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Abstract

Necessary and sufficient conditions for the existence of a strictly stationary solu-
tion of the equations defining a general Lévy-driven continuous-parameter ARMA
process with index set R are determined. Under these conditions the solution is
shown to be unique and an explicit expression is given for the process as an inte-
gral with respect to the background driving Lévy process. The results generalize
results obtained earlier for second-order processes and for processes defined by the

Ornstein-Uhlenbeck equation.
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1 Introduction

Let L = (L;)wer be a Lévy process, i.e. a process with homogeneous independent incre-
ments, continuous in probability, with cadlag sample paths and Ly = 0. For integers p
and ¢ such that p > ¢, we define a (complex valued) CARMA(p, q) process Y = (Y})er,
driven by L, by the equation

Y, =b'X,, teR, (1.1)

where X = (Xy)er is a CP-valued process satisfying the stochastic differential equation,

dXt = AXt dt‘i‘@st, (12)
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or equivalently

t
X, =A%, + / eAt-WedL,, Vs <teR, (1.3)
with
[ 0 0 ] [0 ] [ by ]
0 0 1 0 0 by
0 0 0 e 1 0 bp—2
L —CLp —CLp_l —(lp_g ce —aq i L 1 i L bp—l i
where ay,...,ap,by,...,by—1 are complex-valued coefficients such that b, # 0 and b; = 0

for j > q. For p = 1 the matrix A is to be understood as A = (—ay).
The equations (1.1) and (1.2) constitute the state-space representation of the formal

p-order stochastic differential equation,
a(D)Y; = b(D)DL,, (1.4)
where D denotes differentiation with respect to ¢ and a(-) and b(-) are the polynomials,
a(z) =2+ a2+ +ay, (1.5)

and
b(Z) = b() + blz + -+ bp_lZp_l. (16)

Equation (1.4) is the natural continuous-time analogue of the p™-order linear difference
equations used to define a discrete-time ARMA process (see e.g. Brockwell and Davis
(1991)). However, since the derivatives on the right-hand side of (1.4) do not exist as
random functions, we base the definition on the state-space formulation (1.1) and (1.2).
The aim of the present paper is to establish necessary and sufficient conditions for the
existence of a strictly stationary solution of the equations (1.1) and (1.2) for (Y})ier-
Under the assumptions that EL? < oo and Xj is independent of (L;)s~o, it is well-
known (see Brockwell (2001a) and Brockwell and Marquardt (2005)) that necessary and
sufficient conditions for existence of a covariance stationary solution (X;);>o of (1.2)
are that the zeroes of the polynomial a (which are also the eigenvalues of the matrix
A) have strictly negative real parts and that X(0) has the same mean and covariance
as [ e"edL,. Under these conditions (V});>¢ defined by (1.1) is a weakly stationary
CARMA process, said to be causal since for each t > 0, Y; is a measurable function of X,
and (Ls)s<;- Under the weaker assumption that E|L;|" < oo for some r > 0, Brockwell
(2001b) showed that if Xg has the same distribution as [~ e"e dL, and is independent

of (L;);>0 and if the real parts of the zeroes of a are strictly negative, then the solution
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of (1.2) is strictly stationary and the corresponding process (Y;);>o is a causal strictly
stationary CARMA process driven by L.

The aim of the present paper is to dispense with the assumptions of the previous
paragraph and to derive necessary and sufficient conditions for the equations (1.1) and
(1.2) to have a strictly stationary, not necessarily causal, solution Y = (Y})cg. Observe
that a priori we do not require the state vector (X;);cr to be strictly stationary, and we will
indeed encounter cases when a(-) and b(-) have common zeroes on the imaginary axis and
in which strictly stationary solutions Y exist without a corresponding strictly stationary
state vector X. We shall also establish uniqueness of the solution Y and give an explicit
representation for the solution as an integral with respect to L. The results generalize those
of Wolfe (1982) and Sato and Yamazato (1984), who derived a necessary and sufficient
condition for the existence of a stationary solution of the Lévy-driven Ornstein-Uhlenbeck
equation.

The paper is organised as follows: under the condition that a(-) and b(-) have no
common zeroes we derive necessary conditions for a strictly stationary solution Y to
exist in Section 2, and give a necessary and sufficient criterion in Section 3, where also
uniqueness of this solution is established. The a priori assumption of no common zeroes
of a(-) and b(+) is then eliminated in Section 4. The special case when L is deterministic
is treated separately in Section 5, in which case the characterisation is slightly different

from that for random L.

2 Necessary conditions for a stationary solution

In this section we derive conditions on the polynomials a(-) and b(-) and the Lévy process
L necessary for the existence of a strictly stationary solution (Y;)er of equations (1.1)
and (1.2).

In the derivation of the results we make extensive use of the process obtained by
sampling the process Y at integer times. The first lemma provides a set of difference
equations satisfied by the sequence (Y},) ez when (Y;)cr satisfies (1.1) and (X, );cr satisfies
(1.2). From (1.3) we have, for the sampled state vector,

X, =e'X,_1+R,, necZ, (2.1)

where

R, :—/ A" edl,, n€Z, (2.2)
n—1

and (R,,)nez is clearly an i.i.d. sequence.



Writing the polynomial a(z) as [[}_,(z — A;), where Aq,...,\, are the eigenvalues of
A, we introduce the polynomial,
p
d(z) = H(l —eMz)=1—diz—...—d,?*, z€C,
j=1
which plays a key role in the difference equations for the sampled process (Y},), given in
the following lemma. As usual, we denote by B the backward shift operator, defined by
B(X,) =X,_1.

Lemma 2.1. Let ® be defined as above. Then

p—1 r
(I)(B)(Xn) = Xn - dIanl T T denfp = Z (erA - Z dje(rj)A> Rnfm (23)
j=1

r=0
and, from (1.1),

p—1 r
MBﬁQ:Y%—kara“—dﬁ%p:UE:(JA—E:@ﬁﬂM)RWP (2.4)
r=0 j=1

The latter can be written as
OBY, =Y, —d\Yo1—...—dYo y=Zp+ 727+ ...+ 20, (2.5)

where

zZ ::/ ( (r=D4 Zd er=1- ])A> An-vedL,, r=1,...,p. (2.6)
n—1

Proof. 1t suffices to prove (2.3), from which the remaining assertions follow. For that, we

shall first show that for any m € Ny and for any complex numbers ¢, . . ., ¢,,, we can write
m m m—1 r
Xn = Z Can—r + <6mA - Z Cre(m_r)A> Xn—m + Z <€TA - Z ;€ (r= ])A> R —r e
r=1 r=1 r=0 j=1
(2.7)

For m = 0 this is clear. To show that validity of the statement for any particular m implies

validity for m+ 1, let ¢,, 41 be an arbitrary complex number. We can then write, by (2.1),

Xn - Z Can r+ ( ma _ Z Cre(m_r)A> (GAXn—(m—H) + Rn—m)

r=1

7=1
m+1
. m+1 m+1 r
- Can r T Cre — Cm+1 X (m+1)
r=1 =1
m r
)A
+ E g cjer MR, s
r=0 j=1



completing the induction step.
Next, observe that the eigenvalues of e, including repeated values, are e ™, ..., e,

see e.g. Bernstein (2005), Propositions 4.4.4 and 11.2.3. Hence we see that
P P P P
~IT- v = TTee TTe ) = (TI69)) eorato)
Jj=1 J=1 J=1 j=1

where Xexp(—4) denotes the characteristic polynomial of e=#. From the Cayley-Hamilton
theorem it then follows that ®(e~) = 0, so that

—de ™ — .. — dpe_pA =0.
Multiplying this by eP4 gives
—dy P VA — e =0,
and inserting this in (2.7) with m = p and ¢, = d, gives (2.3). O

The following two lemmas provide analytical tools which are used in the subsequent

derivations.

Lemma 2.2. Let | € Ny. Then for every cq,...,c1 € R there exist 6g,...,0; € R such
that

cl+1nl+1+clnl—|—...+cm:Z&,Zu” VY n e N.

If ¢; 1 # 0, then one can choose §; # 0.

Proof. The assertion will be proved by induction on [. For [ = 0 it suffices to choose

0o = ¢1. Now, assuming the claim is true for a particular value of [, choose any ¢; 5 € R.
Then

n—1 I+1 I+1
1 [+2 1 1 [+2
+1 _ l+27mB — +2 l+27mB
Zu l—|—2mz::0<m>n " e +l+22(m)n "

u=0 m=1
where (By,)men, denotes the sequence of Bernoulli numbers, defined by =25 = >~ fn”,”“w
Choosing 8,41 := (I + 2)¢i42, we conclude that
n—1
o+ pn™ L an =0 Z uttt c;HnlJrl +...+dn
u=0
for some ¢}, ..., ¢, and so by the induction hypothesis we obtain
I+1  n-1
Claon' ™+ 4+ en = Z Oy Zu”
v=0  u=0
for suitable dg, ..., d;. n



Lemma 2.3. Define A, b and e as in Section 1 and define the polynomials

p—k p—k
hip(2) = Zauzp_k_“ = Zap_k_uz“, E=1,...,p, (2.8)
u=0 u=0
where we let ag := 1. Then for every vector V.= [V1,...,V,]" € C? we have
1 b(2) -
b’AtV:—/—tZ Vihi,p(2) d 2.9
€ 21 ) G(Z)e ; k k7p(2> 2y ( )

where p is a simple closed curve that encircles all eigenvalues of the matrix A. In partic-

ular,

1
b'etle = — / Met‘z dz, (2.10)
2mi J, a(z)

which can be expressed as the sum of residues,

pw(A)—1

b/eAte — E E C)\ktkeAt,
A k=0

where ), denotes the sum over distinct zeroes of a(-), () is the multiplicity of the zero
A and Z’,:(:/\O)_l cxtFer is the residue of z — e*b(2)/a(2) at ), i.e.

wA)—1

Z exptteM = m [DZ(AH ((z = )\)”(A)ez’fb(z)/a(z))}z:w
k=0 '

and D, denotes differentiation with respect to z. (For a zero A with pu(\) =1 the last sum
reduces to b(\)e*/a'(N).)

Proof. Since A is a companion matrix, it follows from Theorem 2.1 in Eller (1987) applied
to the function z — e** that the (j, k)-element of the matrix e is given by

1 /zjletzhhp(z) i
p

2mi a(z)

Hence the k’th element of the row vector b’e? is given by

p—1 p—1 i
1 bzl et hy, ,(2) 1 b(2)
b (e™)ji1n = —/ L= dr = — | 5Py, (2) dz.

= ! ! 2mi J, ]Z; a(z) 2mi J, a(z) P
Equations (2.9) and (2.10) are immediate consequences. O
Remark Assuming that the real parts of the eigenvalues Ay, ..., A, are strictly negative,
Tsai and Chan (2009) obtain an expression for b’ette, ¢+ > 0, which coincides with the
second expression for b’e/fe in the statement of Lemma 2.3, evaluated on [0, 00). O

The following lemma will be used in the proof of Proposition 2.5, when necessary
conditions for the existence of stationary solutions will be established. Recall that a Lévy

process L is deterministic if and only if there is a ¢ € R such that L; = ot for all t € R.
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Lemma 2.4. Suppose that a(-) has a zero at Ay of algebraic multiplicity py = p(A1). In

the notation of Lemma 2.3 we have

w(A)—1

A k=0

where p(A) denotes the algebraic multiplicity of A and the coefficients cy, were defined in

the statement of the lemma. Define

p

Sp = Z e(l_r)klZg,

r=1
where Z! was defined in (2.6). The following results then hold.

(-1

(a) / Z Z C}\kzel r))\1|: 1 )1y
r—1
S dy(r— 1 j syl s)} dL,.
j=1
(b) For each k € {0,..., 1 — 1}
p r—1
Ze(lfr))\l [ r—1— )k A(r—1—s) Zd](r 1 —j— )k A(r—1—j— s)] _ ,.ykef)\ls7
r=1 j=1
where v, is a constant such that
=0, k< M1 — 1,
Tk

7é07 k:,ul_]-

(c) If b(A\1) # 0 and L = (Ly)ier is not a deterministic process, then the support of Sy is

unbounded.

Proof. (a) Let h(t) = b'ee. Then we have by (2.6),

0
Zgz/ (r—1-—1ys) Zdhr—l—]—s)dL

1
so that for Sy = YF_, e~ ZF we have

0o P r—1
Sy = / 26(1_7%1 [h(r —1—5)— Zdjh(r —1—j—s)| dLs.
—1,=

J=1

Inserting the specific form for h(t) from Lemma 2.3 we get assertion (a).
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(b) We have for k € {0,...,u; — 1}

V4 r—1
Z 6(1—7’))\1 [(T o 1 . S)ke)\l('r—l—s) . Zd](r . 1 _j o s)ke)q('r’—l—j—s)]
r=1 j=1
k k p r—1
= e Z(—s)k—u< ) > [(r —1)" =D di(r—1—j)"e —Aw]
u=0 u r=1 7j=1
i k
_ —A18 _ J\k—u
= e Z( s) (u) Yu
u=0
where
p
%322[7‘—1 Zd T—l—j“_’\”], u=0,...,pu1 — 1.
r=1
To establish the claim it therefore Sufﬁces to show that
=0, k<p —1,
i ' (2.11)

%07 k:M1_17

which will be achieved by induction. First, observe that

p—1 r
= S-S
r=0 r=0 j=1
p—1 p—1 'p—l—j
= rk — Zdje_’\” Z uk. (2.12)
r=0 7j=1 u=0
In particular,
Yo=p—(p—Ddie™ — ... — dp_le_Al(p_l) = [zl_p Dz(zfl’CI)(z_l))}Z:eAl ) (2.13)

If gy = 1 then e is a zero of multiplicity one of z +— 2P®(z7!) and so the derivative

in (2.13) is non-zero, establishing (2.11) in this case. Now suppose that p; > 1. Then

eM is a zero of multiplicity pu; of z — 2P®(27!) and the derivative in (2.13) is zero, so

that 79 = 0. Let k € {1,..., 1y — 1}, and make the induction hypothesis that v, = 0 for
j €10,...,k —1}. Then according to Lemma 2.2 there exist Jy, ..., 0, € R with §; # 0
such that

k n—1
ZéUZu”:n(n+1)---(n+k:), n € N.
=0 u=0

The induction hypothesis with (2.12) and the preceding representation give

k
Skt = ) 0w
v=0
p—1
= plp+1) - (p+k) =D de M (p—j) - (p—j+k)
j=1
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To complete the induction argument and establish (2.11), it now suffices to show that

—

p—

=0, k<pu —1,

pp+1)-(p+k) = Y die™ (p—j)(p—j+Fk) (2.14)
j=1 #0, k=m—-1
Recall that ®(z) =1 —dyz — ... — d,2P. Then defining
U(2) 1= PHRQ(27h) = PP — d 2Pt - d 2

we can write the derivative W*+1(2) = D¥10(2) as
TEDG) = (p+k) - pP—di(p+k—1)--(p—1)2P 2 — ... —dp 1 (k+1)---12°
Multiplying by 2P gives
TED AP = (p+ k) p—di(p+hk—1)--(p—=1)z = —dp 1 (k+1)--- 1277,

from which we conclude that
Sk = \I/(k+1)(6>‘1) eM(1-p)

Since \; is a zero of a(+) with multiplicity yu;, e ™ is a zero of ® with multiplicity yu;, and
we conclude that
Ple™M)=d(e™M)=.. . =dm (e M)=9

and
q)(ul)(e—h) £ 0.

Since W(z) = zPT*®(271), this shows that

P+ (M =0, k<m—1,
7é 07 k= M1 — 17

and (2.14) follows.

(c) From (a) and (b) we obtain

0 /-1
So = / (Z O pyse M+ f(5)> dLs
=0

—1
0

- / (C>\17#1—17#1—16_)\18 + f<5)) dLs
-1

for some continuous function f which is linearly independent of the function s + =15,

Since 7y,,-1 # 0 and

1 i
Crppa—1 = m b(A1) [(z — A1) /a(z)]z=A1 #0
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by Lemma 2.3 and by assumption, Sy is the integral of a non-identically zero deterministic
continuous function with respect to L. Since L is not deterministic, it follows that Sy is
non-constant, and since RSy and &5, are infinitely divisible, it must have unbounded
support (cf. Sato (1999), Theorem 24.3). O

The next result gives necessary conditions for a strictly stationary solution to exist.

Proposition 2.5. Suppose that (Yy)ier is a strictly stationary CARMA process and that
(L¢)ier 18 not a deterministic process. Let Ay be any (possibly multiple) zero of a(-) which
is not a zero of b(-). Then (A1) # 0 and Elog™ |L;| < oo.

Proof. Since (Y})er is a strictly stationary CARMA process, (Y;,)nez must also be strictly
stationary. Let ® be the polynomial of degree p — 1 defined by ®(z) := ®(z)/(1 — eMz)
and define

Then (W, )nez is strictly stationary and
W, — MW,y = Z,, (2.15)

where Z, = Z) + 77+ ...+ Z)_,. and Z),..., Z},

n—p+1 are the independent random

variables defined in Lemma 2.1. Iterating (2.15) gives
Wn = 6A1Wn_1—|—Z _62)\1Wn 2+€)\1 n— 1—|—Z =...

— WMy _1—|—Z€J)‘1Zn i, NeN. (2.16)

7=0

Since

E n—j—r+1»

it follows that for N € N

N N p
E JA1 e E E JAL 77

€ anj - € Zn—j—r—H
Jj=0

j=0 r=1
p N-r+1 p N p -1
_ § E JA1 77 E E JA1 77 E E JA1 7T
- € Zn —j— 'r+1+ € Zn —J— —r+1 € Zn —7—r+1
r=1 j=—r+1 r=1 j=N-—r+2 r=1 j——r+1
p N P N
— (U*?"+1))\1 r JA1L 7T JA1L T
= E E e Zy oyt Ny i — N7 i (217)
r=1 v=0 r=1 j=N—r42 r=1 j=—r+1

Let
el=mMgr  nel. (2.18)

II M*@
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Then (S, )nez is an i.i.d. sequence and Sy has unbounded support by Lemma 2.4 (c¢). We
conclude from equations (2.16) and (2.17) that

N N
Wy — e+ — i ez L+ Z Z NI = Z eMS .
=0

r=1 j=N—r+2 r=1j=-r+l
(2.19)

In part (a) below we show that the assumption R(A;) = 0 leads to a contradiction. Then
in parts (b) and (c) we show that Elog™ |Li| < co in the cases R(A\;) < 0 and R()\;) > 0
respectively.

(a) Suppose that $8A; = 0. Since (W), )nez is strictly stationary, it is easy to see that there

is some constant K > 0 such that

p N -1
1
i (\W RUL T DI ST IS S SR Vo = K) 23
r=1 j=N—-r42 r=1 j=—r+1
for all N € Ny. Hence we conclude that
mz s <k )=t and p(layens|<x) st
B 2 — a -2

Let (S!),ez be an i.i.d. sequence, independent of the sequence (S,),ez, but with the same
marginal distributions. Then R(e**1(S, — S7)) is the symmetrization of R(e**1S,) and
(e (S, — 7)) is the symmetrization of J(e"*S,). It follows that for all N € Ny

N
1 1
P{[R) eM(S_,—8,)|<2K|>= eM(S_, =S| <2K | > -
[ R B RS (S B R
In particular, neither ’% Zf};o e M(S_, — S’_U)‘ nor ‘SZfLO e?M(S_, — 5" )| converges

to +o00 in probability as N — oo, and since both are sums of independent symmetric
terms, both terms (without the modulus) must converge almost surely (see Kallenberg
(2002), Theorem 4.17). It follows that 32 eM¥(S_, — S',) converges almost surely as
N — o0. The Borel-Cantelli lemma then implies that

> P(le™(So, - S,)| > 1) ZP (1S_y, —S",| >1) <0
v=0

which is impossible, since P(|S_, — 5" ,| > 1) = P(|So—S}| > 1), which is strictly positive
since Sp has unbounded support by Lemma 2.4 (c).

(b) Now suppose that $tA; < 0. Since (W),)nez is stationary, Slutsky’s lemma and (2.19)

imply that Z 0 e’ S_, converges in probability to Wy + P Z]E_TH eIM 2l i as

11



N — oo. Hence

P —1 [e’s)
Wo + Z Z eI 2= Z eMS ,  as., (2.20)
r=1 j=—r+1 v=0

the almost sure convergence of Ziv:o e"*1S_, being a consequence of the independence of
the sequence (S,,). The Borel-Cantelli lemma then implies that Y -  P(|e"*S_,| > 1) <

oo. From this we obtain the chain of conclusions,
ZP(|€”)‘15’_U| >1) < o0
v=0

= > P(IS.]> ™) <0

v=0

— E:P(logJr |So| > —vRA) < 0

v=0

== ZP(log+ |RSo| > —vRA) < o0,
v=0
the last of which implies that
Elog® |RS,| < oo. (2.21)

Similarly we find that Elog™ |$Sy| < co. Recall that Sy has unbounded support, so that
at least one of RSy and ISy has unbounded support. Without loss of generality we suppose
that this is the case for RSy. (The argument which follows can easily be modified to deal
with the case in which §Sy has unbounded support.) Recall further that we can write, as

in the proof of Lemma 2.4(c),
0
%So = / f(S) dLs
-1

for some continuous function f which is not identically zero. It is well known that RS
is infinitely divisible as an integral of a deterministic function with respect to a Lévy

process, and that its Lévy measure vyg, satisfies

s (@ = [ [ tetsymmianas

for every Borel set C' € B; such that 0 ¢ C' (cf. Sato (2006b), Proposition 2.6). Here v
denotes the Lévy measure of L. Now define the sets

Cy = (—OO, _y] U [y7 OO), Yy > 07
and choose € > 0 such that
K = X({s € [-1,0]: [f(s)] > £}) > 0,

12



where \* denotes one dimensional Lebesgue measure. (This is possible since f is continuous
and not identically zero.) It then follows that for y > 0

0
vps, (Cy) = // v(dz) ds
-1zl |f(s)|zy
> / / V(dz) ds
s€[=1L,0[:|f(s)|ze J|z|2y/e

= Kv(Cy.). (2.22)
Now since Elog™ |RSo| is finite and RSy is infinitely divisible, it follows that
[ Toglal s, (dn) < o0
j2>1

(e.g. Sato (1999), Section 25). Hence

oo > / log |z| vrs, (dz)
|z|>1

) 1
= / / — duvys, (dz)
|z|>1 J[1,]a]] ¥

= / 1 VSFESO(C )du

(2.22)

= K log |z| v(dz).

lz|>1/e

Again from Section 25 in Sato (1999) we conclude that Elog™ |L;| < oo.

(¢) Now suppose that #A; > 0. From equation (2.15) we have

W, = e MWy —e M Z0p

—2) —2X -
= € 1Wn+2_6 1Zn+2_e ! n+l —

and letting N — oo gives

N
. —i\
W, = —plimy_, E eI Ly,

j=1

where plim denotes the limit in probability. Since

n+] E n+] r+1>

13



it follows that for N € N

N N p
_j>\1 R —])\1 T
E € Z”H—] - E :§ : Zn—l—] r+1
j=1 =1 r=1
p N+r—1 p N4r—1
o —j)\l r —y)\l r —jA1 1
= § § Zn+] 1 T E , § Z+] r+1+§ § € Zn+] r+1
r=1 j=r r=1 j=N+1 r=1 j=1
p N p N+r-—1
_ § E (v+r=1)A1 71 E E —j>\1 T § E —]/\1 r
- e Zn+v Z n—+j—r+1 + Zn—l—j r41°
r=1 v=1 r=1 j=N+1 r=1 j=1
Defining
p
—— 1—r )\1 T
Sh .—E el=mM gz
r=1
we find that
o] p r—1
o —vA1 7])\1 r
WO——g e S”_E g Zi 41 as.
v=1 r=1 j=1

This is the analogue of (2.20) in part (b). The remainder of the proof follows exactly the
same steps as those of (b). O

If the assumption that L is not deterministic in Proposition 2.5 is dropped, then
RA1 # 0is no longer necessary for a strictly stationary solution to exist, see Proposition 5.1

below.

3 The stationary solution

In the previous section we established that if L is non-deterministic and the polynomials
a(-) and b(-) have no common zeroes, then existence of a strictly stationary solution
(Yi)ter of (1.1) and (1.2) implies that a(-) is non-zero on the imaginary axis and that
Elog™|L;| < .

In this section we show that if a(-) is non-zero on the imaginary axis and Elog™ |L| <
oo, then there is a unique strictly stationary solution (Y;)ier of (1.1) and (1.2) and we
specify the solution explicitly as an integral with respect to L. Together with the results
of Section 2, this gives necessary and sufficient conditions for the existence of a strictly
stationary solution under the assumption that a(-) and b(-) have no common zeroes (The-
orem 3.3). The general case in which we place no a priori assumptions on the zeroes of
a(-) and b(-) will be dealt with in Section 4.

In order to establish uniqueness of the solution we need the following lemma. As usual,

B denotes the backward shift operator.
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Lemma 3.1. Let (V,),ez be a strictly stationary C-valued process such that
‘IJ(B> =Voi—tiVp1—...— Q/JPVn_p =Z,, néeEw,

where U(z) = 1=t z—. .. —1,2P with iy, ..., ¢, € C, and (Z,)nez is a sequence of random
variables. Suppose that V(-) has no zeroes on the unit circle. If the Laurent expansion of
U (z)on{zeC:1—¢e<|z| <1+¢e} for somee € (0,1) is denoted by,
U l(z) = Z cm2™,
mez
then
Vo, =plimy o, Y (enB™)U(B)V, =plimy_., > cuB"Z,.

Im|<N Im|<N
In particular, the limit in probability exists, and V,, is determined by (Z,_m)mez and the

coefficients 1, ..., y.

Proof. Define the sequence of functions,

N+p

fn(z) = Z cmz" (1 — 1z — .. hpeP) = Z bnnz", l1—e<|z|<1l+e, NelN
m=—N

Im|<N

Then fyn converges uniformly to 1 on this annulus as N — oo, and it follows that the

Laurent coefficients of fy converge to those of the function 1, i.e.

0, m+#0,
lim bm,N = 7&

N—oo 1, m=0.

Further, observe that
bnN =bmne YVN'>N>p, m=-N+p,...,N,

i.e. for fixed m, b,, v is constant for sufficiently large N. From the limit result, we hence
see that

—N+p-1 N+p
fN(Z) = 1 —I— Z bm,NZm —f- Z bmvNZm,
m=—N m=N+1
and that
lim sup |bm,n| =0

N—=00 pe{—N,...,—~N+p—1}U{N+1,...,.N+p}
(due to the exponential decrease in ¢,,). Since (V},),ez is stationary, it follows from Slut-

sky’s theorem that

V., =plimy_ . fn(B)V, = plimy_ o, Z cmB™ 2,

|m|<N

as claimed. O
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The following proposition presents a sufficient condition for the existence of a strictly

stationary solution.

Proposition 3.2. Suppose that all singularities of the meromorphic function z — b(z)/a(z)
on the imaginary axis are removable, i.e. if a(-) has a zero Ny of multiplicity u(\) on
the imaginary axis, than b(-) has also a zero at Ay of multiplicity greater than or equal to
(). Suppose further that Elog™ |Li| < co. Define 1(t), r(t), n(t) to be the sums of the
residues of the column vector e**a™(2)[1 z --- 271 at the zeroes of a(-) with strictly

negative, strictly positive and zero real parts, respectively. Then

1(t) + r(t) +n(t) = ete, tcR, (3.1)
pw(A)—1

()= > Y autied =eM(0), teR, (3.2)
ARA<O k=0
pw(A)—1

r(t)= Y Y Byttt =eMr(0), teR, (3.3)
ARA>0 k=0

for certain vectors oy, By, € CP, and
n(t) = e*'n(0). (3.4)

As usual, the sums are over the distinct zeroes A of a(-) and p(\) denotes the multiplicity
of the zero . Define

X, = e ( / t e~ 1(0) dL, — /t Ooe*A“r(O)dLqu /0 teA“n(O)dLu> (3.5)

—00

t (o) t
- / (t — u)dL, — / Pt — u)dLy + ™ / e Mn(0)dL,, tER,
t 0

—0o0

where fort <0, f(f 15 interpreted as — fto. Then the improper integrals over (—oo,t| and
[t,00) defining X, exist as almost sure limits limp_ fiT and limr_ ftT, respectively,
and (Xy)ier satisfies (1.3). Define Yy := b'Xy, t € R. Then (Y})ier is a strictly stationary
solution of the CARMA equations (1.1) and (1.2), which can be written as

Y, = / g(t —u)dL,, teR, (3.6)

—00

p(A) =1 p(N)—1
gt)=1{ D D ewt*eMlomt) = D Y ewt'Mlwg(t) |, teR, (3.7)

ARASO k=0 ARA>0 k=0

with ¢\, as in Lemma 2.5.
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Proof. The proof of (3.1) is exactly analogous to the proof of Lemma 2.3. The first equal-
ities in (3.2) and (3.3) are apparent from the algebraic form of the residue of the vector
e*ta ! (2)[1 z .-+ 2P~ at the zero A of a(-). The right-hand sides of (3.2) and (3.3) follow

from the relations,

d(t)
dt

dr(t)

1§63
= Al(t) and 7

— Ar(t), teR, (3.8)

which are easily verified in the case when the zeroes A of a(:) are distinct, since then
the residue at A is eM[1 A --- AP71)'/a’()\). The general case follows from a limit argu-
ment using the differentiation lemma applied to the sum of residues. Equation (3.4) is an
immediate consequence of (3.1), (3.2) and (3.3). The relations (3.2) and (3.3) imply the

existence of real constants K > 0 and € > 0 such that

(—u)| < Ke™M Vu<0 and

r(—u)] < Ke" vu>0.
This, together with the assumption that Elog™ |L;| < oo, implies convergence in proba-
bility of the integrals defining X, (see e.g. Sato (2006a), Theorem 1.2 and Proposition 4.3),

and the independence of the increments of L implies that there is also convergence with

probability one. The following calculation shows that X, satisfies (1.3). For s < ¢ we have

t
eA(ts)XS—i—/ eAt=We dL,

(3-1g3-5) 6At (/ e—Aul dL _/ e—Au / e_Aun(O) dLu)

00 0

t t
vt ([ 1w, / (~u)dL, / (-, )

(3.2);(3.4) eAt (/ efAul / efA“ —|-/ e—Aun 0) dLu)

o0 0
t
Ry

t
+et ( / e *1(0) dL, + / e x(
(3-5)
It follows that Y; := b’X; is a solution of the CARMA equations. Next, observe that

20X,
b'n(t)
= Z b'resy(e*fa ()12 --- 2P7Y)

A:RA=0

= Z resy(e*fa"(2)b(z)) = 0

A:RA=0

(
e~ n(0

bleAtrI(O) (3:4)
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by assumption, since b(z)/a(z) has only removable singularities on the imaginary axis.
Hence it follows from (3.5) that

t 00
Y, =b'X, =D </ l(t—u)dLu—/ r(t—u)dLu>,
—00 t

which is clearly strictly stationary. The representation (3.6) of Y; is obtained by observing
that b’l(¢) and b'r(¢) are precisely the sums of the residues of z — e*b(2)/a(z) at the
zeroes of a(-) with strictly negative and strictly positive parts respectively.

O

We can now state the first of our main results.

Theorem 3.3. Let L be a Lévy process which is not deterministic and suppose that a(-)
and b(-) have no common zeroes. Then the CARMA equations (1.1) and (1.2) have a
strictly stationary solution Y on R if and only if Elog" |L,| < oo and a(-) is non-zero on
the imaginary axis. In this case the solution Y is unique and is given by (3.6) and (3.7),

and the corresponding state vector (X;)ier can be chosen to be strictly stationary as in

(3.5).

Proof. Suppose that a stationary solution exists. Then from Proposition 2.5 it follows that
Elog" |L;| < oo and that a(-) is non-zero on the imaginary axis. Using equation (2.5) and
applying Lemma 3.1 with W(z) = ®(2) and Z, = Z, + Z; ,+...+ Z}_,,,, where (Z}) is
defined by (2.6), shows that (Y},),ez is uniquely determined. The same argument shows
that (Y,n)nez is uniquely determined for any fixed sampling interval h, and since the
solution (Y;);er is cadlag it must be unique. Conversely, suppose that Elog® |L;| < oo
and that all zeroes of a(-) have non-zero real part. Then the existence of the strictly
stationary solution Y with representation (3.6) and (3.7) and the strictly stationary state
vector defined in (3.5) follows from Proposition 3.2. O

4 The general non-deterministic case

In this Section we eliminate the a priori assumptions regarding the zeroes of a(-) and
b(-) made in Theorem 3.3 and assume only that L is non-deterministic. In particular the
polynomials a(+) and b(-) may have common zeroes and may have zeroes on the imaginary
axis. Before we give this general necessary and sufficient condition in Theorem 4.2, we
show how common zeroes in a(-) and b(-) can be factored out to give solutions of lower
order CARMA processes.
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Theorem 4.1. Let p > 2 and let Y = (Y;)ier be a CARMA(p,q) process driven by L
with state vector process X = (Xy)ier, i-6. X and Y satisfy (1.1) and (1.3). Suppose that
A1 € C is a zero of both a(-) and b(-), and define

i) = M eigery ya
Z — )\1
~ b ~ o~ ~
b)) = ) G Tt 4Dy e
z — )\1
[0 1 0 0
0 0 1 0
Z — ECP_I’p_l,
0 0 0 1
L _apfl _apf2 _apfi% —51 i
~ ~ o~ ~ ~ !
& = [00...01eC” ", and b= [b051 o Dysbys| € TP

Then there exists a CP~'-valued state vector process X = (it)teﬂg such that

- - t
X, = eAtIX, + / AWEdL, Vs<teR, (4.1)

S

and
Y, =b'X,, teR, (4.2)

i.e. Y is a CARMA(p — 1,q — 1) process with the same driving Lévy process.

Proof. Observe that (1.3) and (4.1) are equivalent to
t _ o .
X, = X, +/ eAtedrL, and X, =X, + / eAt-WgdrL, Vte R,
0 0

respectively, where for t < 0, fot is interpreted as — fto. Hence, using (2.10), it is enough
to show that for given Xy € CP there is Xo € CP~! such that

bedX, = betX, VieR. (4.3)
Write
X():(ZL'l,...,l’py and XOZ (:’El,...,%p_l),
respectively. Observe that

p—u
Zxkhk7p(z) = T, ap—p—nu2’ = Z (Z a:kap_k_u> 2", (4.4)

k=1

S
bS]
T
B
T
—_
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a(z)

where hy, ,(2) was defined in Lemma 2.3. Since qy = 1 and z — is a polynomial of

degree p — 1 with leading coefficient 1 we can write o
(o) = S C
;xk k’p(Z)_xlz_/\l—i_uZ:O W2, zeC,
for certain dy, ...,d,—o € C (which, like z1,...,z,, are random variables). Next, observe

from @y = 1 and (4.4) that

p—1 -2 p—u—2
> Fhipa(z) =) <5p_1_u + > fka',,_l_k_u> 2, z€C.
k=1 k=1

u=0

bS]

Now define 71, ...,7,_1 recursively to satisfy the relations,

p—u—2

*%/pflfu_'_ Z fkapflfkfu :5u7 u=p—2,p—1,...,0,
k=1

from which we conclude that

& a(z) !
Z l’khkm(Z) = le _ )\1 + Z i’/khk,pfl(Z).
k=1 k=1

Since b(z)/a(z) = b(z)/a(z) we conclude from (2.9) that

~ IS b
b/eAtXO — bleAtX() + ﬂ/ (Z) G(Z) ezt dZ’
2mi J,a(z) 2 — M
and since b(\;) = 0 the integrand in the contour integral is an entire function, from which
it follows that the integral term is zero, giving (4.3). O

Theorem 4.2. Suppose that p > 1, that b # 0 and that the Lévy process L is not deter-
ministic. Then the CARMA equations (1.1) and (1.2) have a strictly stationary solution
Y on R if and only if Elog" |Li| < co and all singularities of the meromorphic function
z +— b(2)/a(z) on the imaginary axis are removable, i.e. if a(-) has a zero Ay of multiplicity
(A1) on the imaginary azis, then b(-) has also a zero at Ay of multiplicity greater than or
equal to p(A1). In this case, the solution is unique and is given by (3.6) and (3.7).

Proof. 1f p =1 then b(z) = by is the constant polynomial, which by assumption is different
from zero. The claim then follows from Theorem 3.3. So suppose that p > 2. If a(-) and b(+)
have no common zeroes, the claim is true by Theorem 3.3. Now suppose that a(-) and b(-)
have common zeroes. The sufficiency of the condition is then clear from Proposition 3.2.

To show that it is necessary, suppose that Y is a strictly stationary solution. If A is any
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zero of a(+) let p,(\) denote its multiplicity and let 1, (\) be its multiplicity as a zero of b(+)
(with uy(A) := 0 if b(A) # 0). Let v(A) := min(ua(A), us(A)) and define the polynomials,

- a(z) b(z)
== d b =
HEh e B  REEP V)
where the product is over the distinct zeroes of a(-). From Theorem 4.1 it follows that Y
is also a strictly stationary solution of a CARMA(p — r,q — r) process with r = ), v()\)
and characteristic polynomials @(-) and b(z). Since a(-) and b(-) have no common zeroes
it follows from Theorem 3.3 that Elog" |L;| < co and that the zeroes of a(-) all have

non-zero real part. Uniqueness of the solution follows as before. O

Remark 4.3. Let L be a non-deterministic Lévy process. It is clear that a strictly station-
ary solution X = (Xy)ier of (1.2) gives rise to a strictly stationary CARMA process Y
via (1.1). Conversely, Proposition 3.2 and Theorem 4.2 imply that whenever a(-) and b(-)
have no common zeroes on the imaginary axis, then to every strictly stationary solution Y
there corresponds a strictly stationary state vector process X. This is no longer true if a(-)
and b(+) have common zeroes on the imaginary azis. In that case, stationary solutions Y
may exist as characterised by Theorem 4.2, while a stationary state vector X cannot exist
if a(-) has zeroes on the imaginary axis. The latter can be seen from Proposition 2.5, by
taking another CARMA process with the same polynomial a(-), but a different polynomial

b(+) such that a(-) and b(-) have no common zeroes.

5 The deterministic case

The characterisation of strictly stationary solutions Y of the CARMA equations (1.1)
and (1.2) in the case when L is random is slightly different from the case when L is a
deterministic Lévy process, in which case a(-) can have zeroes on the imaginary axis even

if they are not factored out by the polynomial b(-).

Proposition 5.1. Let L be a deterministic Lévy process, i.e. suppose there is o € R such
that Ly = ot for all t € R. Suppose further that b # 0. Denote by p,(\) and py(X\) the
multiplicity of X as a zero of a(-) and of b(-), respectively. Then the following results hold:
(a) If a, # 0, then the CARMA equations (1.1) and (1.2) have a strictly stationary
solution Y, one of which is Y, = oby/a, for all t € R. This solution is unique if and only
if up(X) > pa(N) for every zero A of a(-) such that RA = 0.

(b) If a, = 0 and o # 0, then the CARMA equations (1.1) and (1.2) have a strictly
stationary solution'Y if and only if uy(0) > 11,(0). If this condition is satisfied, one solution
is Yy = by, 0)/Gp—pa(0), t € R, and this solution is unique if and only if (X)) > pa(X) for
all zeroes A of a(-) such that R\ = 0.
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(c) Ifa, =0 =0, then Y, =0, t € R, is a strictly stationary solution of the CARMA
equations (1.1) and (1.2), and this solution is unique if and only if pp(X) > pa(X) for all
zeroes \ of a(-) such that R\ = 0.

Proof. (a) Since a, # 0, the matrix A is invertible. Write
Xo:=—-0Alte+V=[0/a,00 ... 0] +V
for some random vector V. Then

X, = e"Xo+o /t eAt=e dy
= (XD - UZ_AtA_le + aA‘le)
= MV —ogAle.
The choice of V = 0 then leads to
Y; =b'X, = —ob'A e =aby/a,, tER,

which is clearly stationary. Next, suppose that there is a zero A\ of a(-) with ®A; = 0
and pq(A1) > pp(A1). Let 0 be a complex valued random variable which is uniformly
distributed on the unit circle. From the form of the polynomials hy, in (2.8) it is easy to
see that the vector V.= [V} ...V}]" can be chosen such that

p
a(z)
Z thk,p(z) = (z — )\1)%()\1)+1 (5, (51)
k=1
since a(z)/(z — A )"A)F1 is a polynomial of degree less than or equal to p — 1. Let
b(z) = b(2)/(z — A)#*) Then (2.9) gives
1 [ D ~
bV — — / L) e g 5 Z e
211 p 2 — A1
Since § is uniformly distributed on the unit circle and b(\;) # 0, Y; = abg/a, + b(A)e s,
t € R, gives another strictly stationary solution Y of (1.1) and (1.2), violating uniqueness.
Finally, if p,(A) < () for all zeroes A of a(-) such that RA = 0, then these zeroes can
be factored out by Theorem 4.1 and uniqueness follows as in the proof of Theorem 3.3.
(b) If up(0) > pa(0), we can factor out the common zero at 0 by Theorem 4.1, and the
existence and uniqueness assertion follows from (a). So suppose that 14,(0) < a(0). From
(2.10) we conclude that

t t
0/ bedt-e dy = — M/ e dy dz = —— bz) l(eZt —1)d=.
0 2mi J, a(2) Jo 2mi J, a(z) z
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Observe further that by (2.8) the general choice of a starting random vector V. = X,
corresponds to the general choice of a random polynomial > ¢_, Vihy,(2) = > 0_, Upz" ™!
with random variables Uy, ..., U,. Hence we see from (2.9) that the general solution for

Y, can be written as

t
Y, = beXy+o / b'eAt-"e dy
0

= = o(z) e U—i—zp:Uzk dz—i/ oz) dz, teR
2mi ), a(z)z P g 2mi ), a(z)z '

By the residue theorem the latter can be written as

pa(A)—1
Y, =

t* teR 5.2
271'2 + Z Tokl S ) ( )
AA0 k=0

for certain random variables 7y, where

o b(z)z”a(o)
70,10 (0) 45 (0) = (112 (0) — pp(0))! |:G(Z>Z:ub(0):| o # 0.

Hence the t#a©)=#O)_term is multiplied by a deterministic nonzero scalar, and letting
t — 400 in equation (5.2) one can easily see that (Y;):cr cannot be stationary.

(c) That Y; = 0 is a strictly stationary solution is clear, as is its uniqueness under the
given condition by factoring out the common zeroes of a(-) and b(-) and applying (a).
On the other hand, if there is a zero A; of a(-) such that u,(A1) < ps(A1), then one can
choose Xy =V = [V} ... V,] such that (5.1) holds with ¢ being uniformly distributed
on the unit circle, and as in the proof of (a) we obtain the existence of another strictly

stationary solution. O

6 Conclusions

We have shown that if L is any non-deterministic Lévy process then the equations (1.1)
and (1.2) defining the corresponding Lévy-driven CARMA process have a strictly sta-
tionary solution Y if and only if Elog" |L;| < co and all the singularities of the function
z + b(z)/a(z) on the imaginary axis are removable. Under these conditions the strictly
stationary solution is unique and is specified explicitly as an integral with respect to L by
equations (3.6) and (3.7). The solution is not necessarily causal (i.e. Y; is not necessarily
a measurable function of (Ls)s< for all ¢ € R). From (3.7) and Theorem 4.1 it follows
that the solution is causal if and only if the singularities of the function z — b(z)/a(z) on

or to the right of the imaginary axis are removable.

23



We have also given conditions for existence and uniqueness of stationary solutions in
the special case in which L is deterministic.

The results represent a significant generalization of existing results which focus on
causal solutions only and which, apart from more restrictive sufficient conditions for the
existence of strictly stationary solutions in the general case, are restricted to solutions of
the Ornstein-Uhlenbeck equation and CARMA equations driven by Lévy processes with
FEL(1)* < co.
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