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Abstract

Let (Mn, Qn)n∈N be an i.i.d. sequence in R2. Much attention has been paid
to causal strictly stationary solutions of the random recurrence equation
Xn = MnXn−1 + Qn, n ∈ N, i.e. to strictly stationary solutions of this
equation when X0 is assumed to be independent of (Mn, Qn)n∈N. Goldie and
Maller (2000) gave a complete characterisation when such causal solutions
exist. In the present paper we shall dispose of the independence assumption
of X0 and (Mn, Qn)n∈N and derive necessary and sufficient conditions for a
strictly stationary, not necessarily causal solution of this equation to exist.

Keywords: Causal, non-anticipative, non-causal, random recurrence
equation, strictly stationary

1. Introduction

Let (Mn, Qn)n∈N be an i.i.d. sequence in R2, (M,Q) a generic copy of it,
and let the real-valued process (Xn)n∈N0 be defined recursively by

Xn = MnXn−1 +Qn, n ∈ N, (1)

where X0 is some starting random variable, defined on the same probability
space. Our goal is to characterise when the starting random variable X0

can be chosen such that the derived process (Xn)n∈N0 is strictly stationary,
meaning that for all n ∈ N0,m ∈ N and h1, . . . , hm ∈ N0,

L(Xh1 , . . . , Xhm) = L(Xh1+n, . . . , Xhm+n)
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where L(Y ) denotes the law of a random vector Y . Much attention has been
paid to this question when X0 is assumed to be independent of (Mn, Qn)n∈N,
in which case (Xn)n∈N0 becomes a time-homogeneous Markov process. In
this case, an independent X0 can be chosen such that the process becomes
stationary if and only if the Markov process admits an invariant probability
measure µ, in which case X0 and µ are related by µ = L(X0). By the
definition of the invariant measure, this is further equivalent to saying that
the distributional fixed point equation

L(X) = L(Q+MX), with X independent of (M,Q),

has a solution. A complete solution of when such a distributional fixed point
and hence a choice of an independent X0 exists making (Xn)n∈N0 strictly
stationary has been achieved by Goldie and Maller (2000, Theorem 3.1),
while necessary and sufficient conditions under some extra conditions had
been obtained earlier by Vervaat (1979, Theorems 1.5 and 1.6). We also
mention Brandt (1986, Theorem 1), who gave sufficient conditions when
(Mn, Qn)n∈N0 was allowed to be stationary and ergodic rather than i.i.d.,
and Bougerol and Picard (1992) who consider a multivariate extension of
Vervaat’s result. We refer to the paper by Goldie and Maller (2000) for
further references when X0 is assumed to be independent of (Mn, Qn)n∈N.

In time series analysis, the assumption that X0 is independent of the
sequence (Mn, Qn)n∈N is termed a causality-assumption or also a non-anti-
cipativity assumption, and a corresponding solution a causal solution. The
aim of the present paper is to dispose of this causality assumption and to
characterise completely when X0, possibly dependent on (Mn, Qn)n∈N, can
be chosen such that (Xn)n∈N0 becomes strictly stationary. It will turn out
that non-causal solutions which depend on the future may indeed exist. The
present paper can then be seen as a discrete time analogue of Behme at al.
(2011), who consider strictly stationary solutions of the stochastic differential
equation dVt = Vt−dUt+dLt with Lévy noise. Note also that related questions
for ARMA processes (with deterministic coefficients) have been dealt with in
(Brockwell and Davis, 1991, Theorem 3.1.3 and Problem 4.28) for the second
order stationary case, and in (Brockwell and Lindner, 2010, Theorem 1) for
the strictly stationary case. A discussion of non-causal autoregressive models
in economic time series can be found in Lanne and Saikkonen (2011).
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2. Preliminaries

Let (Mn, Qn)n∈N be an R2-valued i.i.d. sequence defined on a probability
space (Ω,F , P ) , let X0 be a random variable on the same probability space,
and define (Xn)n∈N0 by (1). Denote

Πn :=
n∏

i=1

Mi, n ∈ N0,

with the usual convention that the empty product is 1. By successive itera-
tion, it is easy to see that

Xn+h =

(
n+h∏

i=h+1

Mi

)
Xh +

n+h∑
i=h+1

(
n+h∏
j=i+1

Mj

)
Qi ∀ h, n ∈ N0. (2)

By Theorem 3.1 (c) of Goldie and Maller (2000), if P (M = 0) = 0 and
P (Q +Mc = c) < 1 for all c ∈ R, then a causal strictly stationary solution
of (1) exists if and only if

∑∞
n=1Πn−1Qn converges almost surely absolutely,

in which case L(
∑∞

n=1 Πn−1Qn) is the unique invariant measure. In (Goldie
and Maller, 2000, Theorem 2.1), they also give a necessary and sufficient
condition for this sum to converge almost surely absolutely. It will be also
an important tool for the proof of our characterisation of all (not-necessarily
causal) solutions we give in Theorem 2 below. For a random variable X, we
denote its distribution by PX , and if P (X > 0) > 0 we denote

AX(y) := E(X+ ∧ y) =

∫ y

0

P (X > x) dx, y > 0. (3)

Then the function (0,∞) → (0, 1], y 7→ AX(y)
y

is nonincreasing, cf. (Goldie

and Maller, 2000, Remark 2.2). We can now state those parts of Theorem
2.1 of Goldie and Maller (2000) which are relevant for our further investiga-
tions. In the formulation below, the equivalence of (ii) and (iii) and the last
assertions follow from Theorem 2.1 together with Lemma 5.5 (applied with
Z0 := 0) in Goldie and Maller (2000).

Theorem 1. (Goldie and Maller, 2000, Theorem 2.1)
Let (Mn, Qn)n∈N be an i.i.d. sequence in R2 with generic copy (M,Q) such
that P (Q = 0) < 1 and P (M = 0) = 0. Then the following are equivalent:

(i) Πn → 0 a.s. as n → ∞ and
∫∞
1

log q
A− log |M|(log q)

P|Q|(dq) < ∞.
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(ii) The infinite sum
∑∞

n=1 Πn−1Qn converges almost surely absolutely.
(iii) Πn → 0 a.s. as n → ∞ and

∑n
i=1Πi−1Qi converges in distribution to

a finite random variable as n → ∞.

If Πn → 0 a.s. (n → ∞) but
∫∞
1

log q
A− log |M|(log q)

P|Q|(dq) = ∞, then |
∑n

i=1 Πi−1Qi|
converges in probability to ∞ as n → ∞. Further, if Πn does not converge
almost surely to 0 as n → ∞ and P (Q + Mc = c) < 1 for all c ∈ R, then
|
∑n

i=1Πi−1Qi| converges in probability to ∞ as n → ∞.

Observe that if P (M = 0) = 0, P (Q = 0) = 1 and Πn → 0 a.s. (n → ∞),
then conditions (i), (ii), (iii) of Theorem 1 are automatically satisfied.

Conditions for the almost sure convergence of Πn to 0 have been obtained
by Kesten and Maller (1996, Lemma 1.1). To state their results, let (Mn)n∈N
be an i.i.d. sequence of real valued random variables such that P (M1 = 0) =
0. Consider the random walk

Sn :=
n∑

i=1

(− logMi), n ∈ N.

Then
∏n

i=1Mi converges almost surely to 0 if and only if Sn drifts almost
surely to +∞ as n → ∞, and

∏n
i=1M

−1
i converges almost surely to 0 if and

only if Sn converges almost surely to −∞ as n → ∞. Further, it is well
known that (Sn)n∈N either converges almost surely to +∞, or converges al-
most surely to −∞, or oscillates in the sense that −∞ = lim infn→∞ Sn <
lim supn→∞ Sn = +∞ almost surely. Then by Lemma 1.1 in Kesten and
Maller (1996), we have Sn → ∞ a.s. as n → ∞ if and only if either 0 <
E(− log |M |) ≤ E

∣∣ log |M |
∣∣ < ∞, or E(log |M |)− = ∞ and∫∞

1
y

A− log |M|(y)
Plog |M |(dy) < ∞ with A− log |M | as defined in (3). Similarly,

Sn → −∞ a.s. as n → ∞ if and only if either

0 < E(log |M |) ≤ E
∣∣ log |M |

∣∣ < ∞, (4)

or

E(log |M |)+ = ∞ and

∫ ∞

1

y

Alog |M |(y)
P− log |M |(dy) < ∞. (5)

Since limy→∞ Alog |M |(y) is finite if and only if E(log |M |)+ < ∞, we see that∫ ∞

1

y

Alog |M |(y)
P− log |M |(dy) < ∞ (6)

is implied by both (4) and (5), hence (6) always holds whenever
∏n

i=1M
−1
i →

0 a.s. (n → ∞).
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Remark 1. If P (M = 0) = 0 and E
∣∣ log |M |

∣∣ < ∞, then Πn → 0 a.s.
(n → ∞) if and only E log |M | < 0, in which case A− log |M |(x) converges to
E((− log |M |)+) < ∞ as x → ∞. Hence, provided that E

∣∣ log |M |
∣∣ < ∞,

condition (i) of Theorem 1 can be replaced by

E log |M | < 0 and E log+ |Q| < ∞,

where log+(x) = log(max{1, x}) for x ∈ R, cf. (Goldie and Maller, 2000,
Cor. 4.1).

3. Results

The following is our main result and characterises when X0 can be chosen
for (1) to have a strictly stationary, not necessarily causal, solution.

Theorem 2. Let (Mn, Qn)n∈N0 be an i.i.d. sequence in R2 with generic copy
(M,Q). Consider the random recurrence equation (1).
(a) Suppose that P (M = 0) > 0. Then a random variable X0 (possibly on
a suitably enlarged probability space) can be chosen such that the stochastic
process (Xn)n∈N0 is strictly stationary. This stationary solution is unique in
distribution and obtained by choosing X0 independent of (Mn, Qn)n∈N with

L(X0) = L

(
∞∑
i=0

(
i∏

j=1

Mj

)
Qi+1

)
. (7)

(b) Suppose that P (M = 0) = 0 and that
∏n

i=1Mi converges almost surely
to 0 as n → ∞, i.e. that

∑n
i=1 log |Mi| → −∞ a.s. as n → ∞. Then the

following are equivalent:

(i) A random variable X0 (possibly on a suitably enlarged probability space)
can be chosen such that (Xn)n∈N0 is strictly stationary.

(ii) The infinite sum
∑∞

i=0

(∏i
j=1Mj

)
Qi+1 converges almost surely abso-

lutely.

(iii) With A− log |M | as defined in (3), it holds∫ ∞

1

log q

A− log |M |(log q)
P|Q|(dq) < ∞.
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If these equivalent conditions are satisfied, then the stationary solution is
unique in distribution, and it is obtained by choosing X0 independent of
(Mn, Qn)n∈N and with distribution L(X0) given by (7).
(c) Suppose that P (M = 0) = 0 and that

∏n
i=1M

−1
i converges almost surely

to 0 as n → ∞, i.e. that
∑n

i=1 log |Mi| → +∞ a.s. as n → ∞. Then the
following are equivalent:

(i) A random variable X0 can be chosen such that (Xn)n∈N0 is strictly
stationary.

(ii) The infinite sum
∑∞

i=1

(∏i
j=1M

−1
j

)
Qi converges almost surely abso-

lutely.

(iii) With Alog |M | as defined in (3), it holds∫ ∞

1

log q

Alog |M |(log q)
P|M−1Q|(dq) < ∞.

If these equivalent conditions are satisfied, then the stationary solution is
unique and given by

Xn = −
∞∑
i=1

(
i∏

j=1

M−1
n+j

)
Qn+i, n ∈ N0. (8)

(d) Suppose that P (M = 0) = 0 and that neither
∏n

i=1Mi nor
∏n

i=1 M
−1
i

converges almost surely to 0 as n → ∞. Then a random variable X0 can be
chosen such that (Xn)n∈N0 is strictly stationary if and only if there is some
c ∈ R such that P (Q +Mc = c) = 1. If this condition is satisfied, a strictly
stationary solution is given by the degenerate and constant process Xn = c
for all n ∈ N0. If additionally P (|M | = 1) < 1, then (Xn = c)n∈N0 is the
only strictly stationary solution of (1).

Observe that the solution given by (8) depends on the future and is a
non-causal solution.

Proof. (b) Suppose that P (M = 0) = 0 and that
∏n

i=1Mi → 0 a.s. as
n → ∞. The equivalence of (ii) and (iii) is clear from Theorem 1. Now
assume (i) and let (Xn)n∈N0 be a strictly stationary solution of (1). Since
L(Xn+h1 , . . . , Xn+hm) = L(Xh1 , . . . , Xhm) for all m ∈ N and h1, . . . , hm ∈ N0
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by strict stationarity, and since
∏n+hk

i=1+hk
Mi → 0 a.s. as n → ∞ for each

k ∈ {1, . . . ,m}, it follows from (2) and Slutsky’s lemma that(
n+h1∑

i=1+h1

(
n+h1∏
j=i+1

Mj

)
Qi, . . . ,

n+hm∑
i=1+hm

(
n+hm∏

j=1+hm

Mj

)
Qi

)
converges in distribution as n → ∞ to L(Xh1 , . . . , Xhm). Since this limit
does not depend on X0, we see that the stationary solution must be unique
in distribution. Further, setting m = 1 and h1 = 0, we get convergence in

distribution of
∑n

i=1

(∏n
j=i+1Mj

)
Qi, and since

L

(
n∑

i=1

(
n∏

j=i+1

Mj

)
Qi

)
= L

(
n∑

i=1

(
i−1∏
j=1

Mj

)
Qi

)
(9)

as a consequence of the i.i.d. assumption on (Mn, Qn)n∈N, we see that also∑n
i=1Πi−1Qi converges in distribution to a finite random variable as n → ∞.

Hence (ii) follows from Theorem 1.
For the converse, assume (ii), and choose X0 independent of (Mn, Qn)n∈N

with distribution given by (7). Then (Xn)n∈N0 is a time–homogeneous Markov
process, and it is easy to check that L(M1X0 +Q1) = L(X0). Hence L(X0)
is an invariant probability measure and the Markov process (Xn)n∈N0 conse-
quently strictly stationary.

(a) If P (M = 0) > 0, for each hk ∈ N0 we automatically have
∏n+hk

i=1+hk
Mi

→ 0 a.s. and almost sure absolute convergence of
∑n

i=1

(∏i−1
j=1Mj

)
Qi as

n → ∞. The existence of a stationary solution and the uniqueness assertion
is then in complete analogy to the corresponding proof in (b).

(c) Suppose that P (M = 0) = 0 and that
∏n

i=1M
−1
i → 0 almost surely

as n → ∞. Since

n∑
i=1

(
i∏

j=1

M−1
j

)
Qi =

n∑
i=1

(
i−1∏
j=1

M−1
j

)
M−1

i Qi

for n ∈ N and since (Mn,M
−1
n Qn)n∈N is an i.i.d. sequence, the equivalence of

(ii) and (iii) follows from Theorem 1. Now assume (i) and let X0 be chosen
such that (Xn)n∈N0 is strictly stationary. Rewriting (2) we have

Xh =

(
n+h∏

i=h+1

M−1
i

)
Xn+h −

n+h∑
i=h+1

(
i∏

j=h+1

M−1
j

)
Qi (10)
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for every h ∈ N0 and n ∈ N. Since L(Xh+n) = L(X0) by strict stationarity,
and since

∏n+h
i=h+1M

−1
i converges almost surely to 0 as n → ∞, we conclude

from Slutsky’s lemma that
(∏n+h

i=h+1M
−1
i

)
Xh+n converges in probability to

0 as n → ∞, hence −
∑n

i=1

(∏i
j=1M

−1
h+j

)
Qh+i must converge in probability

to Xh as n → ∞. This shows uniqueness of the solution and the given form,
and from the discussion above and Theorem 1 we see that the convergence
must be almost surely absolutely, hence we obtain (ii). Conversely, if (ii) is
satisfied, define Xn by (8). Then it is easy to see that (Xn)n∈N0 is a strictly
stationary solution of (1).

(d) Suppose that P (M = 0) = 0 and that neither Πn nor Π−1
n converges

to 0 a.s. as n → ∞. Suppose that P (Q +Mc = c) < 1 for all c ∈ R. Then
P (Q = 0) < 1 and |

∑n
i=1Πi−1Qi| converges in probability to ∞ as n → ∞

by Theorem 1, hence so does
∣∣∣∑n

i=1

(∏n
j=i+1Mj

)
Qi

∣∣∣ by (9). Assume that

a stationary version (Xn)n∈N0 exists. By (2) for h = 0 this implies that
|ΠnX0| converges in probability to ∞ as n → ∞, hence so does |Πn|. By
stationarity, we conclude that Π−1

n Xn converges in probability to 0 as n → ∞,
and hence we conclude from (10) for h = 0 that

∑n
i=1Π

−1
i−1M

−1
i Qi converges

in probability to −X0. Since P (Q+Mc = c) < 1 for all c ∈ R, we also have
P (M−1Q+M−1d = d) < 1 for all d ∈ R, and since Π−1

n does not converge to 0
a.s. by assumption it follows again from Theorem 1 that |

∑n
i=1Π

−1
i−1M

−1
i Qi|

converges in probability to ∞, a contradiction. Hence no strictly stationary
solution can exist unless P (Q+Mc = c) = 1 for some c ∈ R.

Now if there is some c ∈ R such that P (Q + Mc = c) = 1, then Qn =
(c−Mnc) a.s., and (1) is equivalent to

Xn − c = Mn(Xn−1 − c), n ∈ N. (11)

Hence Xn = c for each n ∈ N0 is obviously a strictly stationary solution. To
show uniqueness if P (|M | = 1) < 1, let (Xn)n∈N0 be some strictly stationary
solution of (1). From (11) we obtain |Xn − c| = |Πn| |X0 − c|, hence

log |Xn − c| = log |X0 − c|+
n∑

i=1

log |Mi|, n ∈ N,

with the convention that log 0 = −∞. But as the modulus of a random walk
with P (log |Mi| = 0) < 1,

∣∣∑n
i=1 log |Mi|

∣∣ converges in probability to +∞ as
n → ∞ (this is well known; for instance it is an immediate consequence of
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Theorem III.9 in Petrov (1975)), hence
∣∣ log |Xn−c|

∣∣ converges in probability
to∞ as n → ∞. But since (Xn)n∈N0 is strictly stationary, this is only possible
if
∣∣ log |Xn − c|

∣∣ = ∞ a.s., i.e. if Xn = c a.s.

Remark 2. It follows from Theorem 2 that the strictly stationary solution to
(1), provided it exists, is unique in distribution unless P (|M | = 1) = 1 and
Q = (1−M)c a.s. for some c ∈ R. If P (|M | = 1) = P (Q = (1−M)c) = 1 for
some c ∈ R, then the strictly stationary solution is indeed no longer unique in
distribution, as follows from Theorem 3.1 (b) (i)–(iii) in Goldie and Maller
(2000), where moreover all causal solutions in this case are characterised.

Remark 3. Let (Mn, Qn)n∈Z be an i.i.d. sequence in R2 with generic copy
(M,Q). Then the same characterisation as in Theorem 2 also holds for the
existence of strictly stationary solutions to the equation Xn = MnXn−1 +Qn

indexed by n ∈ Z. The only difference is now that, in cases (a) and (b),
the strictly stationary solution (if existent) is not only unique in distribution,

but unique almost surely, and given by Xt =
∑∞

i=0

(∏i−1
j=0 Mt−j

)
Qt−i for all

t ∈ Z, with convergence almost surely absolutely. This follows from (2) by
fixing t = n+ h and letting h → −∞.

In light of part (c) of Theorem 2, in comparison with part (b) of Theorem
2, it is natural to ask for the relationship between the almost sure absolute

convergence of
∑∞

i=1

(∏i
j=1M

−1
j

)
Qi and that of

∑∞
i=1

(∏i−1
j=1M

−1
j

)
Qi, or

in other words, the relationship between the convergence of the integrals∫∞
1

log q
Alog |M|(log q)

P|M−1Q|(dq) and
∫∞
1

log q
Alog |M|(log q)

P|Q|(dq). We have the following

result:

Proposition 1. Let (Mn, Qn)n∈N be an i.i.d. sequence in R2 with generic
copy (M,Q) such that P (M = 0) = 0.

(a) If
∑∞

i=1

(∏i−1
j=1M

−1
j

)
Qi converges almost surely absolutely, then so does∑∞

i=1

(∏i
j=1M

−1
j

)
Qi.

(b) Conversely, if additionally E
∣∣ log |M |

∣∣ < ∞, then almost sure absolute

convergence of
∑∞

i=1

(∏i
j=1M

−1
j

)
Qi implies that of

∑∞
i=1

(∑i−1
j=1M

−1
j

)
Qi.

(c) If (M,Q) are such that P (M > 1) = 1, E logM = ∞ and Q = M , then∑∞
i=1

(∏i
j=1M

−1
j

)
Qi converges almost surely absolutely, while∑∞

i=1

(∏i−1
j=1M

−1
j

)
Qi does not.
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Proof. The proof of (a) and (b) is in complete analogy to the proof of Theo-
rem 3.1 in Lindner and Maller (2005) for convergence of Lévy integrals and
hence omitted. We only remark that for the proof of (a), Equation (7.1) in
Lindner and Maller (2005) has to be replaced by

P (|M−1Q| > q) ≤ P (|M−1| > √
q) + P (|Q| > √

q)

for q ≥ 1 and that (6) is used to show convergence of the corresponding
integral involving P (|M−1| > √

q). The proof of (b) is similar to that in
Lindner and Maller (2005), using

P (|Q| > q) ≤ P (|M | > √
q) + P (|M−1Q| > √

q).

The convergence statement in (c) is trivial from Theorem 1 since P|M−1Q| is
the Dirac measure at 1, while the divergence assertion follows as in (Lindner
and Maller, 2005, Thm. 3.1 (c)).
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