
Existence and Uniqueness of Stationary Lévy-driven
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Abstract

Necessary and sufficient conditions for the existence of a strictly stationary solu-
tion of the equations defining a general Lévy-driven continuous-parameter ARMA
process with index set R are determined. Under these conditions the solution is
shown to be unique and an explicit expression is given for the process as an inte-
gral with respect to the background driving Lévy process. The results generalize
results obtained earlier for second-order processes and for processes defined by the
Ornstein-Uhlenbeck equation.
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1 Introduction

Let L = (Lt)t∈R be a Lévy process, i.e. a process with homogeneous independent incre-

ments, continuous in probability, with càdlàg sample paths and L0 = 0. For integers p

and q such that p > q, we define a (complex valued) CARMA(p, q) process Y = (Yt)t∈R,

driven by L, by the equation

Yt = b′Xt, t ∈ R, (1.1)

where X = (Xt)t∈R is a Cp-valued process satisfying the stochastic differential equation,

dXt = AXt dt + e dLt, (1.2)
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or equivalently

Xt = eA(t−s)Xs +

∫ t

s

eA(t−u)e dLu, ∀s ≤ t ∈ R, (1.3)

with

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1




, e =




0

0
...

0

1




, and b =




b0

b1

...

bp−2

bp−1




,

where a1, . . . , ap, b0, . . . , bp−1 are complex-valued coefficients such that bq 6= 0 and bj = 0

for j > q. For p = 1 the matrix A is to be understood as A = (−a1).

The equations (1.1) and (1.2) constitute the state-space representation of the formal

pth-order stochastic differential equation,

a(D)Yt = b(D)DLt, (1.4)

where D denotes differentiation with respect to t and a(·) and b(·) are the polynomials,

a(z) = zp + a1z
p−1 + · · ·+ ap, (1.5)

and

b(z) = b0 + b1z + · · ·+ bp−1z
p−1. (1.6)

Equation (1.4) is the natural continuous-time analogue of the pth-order linear difference

equations used to define a discrete-time ARMA process (see e.g. Brockwell and Davis

(1991)). However, since the derivatives on the right-hand side of (1.4) do not exist as

random functions, we base the definition on the state-space formulation (1.1) and (1.2).

The aim of the present paper is to establish necessary and sufficient conditions for the

existence of a strictly stationary solution of the equations (1.1) and (1.2) for (Yt)t∈R.

Under the assumptions that EL2
1 < ∞ and X0 is independent of (Lt)t>0, it is well-

known (see Brockwell (2001a) and Brockwell and Marquardt (2005)) that necessary and

sufficient conditions for existence of a covariance stationary solution (Xt)t≥0 of (1.2)

are that the zeroes of the polynomial a (which are also the eigenvalues of the matrix

A) have strictly negative real parts and that X(0) has the same mean and covariance

as
∫∞

0
eAue dLu. Under these conditions (Yt)t≥0 defined by (1.1) is a weakly stationary

CARMA process, said to be causal since for each t > 0, Yt is a measurable function of X0

and (Ls)s≤t. Under the weaker assumption that E|L1|r < ∞ for some r > 0, Brockwell

(2001b) showed that if X0 has the same distribution as
∫∞
0

eAue dLu and is independent

of (Lt)t>0 and if the real parts of the zeroes of a are strictly negative, then the solution
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of (1.2) is strictly stationary and the corresponding process (Yt)t≥0 is a causal strictly

stationary CARMA process driven by L.

The aim of the present paper is to dispense with the assumptions of the previous

paragraph and to derive necessary and sufficient conditions for the equations (1.1) and

(1.2) to have a strictly stationary, not necessarily causal, solution Y = (Yt)t∈R. Observe

that a priori we do not require the state vector (Xt)t∈R to be strictly stationary, and we will

indeed encounter cases when a(·) and b(·) have common zeroes on the imaginary axis and

in which strictly stationary solutions Y exist without a corresponding strictly stationary

state vector X. We shall also establish uniqueness of the solution Y and give an explicit

representation for the solution as an integral with respect to L. The results generalize those

of Wolfe (1982) and Sato and Yamazato (1984), who derived a necessary and sufficient

condition for the existence of a stationary solution of the Lévy-driven Ornstein-Uhlenbeck

equation.

The paper is organised as follows: under the condition that a(·) and b(·) have no

common zeroes we derive necessary conditions for a strictly stationary solution Y to

exist in Section 2, and give a necessary and sufficient criterion in Section 3, where also

uniqueness of this solution is established. The a priori assumption of no common zeroes

of a(·) and b(·) is then eliminated in Section 4. The special case when L is deterministic

is treated separately in Section 5, in which case the characterisation is slightly different

from that for random L.

2 Necessary conditions for a stationary solution

In this section we derive conditions on the polynomials a(·) and b(·) and the Lévy process

L necessary for the existence of a strictly stationary solution (Yt)t∈R of equations (1.1)

and (1.2).

In the derivation of the results we make extensive use of the process obtained by

sampling the process Y at integer times. The first lemma provides a set of difference

equations satisfied by the sequence (Yn)n∈Z when (Yt)t∈R satisfies (1.1) and (Xt)t∈R satisfies

(1.2). From (1.3) we have, for the sampled state vector,

Xn = eAXn−1 + Rn, n ∈ Z, (2.1)

where

Rn :=

∫ n

n−1

eA(n−u)e dLu, n ∈ Z, (2.2)

and (Rn)n∈Z is clearly an i.i.d. sequence.
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Writing the polynomial a(z) as
∏p

i=1(z − λi), where λ1, . . . , λp are the eigenvalues of

A, we introduce the polynomial,

Φ(z) :=

p∏
j=1

(1− eλjz) =: 1− d1z − . . .− dpz
p, z ∈ C,

which plays a key role in the difference equations for the sampled process (Yn), given in

the following lemma. As usual, we denote by B the backward shift operator, defined by

B(Xn) = Xn−1.

Lemma 2.1. Let Φ be defined as above. Then

Φ(B)(Xn) = Xn − d1Xn−1 − . . .− dpXn−p =

p−1∑
r=0

(
erA −

r∑
j=1

dje
(r−j)A

)
Rn−r, (2.3)

and, from (1.1),

Φ(B)Yn = Yn − d1Yn−1 − . . .− dpYn−p = b′
p−1∑
r=0

(
erA −

r∑
j=1

dje
(r−j)A

)
Rn−r. (2.4)

The latter can be written as

Φ(B)Yn = Yn − d1Yn−1 − . . .− dpYn−p = Z1
n + Z2

n−1 + . . . + Zp
n−p+1, (2.5)

where

Zr
n :=

∫ n

n−1

b′
(

e(r−1)A −
r−1∑
j=1

dje
(r−1−j)A

)
eA(n−u)e dLu, r = 1, . . . , p. (2.6)

Proof. It suffices to prove (2.3), from which the remaining assertions follow. For that, we

shall first show that for any m ∈ N0 and for any complex numbers c1, . . . , cm, we can write

Xn =
m∑

r=1

crXn−r +

(
emA −

m∑
r=1

cre
(m−r)A

)
Xn−m +

m−1∑
r=0

(
erA −

r∑
j=1

cje
(r−j)A

)
Rn−r.

(2.7)

For m = 0 this is clear. To show that validity of the statement for any particular m implies

validity for m+1, let cm+1 be an arbitrary complex number. We can then write, by (2.1),

Xn =
m∑

r=1

crXn−r +

(
emA −

m∑
r=1

cre
(m−r)A

)
(
eAXn−(m+1) + Rn−m

)

+
m−1∑
r=0

(
erA −

r∑
j=1

cje
(r−j)A

)
Rn−r

=
m+1∑
r=1

crXn−r +

(
e(m+1)A −

m∑
r=1

cre
(m+1−r)A − cm+1

)
Xn−(m+1)

+
m∑

r=0

(
erA −

r∑
j=1

cje
(r−j)A

)
Rn−r,
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completing the induction step.

Next, observe that the eigenvalues of e−A, including repeated values, are e−λ1 , . . . , e−λp ,

see e.g. Bernstein (2005), Propositions 4.4.4 and 11.2.3. Hence we see that

Φ(z) =

p∏
j=1

(1− eλjz) =

p∏
j=1

(−eλj)

p∏
j=1

(z − e−λj) =

(
p∏

j=1

(−eλj)

)
χexp(−A)(z),

where χexp(−A) denotes the characteristic polynomial of e−A. From the Cayley-Hamilton

theorem it then follows that Φ(e−A) = 0, so that

e−0A − d1e
−A − . . .− dpe

−pA = 0.

Multiplying this by epA gives

epA − d1e
(p−1)A − . . .− dpe

0A = 0,

and inserting this in (2.7) with m = p and cr = dr gives (2.3).

The following two lemmas provide analytical tools which are used in the subsequent

derivations.

Lemma 2.2. Let l ∈ N0. Then for every c1, . . . , cl+1 ∈ R there exist δ0, . . . , δl ∈ R such

that

cl+1n
l+1 + cln

l + . . . + c1n =
l∑

v=0

δv

n−1∑
u=0

uv ∀ n ∈ N.

If cl+1 6= 0, then one can choose δl 6= 0.

Proof. The assertion will be proved by induction on l. For l = 0 it suffices to choose

δ0 = c1. Now, assuming the claim is true for a particular value of l, choose any cl+2 ∈ R.

Then

n−1∑
u=0

ul+1 =
1

l + 2

l+1∑
m=0

(
l + 2

m

)
nl+2−mBm =

1

l + 2
nl+2 +

1

l + 2

l+1∑
m=1

(
l + 2

m

)
nl+2−mBm,

where (Bm)m∈N0 denotes the sequence of Bernoulli numbers, defined by x
ex−1

=
∑∞

m=0
Bm

m!
xm.

Choosing δl+1 := (l + 2)cl+2, we conclude that

cl+2n
l+2 + cl+1n

l+1 + . . . + c1n = δl+1

n−1∑
u=0

ul+1 + c′l+1n
l+1 + . . . + c′1n

for some c′1, . . . , c
′
l+1, and so by the induction hypothesis we obtain

cl+2n
l+2 + cl+1n

l+1 + . . . + c1n =
l+1∑
v=0

δv

n−1∑
u=0

uv

for suitable δ0, . . . , δl.
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Lemma 2.3. Define A, b and e as in Section 1 and define the polynomials

hk,p(z) :=

p−k∑
u=0

auz
p−k−u =

p−k∑
u=0

ap−k−uz
u, k = 1, . . . , p, (2.8)

where we let a0 := 1. Then for every vector V = [V1, . . . , Vp]
′ ∈ Cp we have

b′eAtV =
1

2πi

∫

ρ

b(z)

a(z)
etz

p∑

k=1

Vkhk,p(z) dz, (2.9)

where ρ is a simple closed curve that encircles all eigenvalues of the matrix A. In partic-

ular,

b′eAte =
1

2πi

∫

ρ

b(z)

a(z)
etz dz, (2.10)

which can be expressed as the sum of residues,

b′eAte =
∑

λ

µ(λ)−1∑

k=0

cλkt
keλt,

where
∑

λ denotes the sum over distinct zeroes of a(·), µ(λ) is the multiplicity of the zero

λ and
∑µ(λ)−1

k=0 cλkt
keλt is the residue of z 7→ eztb(z)/a(z) at λ, i.e.

µ(λ)−1∑

k=0

cλkt
keλt =

1

(µ(λ)− 1)!

[
Dµ(λ)−1

z

(
(z − λ)µ(λ)eztb(z)/a(z)

)]
z=λ

,

and Dz denotes differentiation with respect to z. (For a zero λ with µ(λ) = 1 the last sum

reduces to b(λ)eλt/a′(λ).)

Proof. Since A is a companion matrix, it follows from Theorem 2.1 in Eller (1987) applied

to the function z 7→ etz that the (j, k)-element of the matrix eAt is given by

1

2πi

∫

ρ

zj−1etzhk,p(z)

a(z)
dz.

Hence the k’th element of the row vector b′eAt is given by

p−1∑
j=0

bj (eAt)j+1,k =
1

2πi

∫

ρ

p−1∑
j=0

bjz
jetzhk,p(z)

a(z)
dz =

1

2πi

∫

ρ

b(z)

a(z)
etzhk,p(z) dz.

Equations (2.9) and (2.10) are immediate consequences.

Remark Assuming that the real parts of the eigenvalues λ1, . . . , λp, are strictly negative,

Tsai and Chan (2009) obtain an expression for b′eAte, t ≥ 0, which coincides with the

second expression for b′eAte in the statement of Lemma 2.3, evaluated on [0,∞). 2

The following lemma will be used in the proof of Proposition 2.5, when necessary

conditions for the existence of stationary solutions will be established. Recall that a Lévy

process L is deterministic if and only if there is a σ ∈ R such that Lt = σt for all t ∈ R.
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Lemma 2.4. Suppose that a(·) has a zero at λ1 of algebraic multiplicity µ1 = µ(λ1). In

the notation of Lemma 2.3 we have

b′ eAte =
∑

λ

µ(λ)−1∑

k=0

cλkt
keλt

where µ(λ) denotes the algebraic multiplicity of λ and the coefficients cλk were defined in

the statement of the lemma. Define

S0 :=

p∑
r=1

e(1−r)λ1Zr
0 ,

where Zr
n was defined in (2.6). The following results then hold.

(a) S0 =

∫ 0

−1

∑

λ

µ(λ)−1∑

k=0

cλk

p∑
r=1

e(1−r)λ1

[
(r − 1− s)keλ(r−1−s)

−
r−1∑
j=1

dj(r − 1− j − s)keλ(r−1−j−s)
]
dLs.

(b) For each k ∈ {0, . . . , µ1 − 1}
p∑

r=1

e(1−r)λ1

[
(r − 1− s)keλ1(r−1−s) −

r−1∑
j=1

dj(r − 1− j − s)keλ1(r−1−j−s)

]
= γke

−λ1s,

where γk is a constant such that

γk





= 0, k < µ1 − 1,

6= 0, k = µ1 − 1.

(c) If b(λ1) 6= 0 and L = (Lt)t∈R is not a deterministic process, then the support of S0 is

unbounded.

Proof. (a) Let h(t) = b′eAte. Then we have by (2.6),

Zr
0 =

∫ 0

−1

h(r − 1− s)−
r−1∑
j=1

djh(r − 1− j − s) dLs,

so that for S0 =
∑p

r=1 e(1−r)λ1Zr
0 we have

S0 =

∫ 0

−1

p∑
r=1

e(1−r)λ1

[
h(r − 1− s)−

r−1∑
j=1

djh(r − 1− j − s)

]
dLs.

Inserting the specific form for h(t) from Lemma 2.3 we get assertion (a).
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(b) We have for k ∈ {0, . . . , µ1 − 1}
p∑

r=1

e(1−r)λ1

[
(r − 1− s)keλ1(r−1−s) −

r−1∑
j=1

dj(r − 1− j − s)keλ1(r−1−j−s)

]

= e−λ1s

k∑
u=0

(−s)k−u

(
k

u

) p∑
r=1

[
(r − 1)u −

r−1∑
j=1

dj(r − 1− j)ue−λ1j

]

= e−λ1s

k∑
u=0

(−s)k−u

(
k

u

)
γu,

where

γu :=

p∑
r=1

[
(r − 1)u −

r−1∑
j=1

dj(r − 1− j)ue−λ1j

]
, u = 0, . . . , µ1 − 1.

To establish the claim it therefore suffices to show that

γk





= 0, k < µ1 − 1,

6= 0, k = µ1 − 1,
(2.11)

which will be achieved by induction. First, observe that

γk =

p−1∑
r=0

rk −
p−1∑
r=0

r∑
j=1

dj(r − j)ke−λ1j

=

p−1∑
r=0

rk −
p−1∑
j=1

dje
−λ1j

p−1−j∑
u=0

uk. (2.12)

In particular,

γ0 = p− (p− 1)d1e
−λ1 − . . .− dp−1e

−λ1(p−1) =
[
z1−p Dz(z

pΦ(z−1))
]
z=eλ1

. (2.13)

If µ1 = 1 then eλ1 is a zero of multiplicity one of z 7→ zpΦ(z−1) and so the derivative

in (2.13) is non-zero, establishing (2.11) in this case. Now suppose that µ1 > 1. Then

eλ1 is a zero of multiplicity µ1 of z 7→ zpΦ(z−1) and the derivative in (2.13) is zero, so

that γ0 = 0. Let k ∈ {1, . . . , µ1 − 1}, and make the induction hypothesis that γj = 0 for

j ∈ {0, . . . , k − 1}. Then according to Lemma 2.2 there exist δ0, . . . , δk ∈ R with δk 6= 0

such that
k∑

v=0

δv

n−1∑
u=0

uv = n(n + 1) · · · (n + k), n ∈ N.

The induction hypothesis with (2.12) and the preceding representation give

δkγk =
k∑

v=0

δvγv

= p(p + 1) · · · (p + k)−
p−1∑
j=1

dje
−λ1j(p− j) · · · (p− j + k).
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To complete the induction argument and establish (2.11), it now suffices to show that

p(p + 1) · · · (p + k)−
p−1∑
j=1

dje
−λ1j(p− j) · · · (p− j + k)





= 0, k < µ1 − 1,

6= 0, k = µ1 − 1.
(2.14)

Recall that Φ(z) = 1− d1z − . . .− dpz
p. Then defining

Ψ(z) := zp+kΦ(z−1) = zp+k − d1z
p+k−1 − . . .− dpz

k,

we can write the derivative Ψ(k+1)(z) = Dk+1
z Ψ(z) as

Ψ(k+1)(z) = (p + k) · · · p zp−1 − d1(p + k − 1) · · · (p− 1)zp−2 − . . .− dp−1(k + 1) · · · 1z0.

Multiplying by z1−p gives

Ψ(k+1)(z)z1−p = (p + k) · · · p− d1(p + k − 1) · · · (p− 1)z−1 − . . .− dp−1(k + 1) · · · 1z1−p,

from which we conclude that

δkγk = Ψ(k+1)(eλ1) eλ1(1−p).

Since λ1 is a zero of a(·) with multiplicity µ1, e−λ1 is a zero of Φ with multiplicity µ1, and

we conclude that

Φ(e−λ1) = Φ′(e−λ1) = . . . = Φ(µ1−1)(e−λ1) = 0

and

Φ(µ1)(e−λ1) 6= 0.

Since Ψ(z) = zp+kΦ(z−1), this shows that

Ψ(k+1)(eλ1)





= 0, k < µ1 − 1,

6= 0, k = µ1 − 1,

and (2.14) follows.

(c) From (a) and (b) we obtain

S0 =

∫ 0

−1

(
µ1−1∑

k=0

cλ1,kγke
−λ1s + f(s)

)
dLs

=

∫ 0

−1

(
cλ1,µ1−1γµ1−1e

−λ1s + f(s)
)

dLs

for some continuous function f which is linearly independent of the function s 7→ e−λ1s.

Since γµ1−1 6= 0 and

cλ1,µ1−1 =
1

(µ1 − 1)!
b(λ1) [(z − λ1)

µ1/a(z)]z=λ1
6= 0
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by Lemma 2.3 and by assumption, S0 is the integral of a non-identically zero deterministic

continuous function with respect to L. Since L is not deterministic, it follows that S0 is

non-constant, and since <S0 and =S0 are infinitely divisible, it must have unbounded

support (cf. Sato (1999), Theorem 24.3).

The next result gives necessary conditions for a strictly stationary solution to exist.

Proposition 2.5. Suppose that (Yt)t∈R is a strictly stationary CARMA process and that

(Lt)t∈R is not a deterministic process. Let λ1 be any (possibly multiple) zero of a(·) which

is not a zero of b(·). Then <(λ1) 6= 0 and E log+ |L1| < ∞.

Proof. Since (Yt)t∈R is a strictly stationary CARMA process, (Yn)n∈Z must also be strictly

stationary. Let Φ̃ be the polynomial of degree p − 1 defined by Φ̃(z) := Φ(z)/(1 − eλ1z)

and define

Wn := Φ̃(B)Yn.

Then (Wn)n∈Z is strictly stationary and

Wn − eλ1Wn−1 = Zn, (2.15)

where Zn = Z1
n + Z2

n−1 + . . . + Zp
n−p+1 and Z1

n, . . . , Z
p
n−p+1 are the independent random

variables defined in Lemma 2.1. Iterating (2.15) gives

Wn = eλ1Wn−1 + Zn = e2λ1Wn−2 + eλ1Zn−1 + Zn = . . .

= e(N+1)λ1Wn−N−1 +
N∑

j=0

ejλ1Zn−j, N ∈ N. (2.16)

Since

Zn−j =

p∑
r=1

Zr
n−j−r+1,

it follows that for N ∈ N
N∑

j=0

ejλ1Zn−j =
N∑

j=0

p∑
r=1

ejλ1Zr
n−j−r+1

=

p∑
r=1

N−r+1∑
j=−r+1

ejλ1Zr
n−j−r+1 +

p∑
r=1

N∑
j=N−r+2

ejλ1Zr
n−j−r+1 −

p∑
r=1

−1∑
j=−r+1

ejλ1Zr
n−j−r+1

=

p∑
r=1

N∑
v=0

e(v−r+1)λ1Zr
n−v +

p∑
r=1

N∑
j=N−r+2

ejλ1Zr
n−j−r+1 −

p∑
r=1

−1∑
j=−r+1

ejλ1Zr
n−j−r+1 (2.17)

Let

Sn :=

p∑
r=1

e(1−r)λ1Zr
n, n ∈ Z. (2.18)
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Then (Sn)n∈Z is an i.i.d. sequence and S0 has unbounded support by Lemma 2.4 (c). We

conclude from equations (2.16) and (2.17) that

W0 − e(N+1)λ1W−N−1 −
p∑

r=1

N∑
j=N−r+2

ejλ1Zr
−j−r+1 +

p∑
r=1

−1∑
j=−r+1

ejλ1Zr
−j−r+1 =

N∑
v=0

evλ1S−v.

(2.19)

In part (a) below we show that the assumption <(λ1) = 0 leads to a contradiction. Then

in parts (b) and (c) we show that E log+ |L1| < ∞ in the cases <(λ1) < 0 and <(λ1) > 0

respectively.

(a) Suppose that <λ1 = 0. Since (Wn)n∈Z is strictly stationary, it is easy to see that there

is some constant K > 0 such that

P

(∣∣∣∣∣W0 − e(N+1)λ1W−N−1 −
p∑

r=1

N∑
j=N−r+2

ejλ1Zr
−j−r+1 +

p∑
r=1

−1∑
j=−r+1

ejλ1Zr
−j−r+1

∣∣∣∣∣ ≤ K

)
≥ 1

2

for all N ∈ N0. Hence we conclude that

P

(∣∣∣∣∣<
N∑

v=0

evλ1S−v

∣∣∣∣∣ ≤ K

)
≥ 1

2
and P

(∣∣∣∣∣=
N∑

v=0

evλ1S−v

∣∣∣∣∣ ≤ K

)
≥ 1

2
.

Let (S ′v)v∈Z be an i.i.d. sequence, independent of the sequence (Sv)v∈Z, but with the same

marginal distributions. Then <(evλ1(Sv − S ′v)) is the symmetrization of <(evλ1Sv) and

=(evλ1(Sv − S ′v)) is the symmetrization of =(evλ1Sv). It follows that for all N ∈ N0

P

(∣∣∣∣∣<
N∑

v=0

evλ1(S−v − S ′−v)

∣∣∣∣∣ ≤ 2K

)
≥ 1

4
and P

(∣∣∣∣∣=
N∑

v=0

evλ1(S−v − S ′−v)

∣∣∣∣∣ ≤ 2K

)
≥ 1

4
.

In particular, neither
∣∣∣<∑N

v=0 evλ1(S−v − S ′−v)
∣∣∣ nor

∣∣∣=∑N
v=0 evλ1(S−v − S ′−v)

∣∣∣ converges

to +∞ in probability as N → ∞, and since both are sums of independent symmetric

terms, both terms (without the modulus) must converge almost surely (see Kallenberg

(2002), Theorem 4.17). It follows that
∑N

v=0 eλ1v(S−v − S ′−v) converges almost surely as

N →∞. The Borel-Cantelli lemma then implies that

∞∑
v=0

P (|evλ1(S−v − S ′−v)| > 1) =
∞∑

v=0

P (|S−v − S ′−v| > 1) < ∞,

which is impossible, since P (|S−v−S ′−v| > 1) = P (|S0−S ′0| > 1), which is strictly positive

since S0 has unbounded support by Lemma 2.4 (c).

(b) Now suppose that <λ1 < 0. Since (Wn)n∈Z is stationary, Slutsky’s lemma and (2.19)

imply that
∑N

v=0 evλ1S−v converges in probability to W0 +
∑p

r=1

∑−1
j=−r+1 ejλ1Zr

−j−r+1 as

11



N →∞. Hence

W0 +

p∑
r=1

−1∑
j=−r+1

ejλ1Zr
−j−r+1 =

∞∑
v=0

evλ1S−v a.s., (2.20)

the almost sure convergence of
∑N

v=0 evλ1S−v being a consequence of the independence of

the sequence (Sn). The Borel-Cantelli lemma then implies that
∑∞

v=0 P (|evλ1S−v| > 1) <

∞. From this we obtain the chain of conclusions,

∞∑
v=0

P (|evλ1S−v| > 1) < ∞

=⇒
∞∑

v=0

P (|S−v| > e−v<λ1) < ∞

=⇒
∞∑

v=0

P (log+ |S0| > −v<λ1) < ∞

=⇒
∞∑

v=0

P (log+ |<S0| > −v<λ1) < ∞,

the last of which implies that

E log+ |<S0| < ∞. (2.21)

Similarly we find that E log+ |=S0| < ∞. Recall that S0 has unbounded support, so that

at least one of <S0 and =S0 has unbounded support. Without loss of generality we suppose

that this is the case for <S0. (The argument which follows can easily be modified to deal

with the case in which =S0 has unbounded support.) Recall further that we can write, as

in the proof of Lemma 2.4(c),

<S0 =

∫ 0

−1

f(s) dLs

for some continuous function f which is not identically zero. It is well known that <S0

is infinitely divisible as an integral of a deterministic function with respect to a Lévy

process, and that its Lévy measure ν<S0 satisfies

ν<S0(C) =

∫ 0

−1

∫

R
1C(f(s)x)ν(dx) ds

for every Borel set C ∈ B1 such that 0 6∈ C (cf. Sato (2006b), Proposition 2.6). Here ν

denotes the Lévy measure of L. Now define the sets

Cy := (−∞,−y] ∪ [y,∞), y > 0,

and choose ε > 0 such that

K := λ`({s ∈ [−1, 0] : |f(s)| ≥ ε}) > 0,

12



where λ` denotes one dimensional Lebesgue measure. (This is possible since f is continuous

and not identically zero.) It then follows that for y > 0

ν<S0(Cy) =

∫ 0

−1

∫

|x| |f(s)|≥y

ν(dx) ds

≥
∫

s∈[−1,0]:|f(s)|≥ε

∫

|x|≥y/ε

ν(dx) ds

= K ν(Cy/ε). (2.22)

Now since E log+ |<S0| is finite and <S0 is infinitely divisible, it follows that
∫

|x|≥1

log |x| ν<S0(dx) < ∞

(e.g. Sato (1999), Section 25). Hence

∞ >

∫

|x|≥1

log |x| ν<S0(dx)

=

∫

|x|≥1

∫

[1,|x|]

1

u
du ν<S0(dx)

=

∫ ∞

1

1

u
ν<S0(Cu) du

(2.22)

≥ K

∫ ∞

1

1

u
ν(Cu/ε) du = . . . =

= K

∫

|x|≥1/ε

log |x| ν(dx).

Again from Section 25 in Sato (1999) we conclude that E log+ |L1| < ∞.

(c) Now suppose that <λ1 > 0. From equation (2.15) we have

Wn = e−λ1Wn+1 − e−λ1Zn+1

= e−2λ1Wn+2 − e−2λ1Zn+2 − e−λ1Zn+1 = . . .

= e−Nλ1Wn+N −
N∑

j=1

e−jλ1Zn+j,

and letting N →∞ gives

Wn = −plimN→∞

N∑
j=1

e−jλ1Zn+j,

where plim denotes the limit in probability. Since

Zn+j =

p∑
r=1

Zr
n+j−r+1,

13



it follows that for N ∈ N
N∑

j=1

e−jλ1Zn+j =
N∑

j=1

p∑
r=1

e−jλ1Zr
n+j−r+1

=

p∑
r=1

N+r−1∑
j=r

e−jλ1Zr
n+j−r+1 −

p∑
r=1

N+r−1∑
j=N+1

e−jλ1Zr
n+j−r+1 +

p∑
r=1

r−1∑
j=1

e−jλ1Zr
n+j−r+1

=

p∑
r=1

N∑
v=1

e−(v+r−1)λ1Zr
n+v −

p∑
r=1

N+r−1∑
j=N+1

e−jλ1Zr
n+j−r+1 +

p∑
r=1

r−1∑
j=1

e−jλ1Zr
n+j−r+1.

Defining

Sn :=

p∑
r=1

e(1−r)λ1Zr
n,

we find that

W0 = −
∞∑

v=1

e−vλ1Sv −
p∑

r=1

r−1∑
j=1

e−jλ1Zr
j−r+1 a.s.

This is the analogue of (2.20) in part (b). The remainder of the proof follows exactly the

same steps as those of (b).

If the assumption that L is not deterministic in Proposition 2.5 is dropped, then

<λ1 6= 0 is no longer necessary for a strictly stationary solution to exist, see Proposition 5.1

below.

3 The stationary solution

In the previous section we established that if L is non-deterministic and the polynomials

a(·) and b(·) have no common zeroes, then existence of a strictly stationary solution

(Yt)t∈R of (1.1) and (1.2) implies that a(·) is non-zero on the imaginary axis and that

E log+ |L1| < ∞.

In this section we show that if a(·) is non-zero on the imaginary axis and E log+ |L1| <
∞, then there is a unique strictly stationary solution (Yt)t∈R of (1.1) and (1.2) and we

specify the solution explicitly as an integral with respect to L. Together with the results

of Section 2, this gives necessary and sufficient conditions for the existence of a strictly

stationary solution under the assumption that a(·) and b(·) have no common zeroes (The-

orem 3.3). The general case in which we place no a priori assumptions on the zeroes of

a(·) and b(·) will be dealt with in Section 4.

In order to establish uniqueness of the solution we need the following lemma. As usual,

B denotes the backward shift operator.

14



Lemma 3.1. Let (Vn)n∈Z be a strictly stationary C-valued process such that

Ψ(B) = Vn − ψ1Vn−1 − . . .− ψpVn−p = Zn, n ∈ Z,

where Ψ(z) = 1−ψ1z−. . .−ψpz
p with ψ1, . . . , ψp ∈ C, and (Zn)n∈Z is a sequence of random

variables. Suppose that Ψ(·) has no zeroes on the unit circle. If the Laurent expansion of

Ψ−1(z) on {z ∈ C : 1− ε ≤ |z| ≤ 1 + ε} for some ε ∈ (0, 1) is denoted by,

Ψ−1(z) =
∑

m∈Z
cmzm,

then

Vn = plimN→∞
∑

|m|≤N

(cmBm)Ψ(B)Vn = plimN→∞
∑

|m|≤N

cmBmZn.

In particular, the limit in probability exists, and Vn is determined by (Zn−m)m∈Z and the

coefficients ψ1, . . . , ψp.

Proof. Define the sequence of functions,

fN(z) :=
∑

|m|≤N

cmzm(1−ψ1z− . . . ψpz
p) =:

N+p∑
m=−N

bm,Nzm, 1− ε ≤ |z| ≤ 1 + ε, N ∈ N.

Then fN converges uniformly to 1 on this annulus as N → ∞, and it follows that the

Laurent coefficients of fN converge to those of the function 1, i.e.

lim
N→∞

bm,N =





0, m 6= 0,

1, m = 0.

Further, observe that

bm,N = bm,N ′ ∀ N ′ ≥ N > p, m = −N + p, . . . , N,

i.e. for fixed m, bm,N is constant for sufficiently large N . From the limit result, we hence

see that

fN(z) = 1 +

−N+p−1∑
m=−N

bm,Nzm +

N+p∑
m=N+1

bm,Nzm,

and that

lim
N→∞

sup
m∈{−N,...,−N+p−1}∪{N+1,...,N+p}

|bm,N | = 0

(due to the exponential decrease in cm). Since (Vn)n∈Z is stationary, it follows from Slut-

sky’s theorem that

Vn = plimN→∞fN(B)Vn = plimN→∞
∑

|m|≤N

cmBmZn,

as claimed.
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The following proposition presents a sufficient condition for the existence of a strictly

stationary solution.

Proposition 3.2. Suppose that all singularities of the meromorphic function z 7→ b(z)/a(z)

on the imaginary axis are removable, i.e. if a(·) has a zero λ1 of multiplicity µ(λ1) on

the imaginary axis, than b(·) has also a zero at λ1 of multiplicity greater than or equal to

µ(λ1). Suppose further that E log+ |L1| < ∞. Define l(t), r(t), n(t) to be the sums of the

residues of the column vector ezta−1(z)[1 z · · · zp−1]′ at the zeroes of a(·) with strictly

negative, strictly positive and zero real parts, respectively. Then

l(t) + r(t) + n(t) = eAte, t ∈ R, (3.1)

l(t) =
∑

λ:<λ<0

µ(λ)−1∑

k=0

αλkt
keλt = eAtl(0), t ∈ R, (3.2)

r(t) =
∑

λ:<λ>0

µ(λ)−1∑

k=0

βλkt
keλt = eAtr(0), t ∈ R, (3.3)

for certain vectors αλk,βλk ∈ Cp, and

n(t) = eAtn(0). (3.4)

As usual, the sums are over the distinct zeroes λ of a(·) and µ(λ) denotes the multiplicity

of the zero λ. Define

Xt := eAt

(∫ t

−∞
e−Aul(0) dLu −

∫ ∞

t

e−Aur(0) dLu +

∫ t

0

e−Au n(0) dLu

)
(3.5)

=

∫ t

−∞
l(t− u) dLu −

∫ ∞

t

r(t− u) dLu + eAt

∫ t

0

e−Aun(0) dLu, t ∈ R,

where for t < 0,
∫ t

0
is interpreted as − ∫ 0

t
. Then the improper integrals over (−∞, t] and

[t,∞) defining Xt exist as almost sure limits limT→∞
∫ t

−T
and limT→∞

∫ T

t
, respectively,

and (Xt)t∈R satisfies (1.3). Define Yt := b′Xt, t ∈ R. Then (Yt)t∈R is a strictly stationary

solution of the CARMA equations (1.1) and (1.2), which can be written as

Yt =

∫ ∞

−∞
g(t− u) dLu, t ∈ R, (3.6)

where

g(t) =


 ∑

λ:<λ<0

µ(λ)−1∑

k=0

cλkt
keλt1(0,∞)(t)−

∑

λ:<λ>0

µ(λ)−1∑

k=0

cλkt
keλt1(−∞,0)(t)


 , t ∈ R, (3.7)

with cλk as in Lemma 2.3.
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Proof. The proof of (3.1) is exactly analogous to the proof of Lemma 2.3. The first equal-

ities in (3.2) and (3.3) are apparent from the algebraic form of the residue of the vector

ezta−1(z)[1 z · · · zp−1]′ at the zero λ of a(·). The right-hand sides of (3.2) and (3.3) follow

from the relations,

dl(t)

dt
= Al(t) and

dr(t)

dt
= Ar(t), t ∈ R, (3.8)

which are easily verified in the case when the zeroes λ of a(·) are distinct, since then

the residue at λ is eλt[1 λ · · · λp−1]′/a′(λ). The general case follows from a limit argu-

ment using the differentiation lemma applied to the sum of residues. Equation (3.4) is an

immediate consequence of (3.1), (3.2) and (3.3). The relations (3.2) and (3.3) imply the

existence of real constants K > 0 and ε > 0 such that

|l(−u)| ≤ K e−ε|u| ∀ u ≤ 0 and

|r(−u)| ≤ K e−ε|u| ∀ u ≥ 0.

This, together with the assumption that E log+ |L1| < ∞, implies convergence in proba-

bility of the integrals defining Xt (see e.g. Sato (2006a), Theorem 1.2 and Proposition 4.3),

and the independence of the increments of L implies that there is also convergence with

probability one. The following calculation shows that Xt satisfies (1.3). For s ≤ t we have

eA(t−s)Xs +

∫ t

s

eA(t−u)e dLu

(3.1),(3.5)
= eAt

(∫ s

−∞
e−Aul(0) dLu −

∫ ∞

s

e−Au r(0) dLu +

∫ s

0

e−Aun(0) dLu

)

+eAt

(∫ t

s

l(−u) dLu +

∫ t

s

r(−u) dLu +

∫ t

s

n(−u) dLu

)

(3.2)−(3.4)
= eAt

(∫ s

−∞
e−Aul(0) dLu −

∫ ∞

s

e−Au r(0) dLu +

∫ s

0

e−Aun(0) dLu

)

+eAt

(∫ t

s

e−Aul(0) dLu +

∫ t

s

e−Aur(0) dLu +

∫ t

s

e−Aun(0) dLu

)

(3.5)
= Xt.

It follows that Yt := b′Xt is a solution of the CARMA equations. Next, observe that

b′eAtn(0)
(3.4)
= b′n(t)

=
∑

λ:<λ=0

b′resλ(e
zta−1(z)[1 z · · · zp−1]′)

=
∑

λ:<λ=0

resλ(e
zta−1(z)b(z)) = 0
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by assumption, since b(z)/a(z) has only removable singularities on the imaginary axis.

Hence it follows from (3.5) that

Yt = b′Xt = b′
(∫ t

−∞
l(t− u) dLu −

∫ ∞

t

r(t− u) dLu

)
,

which is clearly strictly stationary. The representation (3.6) of Yt is obtained by observing

that b′l(t) and b′r(t) are precisely the sums of the residues of z 7→ eztb(z)/a(z) at the

zeroes of a(·) with strictly negative and strictly positive parts respectively.

We can now state the first of our main results.

Theorem 3.3. Let L be a Lévy process which is not deterministic and suppose that a(·)
and b(·) have no common zeroes. Then the CARMA equations (1.1) and (1.2) have a

strictly stationary solution Y on R if and only if E log+ |L1| < ∞ and a(·) is non-zero on

the imaginary axis. In this case the solution Y is unique and is given by (3.6) and (3.7),

and the corresponding state vector (Xt)t∈R can be chosen to be strictly stationary as in

(3.5).

Proof. Suppose that a stationary solution exists. Then from Proposition 2.5 it follows that

E log+ |L1| < ∞ and that a(·) is non-zero on the imaginary axis. Using equation (2.5) and

applying Lemma 3.1 with Ψ(z) = Φ(z) and Zn = Z1
n + Z2

n−2 + . . . + Zp
n−p+1, where (Zr

n) is

defined by (2.6), shows that (Yn)n∈Z is uniquely determined. The same argument shows

that (Ynh)n∈Z is uniquely determined for any fixed sampling interval h, and since the

solution (Yt)t∈R is càdlàg it must be unique. Conversely, suppose that E log+ |L1| < ∞
and that all zeroes of a(·) have non-zero real part. Then the existence of the strictly

stationary solution Y with representation (3.6) and (3.7) and the strictly stationary state

vector defined in (3.5) follows from Proposition 3.2.

4 The general non-deterministic case

In this Section we eliminate the a priori assumptions regarding the zeroes of a(·) and

b(·) made in Theorem 3.3 and assume only that L is non-deterministic. In particular the

polynomials a(·) and b(·) may have common zeroes and may have zeroes on the imaginary

axis. Before we give this general necessary and sufficient condition in Theorem 4.2, we

show how common zeroes in a(·) and b(·) can be factored out to give solutions of lower

order CARMA processes.
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Theorem 4.1. Let p ≥ 2 and let Y = (Yt)t∈R be a CARMA(p, q) process driven by L

with state vector process X = (Xt)t∈R, i.e. X and Y satisfy (1.1) and (1.3). Suppose that

λ1 ∈ C is a zero of both a(·) and b(·), and define

ã(z) :=
a(z)

z − λ1

= zp−1 + ã1z
p−2 + . . . + ãp−1,

b̃(z) :=
b(z)

z − λ1

= b̃0 + b̃1z + . . . + b̃p−2z
p−2,

Ã :=




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ãp−1 −ãp−2 −ãp−3 · · · −ã1



∈ Cp−1,p−1,

ẽ = [0 0 . . . 0 1]′ ∈ Cp−1, and b̃ =
[
b̃0 b̃1 . . . b̃p−3 b̃p−2

]′
∈ Cp−1.

Then there exists a Cp−1-valued state vector process X̃ = (X̃t)t∈R such that

X̃t = eÃ(t−s)X̃s +

∫ t

s

eÃ(t−u) ẽ dLu, ∀ s ≤ t ∈ R, (4.1)

and

Yt = b̃′X̃t, t ∈ R, (4.2)

i.e. Y is a CARMA(p− 1, q − 1) process with the same driving Lévy process.

Proof. Observe that (1.3) and (4.1) are equivalent to

Xt = eAtX0 +

∫ t

0

eA(t−u)e dLu and X̃t = eÃtX̃0 +

∫ t

0

eÃ(t−u)ẽ dLu ∀ t ∈ R,

respectively, where for t < 0,
∫ t

0
is interpreted as − ∫ 0

t
. Hence, using (2.10), it is enough

to show that for given X0 ∈ Cp there is X̃0 ∈ Cp−1 such that

b′eAtX0 = b̃′eÃtX̃0 ∀ t ∈ R. (4.3)

Write

X0 = (x1, . . . , xp)
′ and X̃0 = (x̃1, . . . , x̃p−1),

respectively. Observe that

p∑

k=1

xkhk,p(z) =

p∑

k=1

xk

p−k∑
u=0

ap−k−uz
u =

p−1∑
u=0

(
p−u∑

k=1

xkap−k−u

)
zu, (4.4)
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where hk,p(z) was defined in Lemma 2.3. Since a0 = 1 and z 7→ a(z)
z−λ1

is a polynomial of

degree p− 1 with leading coefficient 1 we can write

p∑

k=1

xkhk,p(z) = x1
a(z)

z − λ1

+

p−2∑
u=0

δuz
u, z ∈ C,

for certain δ0, . . . , δp−2 ∈ C (which, like x1, . . . , xp, are random variables). Next, observe

from ã0 = 1 and (4.4) that

p−1∑

k=1

x̃khk,p−1(z) =

p−2∑
u=0

(
x̃p−1−u +

p−u−2∑

k=1

x̃kãp−1−k−u

)
zu, z ∈ C.

Now define x̃1, . . . , x̃p−1 recursively to satisfy the relations,

x̃p−1−u +

p−u−2∑

k=1

x̃kãp−1−k−u = δu, u = p− 2, p− 1, . . . , 0,

from which we conclude that

p∑

k=1

xkhk,p(z) = x1
a(z)

z − λ1

+

p−1∑

k=1

x̃khk,p−1(z).

Since b(z)/a(z) = b̃(z)/ã(z) we conclude from (2.9) that

b′eAtX0 = b̃′eÃtX̃0 +
x1

2πi

∫

ρ

b(z)

a(z)

a(z)

z − λ1

ezt dz,

and since b(λ1) = 0 the integrand in the contour integral is an entire function, from which

it follows that the integral term is zero, giving (4.3).

Theorem 4.2. Suppose that p ≥ 1, that b 6= 0 and that the Lévy process L is not deter-

ministic. Then the CARMA equations (1.1) and (1.2) have a strictly stationary solution

Y on R if and only if E log+ |L1| < ∞ and all singularities of the meromorphic function

z 7→ b(z)/a(z) on the imaginary axis are removable, i.e. if a(·) has a zero λ1 of multiplicity

µ(λ1) on the imaginary axis, then b(·) has also a zero at λ1 of multiplicity greater than or

equal to µ(λ1). In this case, the solution is unique and is given by (3.6) and (3.7).

Proof. If p = 1 then b(z) = b0 is the constant polynomial, which by assumption is different

from zero. The claim then follows from Theorem 3.3. So suppose that p ≥ 2. If a(·) and b(·)
have no common zeroes, the claim is true by Theorem 3.3. Now suppose that a(·) and b(·)
have common zeroes. The sufficiency of the condition is then clear from Proposition 3.2.

To show that it is necessary, suppose that Y is a strictly stationary solution. If λ is any
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zero of a(·) let µa(λ) denote its multiplicity and let µb(λ) be its multiplicity as a zero of b(·)
(with µb(λ) := 0 if b(λ) 6= 0). Let ν(λ) := min(µa(λ), µb(λ)) and define the polynomials,

ã(z) =
a(z)∏

λ(z − λ)ν(λ)
and b̃(z) =

b(z)∏
λ(z − λ)ν(λ)

,

where the product is over the distinct zeroes of a(·). From Theorem 4.1 it follows that Y

is also a strictly stationary solution of a CARMA(p− r, q − r) process with r =
∑

λ ν(λ)

and characteristic polynomials ã(·) and b̃(z). Since ã(·) and b̃(·) have no common zeroes

it follows from Theorem 3.3 that E log+ |L1| < ∞ and that the zeroes of ã(·) all have

non-zero real part. Uniqueness of the solution follows as before.

Remark 4.3. Let L be a non-deterministic Lévy process. It is clear that a strictly station-

ary solution X = (Xt)t∈R of (1.2) gives rise to a strictly stationary CARMA process Y

via (1.1). Conversely, Proposition 3.2 and Theorem 4.2 imply that whenever a(·) and b(·)
have no common zeroes on the imaginary axis, then to every strictly stationary solution Y

there corresponds a strictly stationary state vector process X. This is no longer true if a(·)
and b(·) have common zeroes on the imaginary axis. In that case, stationary solutions Y

may exist as characterised by Theorem 4.2, while a stationary state vector X cannot exist

if a(·) has zeroes on the imaginary axis. The latter can be seen from Proposition 2.5, by

taking another CARMA process with the same polynomial a(·), but a different polynomial

b̃(·) such that a(·) and b̃(·) have no common zeroes.

5 The deterministic case

The characterisation of strictly stationary solutions Y of the CARMA equations (1.1)

and (1.2) in the case when L is random is slightly different from the case when L is a

deterministic Lévy process, in which case a(·) can have zeroes on the imaginary axis even

if they are not factored out by the polynomial b(·).

Proposition 5.1. Let L be a deterministic Lévy process, i.e. suppose there is σ ∈ R such

that Lt = σt for all t ∈ R. Suppose further that b 6= 0. Denote by µa(λ) and µb(λ) the

multiplicity of λ as a zero of a(·) and of b(·), respectively. Then the following results hold:

(a) If ap 6= 0, then the CARMA equations (1.1) and (1.2) have a strictly stationary

solution Y , one of which is Yt = σb0/ap for all t ∈ R. This solution is unique if and only

if µb(λ) ≥ µa(λ) for every zero λ of a(·) such that <λ = 0.

(b) If ap = 0 and σ 6= 0, then the CARMA equations (1.1) and (1.2) have a strictly

stationary solution Y if and only if µb(0) ≥ µa(0). If this condition is satisfied, one solution

is Yt = σbµa(0)/ap−µa(0), t ∈ R, and this solution is unique if and only if µb(λ) ≥ µa(λ) for

all zeroes λ of a(·) such that <λ = 0.
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(c) If ap = σ = 0, then Yt = 0, t ∈ R, is a strictly stationary solution of the CARMA

equations (1.1) and (1.2), and this solution is unique if and only if µb(λ) ≥ µa(λ) for all

zeroes λ of a(·) such that <λ = 0.

Proof. (a) Since ap 6= 0, the matrix A is invertible. Write

X0 := −σA−1e + V = [σ/ap 0 0 . . . 0] + V

for some random vector V. Then

Xt = eAtX0 + σ

∫ t

0

eA(t−u)e du

= eAt
(
X0 − σe−AtA−1e + σA−1e

)

= eAtV − σA−1e.

The choice of V = 0 then leads to

Yt = b′Xt = −σb′A−1e = σb0/ap, t ∈ R,

which is clearly stationary. Next, suppose that there is a zero λ1 of a(·) with <λ1 = 0

and µa(λ1) > µb(λ1). Let δ be a complex valued random variable which is uniformly

distributed on the unit circle. From the form of the polynomials hk,p in (2.8) it is easy to

see that the vector V = [V1 . . . Vk]
′ can be chosen such that

p∑

k=1

Vkhk,p(z) =
a(z)

(z − λ1)µb(λ1)+1
δ, (5.1)

since a(z)/(z − λ1)
µb(λ1)+1 is a polynomial of degree less than or equal to p − 1. Let

b̃(z) = b(z)/(z − λ1)
µb(λ1). Then (2.9) gives

b′eAtV =
1

2πi

∫

ρ

b̃(z)

z − λ1

etz dz δ = b̃(λ1)e
λ1tδ.

Since δ is uniformly distributed on the unit circle and b̃(λ1) 6= 0, Yt = σb0/ap + b̃(λ1)e
λ1tδ,

t ∈ R, gives another strictly stationary solution Y of (1.1) and (1.2), violating uniqueness.

Finally, if µa(λ) ≤ µb(λ) for all zeroes λ of a(·) such that <λ = 0, then these zeroes can

be factored out by Theorem 4.1 and uniqueness follows as in the proof of Theorem 3.3.

(b) If µb(0) ≥ µa(0), we can factor out the common zero at 0 by Theorem 4.1, and the

existence and uniqueness assertion follows from (a). So suppose that µb(0) < µa(0). From

(2.10) we conclude that

σ

∫ t

0

b′eA(t−u)e du =
σ

2πi

∫

ρ

b(z)

a(z)

∫ t

0

ez(t−u) du dz =
σ

2πi

∫

ρ

b(z)

a(z)

1

z
(ezt − 1) dz.
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Observe further that by (2.8) the general choice of a starting random vector V = X0

corresponds to the general choice of a random polynomial
∑p

k=1 Vkhk,p(z) =
∑p

k=1 Ukz
k−1

with random variables U1, . . . , Up. Hence we see from (2.9) that the general solution for

Yt can be written as

Yt = b′eAtX0 + σ

∫ t

0

b′eA(t−u)e du

=
1

2πi

∫

ρ

b(z)

a(z)z
ezt

(
σ +

p∑

k=1

Ukz
k

)
dz − σ

2πi

∫

ρ

b(z)

a(z)z
dz, t ∈ R.

By the residue theorem the latter can be written as

Yt = − σ

2πi

∫

ρ

b(z)

a(z)z
dz +

∑

λ 6=0

µa(λ)−1∑

k=0

τλkt
keλt +

µa(0)−µb(0)∑

k=0

τ0kt
k, t ∈ R, (5.2)

for certain random variables τλk, where

τ0,µa(0)−µb(0) =
σ

(µa(0)− µb(0))!

[
b(z)zµa(0)

a(z)zµb(0)

]

z=0

6= 0.

Hence the tµa(0)−µb(0)-term is multiplied by a deterministic nonzero scalar, and letting

t → ±∞ in equation (5.2) one can easily see that (Yt)t∈R cannot be stationary.

(c) That Yt = 0 is a strictly stationary solution is clear, as is its uniqueness under the

given condition by factoring out the common zeroes of a(·) and b(·) and applying (a).

On the other hand, if there is a zero λ1 of a(·) such that µa(λ1) < µb(λ1), then one can

choose X0 = V = [V1 . . . Vp]
′ such that (5.1) holds with δ being uniformly distributed

on the unit circle, and as in the proof of (a) we obtain the existence of another strictly

stationary solution.

6 Conclusions

We have shown that if L is any non-deterministic Lévy process then the equations (1.1)

and (1.2) defining the corresponding Lévy-driven CARMA process have a strictly sta-

tionary solution Y if and only if E log+ |L1| < ∞ and all the singularities of the function

z 7→ b(z)/a(z) on the imaginary axis are removable. Under these conditions the strictly

stationary solution is unique and is specified explicitly as an integral with respect to L by

equations (3.6) and (3.7). The solution is not necessarily causal (i.e. Yt is not necessarily

a measurable function of (Ls)s≤t for all t ∈ R). From (3.7) and Theorem 4.1 it follows

that the solution is causal if and only if the singularities of the function z 7→ b(z)/a(z) on

or to the right of the imaginary axis are removable.
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We have also given conditions for existence and uniqueness of stationary solutions in

the special case in which L is deterministic.

The results represent a significant generalization of existing results which focus on

causal solutions only and which, apart from more restrictive sufficient conditions for the

existence of strictly stationary solutions in the general case, are restricted to solutions of

the Ornstein-Uhlenbeck equation and CARMA equations driven by Lévy processes with

EL(1)2 < ∞.
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