n,...,(n — 1)/n}. Letting n tend to infinity gives us £(—X);_, =
— —

E(X)1(E(X),_)tas. forall s € QNI0,1). Finally the fact that left and right exponential
as multiplicative Lévy processes have cadlag paths yields the assumption. O

With the aid of Lemma 8.2 we can prove the following proposition which in turn will
be needed to prove Theorem 5.2. It generalizes Proposition 2.3 in [18] and its exten-
sion Lemma 3.1 in [3] to a multivariate setting. Remark the switch of direction of the
exponential in the distributional equality which results from a time change.

Proposition 8.3. Suppose (X;,Y:)i>0 is a Lévy process in R™™ x R™ such that X
satisfies (2.7) and define the process (U, Ly)i>0 by (2.9) and (3.5). Then it holds for each
t>0

— — . d — — —
W), [ W) tdy, 2 E(U)s_dYer[S(U),Y] — [ eW),dL, as (89)
(0,1] (0,1] t (0,t]

and analogously

—

E(X)t/ E(X);_ldLsi/ E(X)S_dLS%—[E(X),L} :/ £(X),_dY, a.s. (8.10)
(0,1] (0,1] t (0,]

Proof. The almost sure equalities in (8.9) and (8.10) follow directly from (3.8) and (3.9),
respectively, under use of (2.1) and (2.4), while the distributional equalities will be shown
following the proof of [21, Theorem VI.22]. Due to similarity we restrict on showing (8.9).
Fix t > 0 and define for 0 < s <t

ﬁs = Ut — U(t—s)— and }A/S = Y; — Y'(t_s)_.

For n € N let o = (0,t/n,2t/n,...) be a partition of the positive real line, set

Hszzg(U)s and G,:=Y,, 0<s<t,
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and define the additional random variables

n—1
A% = Z Ht i+1 /n(Gt i+1)/n — Gtz/n)
i=0
n—1 n—1
= Z Hyijn(Giiivrym — Grijn) + Z(Ht(i+1)/ — Hyifn)(Giir1ym — Grim)
=0 =0
n—1
BT = — Z Hygiy1)n—(Grit1)n— — Gtin—)-
i—0

Since integral and quadratic variation are defined component-by-component, letting |o]|
tend to zero, we obtain by [21, Theorems I1.21 and I1.23]

A / H, dG, + [H,G; = / E(0)s_dY, + [E(0), V],
0,t] (0.¢]

d

4 / E(U)s-dY, + [E(U), Y],
(0.]

where the last equality follows from the fact that (US,Y)0<S<t = (Us, Ys)o<s<t which

— . ~ <
yields (£(U)s, Ys)o<s<t £ (E(U)s, Ys)o<s<t- On the other hand remark that by definition
Giit1)n— — Grijn— = Yin—iy/n — Yin—i— 1/n_for ZE {0,...,n — 1} and since by (8.7) we

have for 0 < s <t that Hs_—g( U)s- = EWU)EU) L, it holds

n—1

" — —
B = =3 EWEW) iy Yetniy/m = Yen-i-1)/n)
=0

- Z g t(z 1)/n }/”/” - }/t(l_l)/n)

B _swy, [ Ew)ay., o] —o.

(0,¢]

A combination of A% and B gives

A° + B°
n—1 n—1
= Z Hyi11) i (AGyis1)n — AGify) + Z AHyi11)/n(Giigr)n— — Grijn—)
1=0 =0
= 0 a.s.

since at fixed times G and H a.s. do not jump. Hence the limits of A and B add to zero
which gives the assumption. a

With the above proposition at hand we can now prove the conditions for strict stationar-
ity of MGOU processes stated in Theorem 5.2.
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(_
Proof of Theorem 5.2. (a) Assume that lim, ,,, £(U); = 0 in probability and sup-
ﬁ

pose that (V;)¢>o is strictly stationary. Then by (5.1) we have that lim; ., £(U); = 0 in
probability and obtain

d ) ) - - - .
Vo = d- tlgn Vi=d-lim ( E(U) Vo + EU): EU),_dYs | .

t—o00 (Oﬂf]

— - -
Thus by (8.9) we conclude that [, €(U)s—dL, L (), [ron EU)1dY; tends to V; in

(0,¢]
distribution as stated.

— —
Conversely, assume that lim;_,., £(U); = 0 in probability and f(o 00) E(U)s_dLg converges
—
in distribution and set V; independent of (Uy, L;)¢>o such that Vg < d—limy_ o f(o q E(U)s_dLs.
Then by (8.9), letting ¢ tend to infinity, V; converges in distribution to Vj. Since (V})>0
satisfies (1.2) with (At 41n, Biitn) independent of V; this yields for all A > 0
Vo £ d- lim Vi, = d- lim AyoiVi + Bion = AoaVo + Bos = Vi

such that (V});>¢ is strictly stationary, since it is a time homogeneous Markov process.

-
For (b) suppose that lim; ,, £(X); =0 in probablhty and that (V;);>0 is strictly station-
%
ary. Then we have that V; + f(o q (X)s—dYs = 5 (X):{V; — 0 in probability as t tends to
—
infinity. Hence Vp = P-limy o (— f E(X dYS) showing one direction of (b).

—
Conversely, setting Vy = — f(o E(X )s_dY yields directly that

Vi = —£(X)] / E£(X),dY, = — /
(t,00) (t,00)

and hence by applying the inverse of (8.8) we observe that for any ¢ > 0 it holds

(U).E(U); Y,

Qe

N —
V, = —/ EWUp. —U) 2 d(Yees — Vi) 2 —/ EU)1dY, = V.
(0,00) (0,00)

Thus for any ¢t > 0, n € Nand 0 < hy < ... < h, we obtain from (1.2) with
(A, t1+h, A;tﬂthMJrh) independent of V;; that

(‘/;7 ‘/;f-i-hla ety ‘/;-f—hn)

= (Atin Vern, = Brirna)s Artny svn, Visnn = Bithyttnn)s -5 Vitn,)

d _
= (Agh, Vi, = Bow)s At (Vi = Brynn)s -+ Vi)
= (‘/07Vh17"'avhn)
such that (V});>¢ is strictly stationary. O

Proof of Theorem 5.3. (a) In view of Theorem 5.2 it remains to show that the existence

«—
of a strictly stationary and causal solution (V;);>¢ implies P-lim; ,o, £(U); = 0. For this,
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observe that by Proposition 4.2 there is some A > 0 such that the correEpondigg discrete
time model V,,;, = An,h‘/(n—l)h+Bn,h7 n € N, where An,h = A(n—l)h,nh = g(U)nhg(U)(_nl_l)h
and B, j, := Bn—1)hnn, is irreducible. Since (A, B, Vin—1)n)nen is strictly stationary, we
can extend it to a new stationary process (A, 1, By, Vin—1)n)nez and observe that (Vi )nez
is a strictly stationary, causal solution of the irreducible autoregressive model V,,;, =
A, WVin-1)n + By, n € Z. Thus by Bougerol and Picard [4, Theorem 2.4] we have that a.s.
the product Ao,hA e CA_ k.p converges to 0 as k — co. By the stationarity of (An h)nez
this yields that the product AhhAk_l,h Al,h tends to 0 in probability as k — oo which
—

%
is equivalent to P-lim,, o €(U)n, = 0 and by (5.1) also to P-lim,,_,o £(U)nn = 0. Denote

by |- || some submultiplicative matrix norm and by |z | for z € R the largest integer which
%

is smaller than or equal to z. Then P-lim, ., £(U),, = 0 together with

— — —
@) < IE@ wmnll — swp O E@)]
[t/hJh<s<(|t/h]+1)h

and

<— d —
s )W) L sup [EW))
Lt/hJh<s<(|t/h]+1)h s€[0,h]

%
for t > 0 imply that P-lim; ., £(U); = 0 by Slutsky’s lemma as had to be shown.
(b) As above and with the same notations, in view of Theorem 5.2 and Proposition 4.2

we need to prove P-lim;_, <(g(X ): = 0 given the irreducibility of the underlying discrete
model V,,;, = fln,hV(n_l)h + Bpy, n €N, for some h > 0 fixed and provided that (V;);>o is
strictly stationary and strictly non-causal. It can be easily seen that (fln,h, Bmh, Vin-1) h)neN
is strictly stationary and thus can again be extended to a strictly stationary process
(Anh,Bnh,V(n )h)nez. Where by the provided strict non-causality V;;, is independent
of (Ak iy Bin)k<n- Defining the process (Cppn, Dpns Wan)nez by Cnp = A” ih?Dnh =

—A7L B, » and W, := V_,;, we see that it is strictly stationary and obtain that W,
fulﬁlls the autoregressive model

W(n+1)h = Cn,hth + Dn,ha n e Za (811>

where Wy, is independent of (Cy p, Dip)k>n and hence it is causal. The model (8.11) is
irreducible since any invariant affine subspace of the model (8.11) is also an invariant affine
subspace of the initial model V,,;, = An wVin-1) w+ B, hn €N namely, suppose there exists
an invariant affine subspace H of (8. 11) then we have a.s. A~} \H—A"! B, = H since
the mapping = — Afmh — A,n,hB—n,h is bijective. Thus it follows A_th + B_mh =H
such that H is invariant under the initial model. Hence we can again apply [4, Theorem
2.4] and an argumentation as under (a) yields the result. O

For the proof of Theorem 5.4 we need some further preparations.

Proposition 8.4. Let (X;)>o be a Lévy process in R™™ such that Eflog" | Xi]|] < oo
Then

E[sup log" HE(X)SH] < oo and E[ sup log™ HS( )sll] < o0]  forall t>0. (8.12)

0<s<t <s<t
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Proof. Due to similarity we will only treat left exponentials in this proof and for simplicity
we fix t = 1.

Define the Lévy processes (X?)i>o and (X} )i such that X; = X?+ X7 with [|[AX?| < 1/2,

t >0 and (Xf = Zgil Yy )i>0 being a compound Poisson process with parameter A > 0,

jump times T}, i € N and jump heights Y;, i € N such that ||Y;|| > 1/2 for all i € N. Then
—

«—

X" satisfies (2.7). Define U’ corresponding to X’ by (2.9), i.e. such that £(U°) = £(X*)~1.
Then both X? and U” have bounded jumps.

It is an easy consequence of the definition of the stochastic exponential (2.4) that

— Ny — —
S(X>t - (H g(Xb)(Tk—lka](I + Yk)) E(Xb)(TNpt]7 t Z 07

where

Cxh COXV-Le XY — e (%P

E(X) sy = EX)EX) = EWU)E(X"), 0< st
Taking norms then implies that for each ¢ € [0,1] (observe that || I| > 1),

Ni+1 Ni

— — Ni+1 —
1ECO < (sup uewb)sn) (sup ||5<Xb>s||) AN
0<s<1 0<s<1

k=1

Using the independence of Ny, (Y3)ren and (X, U®) then shows that

Bllo® sup [ECXLI] < BV +1) (Ellog" sup €011+ Ellog” sup [E(X).1])

< 0<s<1
N1
+E Y log(||1]] + [|Yal])- (8.13)
k=1

Since X? and U” have bounded jumps and hence finite second moment, it follows from

Jacod et al. [14, Proposition 5.2(a)] that supy,<; ||§(Ub)s|| and Supg<s<; HE(Xb)SH have fi-
nite second moment and in particular finite log-moment. Since EN; < oo and Elog™ [|Y| <
oo by assumption, an application of Wald’s identity shows that the right-hand side of
(8.13) is finite, which is the claim. 0

Lemma 8.5. Suppose (X;);>0 is a Lévy process in R™™ satisfying Ellog™ || X1]|] < oo
and (2.7) and assume there exists t > 0 such that

%
Ellog™ ||E(X)4]|] < 0. (8.14)
Then there exists a constant X\ > 0 and an a.s. finite random time 7 such that

R
1E(X)s|| < e, forall s> (8.15)

In particular there exists an a.s. finite random variable C' such that

||§(X)S|| < Ce™, forall s>0. (8.16)

The above remains true if all right exponentials are replaced by left exponentials.
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Proof. For simplicity we assume again that ¢ = 1 and due to similarity we only prove
the result for one type of stochastlc exponentlals this time for right exponentials. Denote

= 5( Jn—1,n] = 5( In E(X) ~, for n € N, then (FE,)nen is an ii.d. sequence of
random matrices. By (8.14) the top Lyapunov exponent 7 of the sequence (E,)nen (cf.
(5.2)) is strictly negative. By (5.3) this implies that
—
lim n~'log [|€(X),|| = lim n~tlog||E,---Ei|| =7 <0 as.
n—oo n—oo

and thus for A’ > 0 such that A" < || there exists a random time 7’ such that

= /
1E(X)ul| <™, forall n>7,neN. (8.17)
- - - -
Define F, := sup,c (i) |€(X)mall, n € No, where €(X)(n,g = £(X),E(X),, then the

sequence (F,)nen, is i.i.d. and by Proposition 8.4 it holds E[log" F}] < oo. Hence we
conclude for 0 < X" < X

iP(Fn ZP logt Fy > \'n) <
n=1

and thus by the Borel-Cantelli Lemma we obtain that P(limsup,, ,. {F, > ¢*"}) =0
Consequently there exists a random time 7" such that

F, < N forall n > 7.

Together with (8.17) this gives

- - - 1" ! ’ 1"
1€l = 11€(X) (s E (X sy} < eV = @O for all - [s] > max{7’, 7"}

and hence (8.15) and (8.16). O

Proof of Theorem 5.4. The inclusion (iii)=-(ii) is clear and (ii)=-(i) is Theorem 5.2(a).

-
To prove (iv)=-(iii), observe that since £(X); — 0 a.s. as t — oo by Lemma 8.5, all what
remains to show is that for all 7, 7 = 1,..., m the integral f(o . S(X)S,’J)dLg]) converges a.s.
as t — 0o. Therefore observe that again by Lemma 8.5 there exists a random time 7 and a

— ..
constant A > 0 such that |€(X)™| < e~ for all s > 7. Writing L, = L’ + L?, where each
component of L’ is a square integrable martingale with zero mean and (L#)\7) consists of
all jumps of LY which have absolute value greater than one, exactly the same reasoning as

in the proof of sufficiency of Theorem 2 in [9, pp. 84-85] shows that [, , &(X )W) gy
converges a.s.
Further, if M denotes the total variation of (LY@ over [0, s], then M) is a subordinator

with finite log-moment and hence f(o o) edMY converges as. by [9, Theorem 2]. By

< ..
8.16) this implies almost sure convergence of (X)) q(HY) and thus finishes the
(0,00) s
proof of (iv)=-(iii).
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To prove the inclusion (i)=-(iv), let (V;);>0 be a strictly stationary causal solution. By
[4, Remark 2.8] for every h > 0 there exist sequences (Am—1)hnh, Bn-1)hnh)—nen, €
GL(R, m) x R™ and (Vnh)—neN € R™ such that (A(n—l)h,nfuB(n—l)h,nh)nGZ is 1.i.d and
(Viun)nez is a strictly stationary causal solution of

Von = A(n—l)h,nhv(n—l)h + B(n—l)h,nha forall neZ. (8.18)

By Proposition 4.2 there exists h > 0 for which the model (8.18) is irreducible. Hence
by [4, Theorem 2.4] the product AgpA_po- -+ A_ph —(n—1)n converges a.s. to 0 as n — oo.
Thus

Afnh’_(n_l)h X 'Afh,oAé,h —+0 as.as n— o0

and by [4, Lemma 3.4] this implies that the top Lyapunov exponent of <AJ—_nh,—(n—1) 1) neNo
is strictly negative. Since by the equivalence of norms there are constants c;,co > 0
such that ci||D|| < ||D*|| < || D|| for all D € R™ ™ the top Lyapunov exponent of
the sequence (A_,p,—(n—1)n)nen, coincides with that of (Afnh,—(n—l)h)nGNO by (5.3). Hence
there exists ng € Ny such that

0 > FElog|AopA—no- A no—1)h,—(no—2)nl
= Flog ||A(n0—1)h,noh e Ah,2hAo,h||

= Elog||€(U)nenl-

Together with Lemma 5.1 we obtain (iv).

Now suppose that U is a compound Poisson process with jump heights (S )xen such that
(v) holds. Then due to the finite log-moment of U we obtain as in the proof of Lemma 8.5
by [11, Theorem 1] that there exist A > 0 and a random K € N such that

(14 S)(IT4Sy)---(I+Sp)|| <e™ forall k> K.
Hence there exists a random time 7 such that

-
IE@)ll = |[(T+S1)(I +S2)--- (I +Sy,)| <e ™ foral t>r.

This implies E(U)t — 0 a.s. as t — oo and the a.s. convergence of f(o,oo) E(U)s_dLS as in
the proof of (iv)=-(iii). Hence we get (iii).

Conversely assume that (iii) holds, then E(U)Nt — 0 a.s. and hence (I4S51)([+S53) - - - ({+
Sk) — 0 a.s. as k — oo. By [4, Lemma 3.4] this implies that the top Lyapunov exponent
of the sequence ((I 4 Si)*)ren is strictly negative, which by (5.3) and the equivalence of
norms coincides with the top Lyapunov exponent of (I + Si)ren. Hence we get (v). O

Proof of Theorem 5.7. Sufficiency of the given condition as well as the stated form
of the distribution follow directly from Theorem 4.3(b) together with Remark 4.4 and
Theorem 5.2(a).

To prove necessity assume that (V;):>o is strictly stationary and let G be the smallest
affine subspace of R™ with P(Vy € H) = 1. Since (V;)>0 is strictly stationary it is clear
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that G is invariant under the model (1.2). Let H C G be an arbitrary invariant affine
subspace of minimal dimension. Then the model (1.2) is irreducible on H in the sense that
there exists no subspace F' C H which is invariant under (1.2). Hence by Proposition 4.2
there exists hy > 0 such that the discrete-time model (4.1) admits no invariant affine
subspace ' C H for any h of the form h = 27%hq with k € Nj.

By [4, Proposition 2.6] the space H carries a causal, strictly stationary solution (Wn(h))neN
of the model (4.1) for any such h. Moreover the marginal distribution of this solution is
uniquely determined by [4, Theorem 2.4] as the model (4.1) is irreducible on H. Since any
strictly stationary solution of the model (4.1) for h = 27%hg, k € Ny, is strictly stationary

in the model (4.1) for hy, too, this implies ﬁ(WO(TkhO)) = E(Wého)) for all £ € Ny. Hence a
starting random variable, independent of (X,Y’) and with distribution E(Wo(ho)), yields a
strictly stationary solution of the model (4.1) for any h of the form h = 27%hg with k € No.
Using the fact that MGOU processes have cadlag paths, the MGOU process (W;);>o with
LWy) = £(Wéh°)) and W, independent of (X,Y") is a strictly stationary solution of the
continuous-time model (1.2). Finally as the model is irreducible on H, Theorems 4.3(a)
and 5.3(a) together with Remark 4.4 provide that the stated condition holds. O
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