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Abstract

Continuous-time autoregressive moving average (CARMA) processes with a non-

negative kernel and driven by a non-decreasing Lévy process constitute a useful

and very general class of stationary, non-negative continuous-time processes which

have been used, in particular, for the modelling of stochastic volatility. Brockwell,

Davis and Yang (2011) considered the fitting of CARMA models to closely and

uniformly spaced data, illustrating their results by fitting a CARMA(2,1) model

to daily realized volatility of the Deutsche Mark/US dollar (DM/US$) exchange

rate from December 1986 through June, 1999. A more fundamental quantity in

financial modelling is the (unobserved) spot, or instantaneous, volatility process. In

the celebrated stochastic volatility model of Barndorff-Nielsen and Shephard (2001),

the spot volatility is represented by a stationary Lévy-driven Ornstein-Uhlenbeck

process. This has the shortcoming that its autocorrelation function is necessarily

a decreasing exponential function, which limits its ability to generate integrated

volatility series with autocorrelation functions of the forms encountered in practice.

(A realized volatility series is a sequence of estimated integrals of spot volatility over

successive intervals of fixed length, typically one day.) If instead of the stationary

Ornstein-Uhlenbeck process, we use a CARMA process to represent spot volatility,

we can overcome the restriction to exponentially decaying autocorrelation function

and obtain a more realistic model for the dependence observed in realized volatility.

In this paper we show how to use realized volatility data to estimate parameters of a

CARMA model for spot volatility and apply the analysis to the DM/US$ exchange

rate.
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1 Introduction

In financial econometrics a Lévy-driven CAR(1) (or stationary Ornstein-Uhlenbeck) pro-

cess was used by Barndorff-Nielsen and Shephard (2001) to represent the spot volatility

V (t) in their celebrated model,

dX∗(t) = (µ+ βV (t))dt+
√
V (t)dW (t), (1.1)

for the logarithm, X∗(t), of the price of an asset at time t. In this model µ and β are con-

stants, W is standard Brownian motion and the volatility process V is a stationary causal

non-negative Lévy-driven Ornstein-Uhlenbeck process, independent of W , satisfying

dV (t) + aV (t)dt = dL(t), a > 0,

i.e.

V (t) =

∫ t

−∞

exp(−a(t− u))dL(u).

Since V is necessarily non-negative, the Lévy process L must have non-decreasing sample-

paths. Lévy processes with this property are known as subordinators. A subordinator-

driven CARMA(2,1) process was used by Todorov and Tauchen (2006) and Todorov (2011)

to represent realized daily volatility in the Deutsche Mark/US Dollar (DM/US$) daily

exchange rate. Brockwell, Davis and Yang (2011) considered the problem of estimation for

subordinator-driven non-negative CARMA(p, q) processes based on uniformly and closely-

spaced observations. For non-negativity of the CARMA process it is also necessary that

the kernel of the process (g(t) = e−at1(0,∞)(t) for the Ornstein-Uhlenbeck process) be non-

negative. Conditions under which this holds were given by Tsai and Chan (2004) and, in

the special case of the CARMA(2,1) process, by Brockwell and Davis (2001). Brockwell,

Davis and Yang (2011) also considered the problem of recovering the increments of the

driving subordinator from closely-spaced observations of the CARMA process and found

that for the DM/US$ exchange rate a gamma-driven CARMA(2,1) process fitted the daily

realized volatility series reasonably well.

In this paper we take a different point of view. Starting from a strictly stationary causal

subordinator-driven CARMA(p, q) model for the spot volatility V in (1.1), we show that
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for any fixed ∆ > 0, the ∆-integrated volatility sequence,

I∆n :=

∫ n∆

(n−1)∆

V (t)dt, n ∈ Z, (1.2)

is a strictly stationary solution of the difference equations,

φ(B)I∆n = Un, n ∈ Z, (1.3)

where B denotes the backward shift operator (BjYn := Yn−j), φ(z) is a polynomial of the

form,

φ(z) =

p∏

i=1

(1− eλi∆z),

where <(λi) < 0, i = 1, . . . , p, and (Un)n∈Z is a p-dependent sequence. In the case when

the driving subordinator has the property EL(1)2 < ∞, then EU2
n is also finite and we

know (see e.g. Brockwell and Davis (1991), Proposition 3.2.1) that (Un)n∈Z can then be

expressed as a moving average of order p,

Un = θ(B)Zn,

where θ(z) is a polynomial of the form,

θ(z) = 1 + θ1z + · · ·+ θpz
p,

and (Zn)n∈Z is an uncorrelated (but not necessarily independent) white noise sequence.

This implies that (I∆n )n∈Z is a weak ARMA(p, q) process with q ≤ p. In the case p = 1

this is already well-known (Barndorff-Nielsen and Shephard (2001)), however the auto-

correlation function of the ARMA(1,1) model is restricted for lags h greater than zero

to functions of the form cφh
1 , c, φ1 > 0. The purpose of introducing the finite variance

CARMA(p, q) model for spot volatility is to escape from this restriction in order to ob-

tain a more realistic representation of integrated volatility as estimated in practice by the

so-called realized volatility, denoted henceforth by V ∆.

In order to find a spot volatility model for which the ∆-integrated volatility I∆ provides

a good representation of V ∆ we derive, under the additional assumption that EL(1)2 <∞,

expressions for the autocovariance functions of I∆ and U . The former can be used to

obtain preliminary parameter estimates of the CARMA(p, q) process for spot volatility

V by choosing them in such a way that the autocorrelation function of I∆ matches, in

some ad hoc sense, the sample autocorrelation function of the realized volatility V ∆. A

more systematic approach is to search for a causal and invertible CARMA model for V

which minimizes the sum of squares of the linear one-step prediction errors, when the

corresponding weak ARMA model for I∆ is applied to the data V ∆. The sum of squares
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of the one-step linear prediction errors can be calculated directly as a function of the

CARMA parameters using the state-space representation of the CARMA process. We

show, under the assumptions of Theorem 3.6, that numerical minimization of this sum of

squares gives strongly consistent estimators of the CARMA coefficients.

Using these estimates, we can simulate the spot volatility process V and the corre-

sponding ∆-integrated volatility I∆ using a variety of driving subordinators. Choosing

the mean and variance of the driving subordinators so as to match the sample mean

and variance of the realized volatility process V ∆, we can then compare the empirical

marginal distribution of the simulated integrated volatility series with that of V ∆. Apply-

ing this technique to the DM/US$ daily realized volatility series, we obtain a remarkably

good fit using the least squares CARMA(2,1) spot volatility model driven by a gamma

subordinator with appropriately chosen EL(1) and VarL(1).

In Section 2 we shall review necessary and sufficient conditions under which a strictly

stationary causal solution of the equations defining a Lévy-driven CARMA process exists.

In Section 3 we shall impose the additional conditions that the driving Lévy process has

non-decreasing sample paths (i.e. is a subordinator) and that EL(1)2 < ∞. Under these

conditions we determine the integrated process I∆ and its second-order properties. Section

4 is concerned with estimation of the parameters of the process I based on observations

of V ∆, again assuming that EL(1)2 < ∞. We illustrate the results by applying them

to the DM/US$ daily realized volatility series considered earlier by Todorov (2011) and

Brockwell, Davis and Yang (2011).

2 Lévy-driven CARMA processes

If L is a Lévy process with index set R (i.e. a process with homogeneous independent

increments, càdlàg sample paths and L(0) = 0) and p > q, then an L-driven CARMA(p, q)

process with real coefficients {a1, . . . , ap; b1, . . . , bq} is defined (see Brockwell (2001)) as

a strictly stationary solution of the state-space representation of the formal stochastic

differential equation

a(D)V (t) = b(D)DL(t), (2.1)

where D denotes differentiation with respect to t,

a(z) := zp + a1z
p−1 + · · ·+ ap ,

b(z) := b0 + b1z + · · ·+ bp−1z
p−1,

and the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p. By Theorem 4.1 of

Brockwell and Lindner (2009), there is no loss of generality in assuming that a(z) and

b(z) have no common factors. Since DL(t) does not exist in the usual sense, we interpret
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the differential equation (2.1) by means of its state-space representation, consisting of the

observation and state equations,

V (t) = b′X(t), (2.2)

and

dX(t)−AX(t)dt = e dL(t), (2.3)

where

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1



, e =




0

0
...

0

1



, b =




b0

b1
...

bp−2

bp−1



.

Every solution of (2.3) satisfies the relations

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)e dL(u), for all t > s, s, t ∈ R. (2.4)

Brockwell and Lindner (2009), Theorem 4.2, show that if L is not deterministic and

a(z) and b(z) have no common factors, then necessary and sufficient conditions for (2.2)

and (2.3) to have a strictly stationary solution V are that Emax(0, log |L1|) <∞ and a(z)

is non-zero on the imaginary axis. In this case the strictly stationary solution is unique

and is given by

V (t) =

∫ ∞

−∞

g(t− u) dL(u), (2.5)

with

g(t) =



∑

λ:<λ<0

ν(λ)−1∑

k=0

cλkt
keλt1(0,∞)(t)−

∑

λ:<λ>0

ν(λ)−1∑

k=0

cλkt
keλt1(−∞,0)(t)


 , (2.6)

where the sums are over the distinct zeroes λ of the polynomial a(z) and ν(λ) denotes the

multiplicity of λ. The sum
∑ν(λ)−1

k=0 cλkt
keλt is the residue of z 7→ eztb(z)/a(z) at λ, i.e.

ν(λ)−1∑

k=0

cλkt
keλt =

1

(ν(λ)− 1)!

[
Dν(λ)−1

z

(
(z − λ)ν(λ)eztb(z)/a(z)

)]
z=λ

,

and Dz denotes differentiation with respect to z. (For a zero λ with ν(λ) = 1 the last

sum reduces to b(λ)eλt/a′(λ).) The unique strictly stationary solution is causal if and

only if a(z) has no zeroes with positive real part, in which case the second sum in (2.6)

disappears.
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Now define the pth-degree polynomial φ(z) and the coefficents d0, d1, . . . , dp by

φ(z) :=
∏

λ

(1− eλ∆z)ν(λ) =:

p∑

j=0

djz
j , (2.7)

where the product is over the zeroes λ of a(z). It follows at once from Lemma 2.1 of

Brockwell and Lindner (2009) that for any fixed s ∈ [0,∆] and for all n ∈ Z, every

solution V of (2.2) and (2.3) satisfies the difference equations,

φ(B)V (n∆+ s) =Wn(s), n ∈ Z, (2.8)

where

Wn(s) = Z1
n(s) + Z2

n−1(s) + · · ·+ Zp
n−p+1(s) (2.9)

and

Zr
n(s) :=

∫ n∆+s

(n−1)∆+s

b
′

(
e(r−1)A∆ +

r−1∑

j=1

dje
(r−1−j)A∆

)
eA(n∆+s−u)

e dL(u), r = 1, . . . , p.

(2.10)

Remark 2.1. Equation (2.8) is the starting point for the study of the integrated process

I∆ in Section 3. It also shows clearly, because of the independence of the increments of

L, that if we sample any CARMA(p, q) process at uniformly spaced intervals, we obtain

an autoregression driven by the (p − 1)-dependent sequence (Wn(s))n∈Z. If EL(1)
2 < ∞

then this (p − 1)-dependent sequence can be written as a weak moving average process

(see Brockwell and Davis (1991), Proposition 3.2.1),

Wn(s) = EW0(s) + Zn(s) + ψ1Zn−1(s) + · · ·+ ψp−1Zn−p+1(s),

for some zero-mean, constant variance, uncorrelated sequence (Zn(s))n∈Z. This means that

the sampled process is a weak ARMA(p, q) process with q = p− 1 (or q < p − 1 if ψp−1

happens to be zero).

Remark 2.2. From now on we shall restrict attention to CARMA processes for which

the zeroes of a(z) and b(z) all have strictly negative real parts. These conditions are

the continuous-time analogues of causality and invertibility for discrete-time processes.

Causality implies, by (2.5) and (2.6), that V has the representation,

V (t) =

∫ t

−∞

g(t− u)dL(u), (2.11)

with the kernel g specified by (2.6). By Proposition 3.2 of Brockwell and Lindner (2009),

V also has the representation,

V (t) =

∫ t

−∞

b
′eA(t−u)

edL(u). (2.12)
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Remark 2.3. In the special case when the zeroes of a(z) all have multiplicity one and

we assume causality, we obtain the extremely simple and useful characterization of V

as a linear combination of dependent and possibly complex-valued CAR(1) processes all

driven by L, namely

V (t) =

p∑

r=1

V (r)(t), (2.13)

where

V (r)(t) = αr

∫ t

−∞

eλr(t−u)dL(u), (2.14)

and

αr =
b(λr)

a′(λr)
, r = 1, . . . , p, (2.15)

where a′ is the derivative of the function a.

Example 2.4 (The CARMA(2,1) Process). Consider the Lévy-driven CARMA(2,1)

process specified by the equation

(D2 + a1D + a2)V (t) = (b0 +D)DL(t).

In this case b(z) = b0 + z and a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2). Assuming that

λ1 6= λ2 and that both λ1 and λ2 have strictly negative real parts, then from (2.6) the

kernel of the process V is

g(h) = (α1e
λ1h + α2e

λ2h)I[0,∞)(h),

where αr = (b0 + λr)/(λr − λ3−r), r = 1, 2. Consequently V has the representation,

V (t) = α1

∫ t

−∞

eλ1(t−u)dL(u) + α2

∫ t

−∞

eλ2(t−u)dL(u).

Remark 2.4. The representation (2.5) shows that if the kernel g is non-negative and

L has non-decreasing sample-paths, i.e. is a subordinator, then V will be non-negative,

as required if it is to represent spot volatility. Tsai and Chan (2005) showed that the

kernel is non-negative if and only if the ratio b(·)/a(·) is completely monotone. For the

CARMA(2,1) process, which is of particular interest because of its financial applications,

the condition is equivalent to the statement that the roots of a(z) = 0 are both real and

that b0 ≥ min(|λi|) (see Brockwell and Davis (2001)).

7



3 The integrated process, {I∆n =
∫ n∆
(n−1)∆ V (t)dt, n ∈ Z}

In this section we specify the integrated volatility process and then, under the assumption

that EL(1)2 <∞, we determine its first and second-order moments.

Theorem 3.1. If V is any solution of the equations (2.2) and (2.3) then the integrated

sequence, I∆n :=
∫ n∆

(n−1)∆
V (t)dt, n ∈ Z, is an autoregression driven by a p-dependent

sequence U . It satisfies the difference equations,

φ(B)I∆n = Un :=

p∑

r=1

∫ 0

−∆

Zr
n−r+1(s)ds, n ∈ Z, (3.1)

where φ(z) was defined in (2.7) and Zr
n(s) in (2.10).

Proof. The validity of (3.1) follows at once from (2.8) by observing that I∆n =
∫ 0

−∆
V (n∆+

s) ds. The summands on the right of (3.1) are not independent, but they depend only on

increments of L over the interval [(n − p − 1)∆, n∆] and hence the sequence (Un)n∈Z is

p-dependent.

Corollary 3.2. If EL(1)2 < ∞ then, by the stationarity and independence of the incre-

ments of L, the sequence (Un)n∈Z is a p-dependent finite variance identically distributed

sequence (with not-necessarily zero mean). It follows that Un can be expressed uniquely as

a moving average with real-valued coefficients,

Un = EU0 + εn + θ1εn−1 + · · ·+ θpεn−p, (3.2)

where (εn)n∈Z is a weak white noise sequence with zero mean and the polynomial, θ(z) :=

1+θ1z+ · · ·+θpzp, has no zeros in the interior of the unit disc. In other words (I∆n )n∈Z is

a weak ARMA(p, q) process with q = p or q < p if θp happens to be zero. The term weak

here refers to the fact that (εn)n∈Z is uncorrelated but not necessarily independent.

Proof. By Proposition 3.2.1 in Brockwell and Davis (1991), there exist real-valued co-

efficients θ1, . . . , θp and a white-noise sequence (εn)n∈Z such that (3.2) holds. A spectral

density argument shows that the coefficients can be chosen in such a way that θ(z) has

no zeroes in the interior of the unit disc and that θ(z) is uniquely determined by this

constraint. The uniqueness of the sequence (εn)n∈Z then follows from Proposition 4.4.1 of

Brockwell and Davis (1991) and the uniqueness of the Wold decomposition.

The mean of the process V is readily found from (2.12) to be

EV (t) = mb
′A−1

e = mb0/ap,
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where m := EL(1). From this it follows at once that

E(I∆n ) = mb0∆/ap.

From now on we shall assume that EL(1)2 <∞. In order to compute the autocovari-

ance functions of the processes I∆ and U we need the autocovariance function of V which

is given (see Brockwell (2001)) by,

γV (h) = σ2S(h), h ≥ 0, (3.3)

where σ2 = Var(L(1)) and S(h) is the sum of residues of the mapping z 7→ ezh b(z)b(−z)
a(z)a(−z)

at

the zeroes of a(z). Thus, if ν(λ) denotes the multiplicity of the root λ of a(z) = 0,

γV (h) =
∑

λ:a(λ)=0

σ2

(ν(λ)− 1)!

[
dν(λ)−1

dzν(λ)−1

(z − λ)ν(λ)ez|h|b(z)b(−z)
a(z)a(−z)

]

z=λ

, h ∈ R, (3.4)

or equivalently

γV (h) =
∑

λ:a(λ)=0

ν(λ)−1∑

j=0

βλj |h|jeλ|h|, h ∈ R, (3.5)

where the coefficients βλj are easily found from (3.4). In the case when the roots are

distinct, (3.5) simplifies to

γV (h) = σ2
∑

λ:a(λ)=0

eλ|h|b(λ)b(−λ)
a′(λ)a(−λ) , h ∈ R.

From these results we obtain the following expression for the autocovariance function γI∆

of the sequence I∆.

Proposition 3.3.

γI∆(0) = 2
∑

λ

ν(λ)−1∑

j=0

j!βλj
(−λ)j+2

(
−λ∆−

j∑

s=0

(
1− j + 1− s

s!
(−λ∆)seλ∆

))
,

where
∑

λ denotes summation over the zeroes, λ, of a(z) and ν(λ) is the multiplicity of

λ. For h ∈ N,

γI∆(h) =
∑

λ

ν(λ)−1∑

j=0

j!βλje
λh∆

(−λ)j+2

(
j∑

s=0

j + 1− s

s!
(−λ∆)s

(
(h+ 1)seλ∆ − 2hs + (h− 1)se−λ∆

)
)
.

Proof. The result follows by straightforward integration starting from the relation, for

h ∈ N0,

γI∆(h) =

∫ (h+1)∆

h∆

∫ ∆

0

Cov(V (u), V (y))du dy

=

∫ (h+1)∆

h∆

∫ ∆

0

∑

λ

ν(λ)−1∑

j=0

βλj |y − u|jeλ|y−u|du dy.
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Corollary 3.4. If ν(λ) = 1 for each λ such that a(λ) = 0 then

γI∆(h) =





∑
λ 2βλ0λ

−2(eλ∆ − 1− λ∆), if h = 0,

∑
λ βλ0λ

−2(eλ∆ − 1)2eλ(|h|−1)∆, if h ∈ Z\{0}.
(3.6)

Corollary 3.5. Defining Un as in Theorem 3.1 and d0, . . . , dp as in (2.7), the autocovari-

ance function γU of U is given by

γU(h) =





∑p

i=0

∑p

j=0 didjγI∆(|h| − j + i), if |h| ∈ {0, 1, . . . , p},

0, otherwise.

(3.7)

Proof. The result follows immediately from (3.1).

The following theorem plays a crucial role in establishing the consistency of the least

squares estimation procedure used in Section 4.

Theorem 3.6. (i) Let (Vt)t≥0 be a causal and invertible CARMA(p, q) process (see Re-

mark 2.2) such that a(z) and b(z) have no common zeroes and such that all zeroes of a(z),

denoted by λ1, . . . , λp, have multiplicity 1. Suppose that ∆ > 0 and that =(λi) ∈ (− π
∆
, π
∆
)

for all i = 1 . . . , p. Then there is a unique pair (φ̃, θ̃) of polynomials of degree at most p

with φ̃(0) = θ̃(0) = 1, such that φ̃ has no zeroes inside or on the unit circle, θ̃ has no zeroes

inside the unit circle, and such that (I∆n )n∈Z is a weak ARMA process with autoregressive

polynomial φ̃ and moving average polynomial θ̃. These uniquely determined polynomials

φ̃ and θ̃ have no common zeroes, and φ̃ = φ with φ as defined in (2.7). In particular,

(I∆n )n∈Z cannot be represented as a weak ARMA(p′, p) process with p′ < p.

(ii) For CARMA(p, p− 1) processes which satisfy the conditions in part (i), the mapping

of the characteristic polynomials with p fixed into the characteristic polynomials of the

corresponding ARMA processes I∆ is one-to-one with a continuous inverse.

Proof. (i) The existence of (φ̃, θ̃) with φ̃ = φ follows from Corollary 3.2. Hence we only

have to show uniqueness and that φ̃ and θ̃ have no common zeroes.

It follows from Corollary 3.4 that if

ci := σ2 b(λi)b(−λi)
a′(λi)a(−λi)

λ−2
i (eλi∆ − 1)2, i = 1, . . . , p, (3.8)

then γI∆(h) =
∑p

i=1 cie
λi∆(h−1) for h ∈ N. Since |=λi| < π/∆, eλi∆ 6= 1 and eλ1∆, . . . , eλp∆

are all distinct. Since a(z) and b(z) have no common zeroes, it follows that ci 6= 0 for
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i = 1, . . . , p. Now if I∆ were to be represented as a causal ARMA(p, p) process with

autoregressive polynomial φ̃ different from φ, then we could write

γI∆(h) =

k∑

i=1

ri−1∑

j=0

αijh
jzhi , h ≥ p+ 1,

for some complex numbers zi (the reciprocals of the roots of φ̃) and αij, where {z1, . . . , zk} 6=
{eλ1∆, . . . , eλp∆}. By the linear independence of solutions of difference equations (see, e.g.,

Brockwell and Davis (1991), Theorem 3.6.2), this is not possible, so that φ̃ = φ. The

uniqueness of θ̃ then follows from Corollary 3.2. The polynomials φ and θ̃ have no com-

mon zeroes since otherwise I∆ could be represented as an ARMA process with lower

autoregressive order.

(ii) The one-to one property was established in (i). To show the continuity of the inverse

mapping let log denote the principal branch of the natural logarithm (whose values have

imaginary part in (−π, π]). Let φ(z) and θ(z) be the characteristic polynomials of the

causal ARMA representation of I∆. Then the autoregressive roots w1, . . . , wp all have

absolute values greater than 1 and they can be labelled in such a way that they are con-

tinuous functions of the coefficients of the autoregressive polynomial (see, e.g., Theorem

3.9.1 of Tyrtyshnikov (1997)).

Let c1, . . . , cp be the uniquely determined complex numbers such that

γI∆(h) =

p∑

i=1

ciw
h−1
i , h ∈ N.

Then
∏p

i=1 ci 6= 0 by (i) and c1, . . . , cp depend continuously on the ARMA coefficients.

Define λ1, . . . , λp, (all of which necessarily satisfy =(λi) ∈ (−π/∆, π/∆)) by

λi := − logwi

∆
, i = 1, . . . , p.

Then a(z) =
∏p

i=1(z − λi).

Now define

fi := cia
′(λi)a(−λi)λ2i (eλi∆ − 1)−2 = −2ciλ

3
i (e

λi∆ − 1)−2
∏

j∈{1,...,p}\{i}

(λ2j − λ2i ).

Then (λ1, . . . , λp, f1, . . . , fp) depends continuously on (w1, . . . , wp, c1, . . . , cp).

Define

P (z) :=

p∑

i=1

fi
∏

k∈{1,...,p}\{i}

z − λ2k
λ2i − λ2k

, z ∈ C

to be the (unique) Lagrange polynomial of degree less than or equal to p − 1 such that

P (λ2i ) = fi, i = 1, . . . , p, and denote its zeroes by µ̃2
1, . . . , µ̃

2
p′ with p

′ ≤ p − 1. Then the

coefficients of P depend continuously on (λ1, . . . , λp, f1, . . . , fp).

11



Writing b(z) =
∏p−1

j=1(z − µi), it follows that

σ2b(z)b(−z) = σ2(−1)p−1

p−1∏

j=1

(z2 − µ2
j)

is a polynomial in z2 satisfying

σ2b(λi)b(−λi) = fi, i = 1, . . . , p,

by (3.8). The uniqueness of polynomial interpolation (see, e.g., Tyrtyshnikov (1997), Sec-

tion 12.2) then gives

σ2(−1)p−1

p−1∏

j=1

(z2 − µ2
j) = σ2b(z)b(−z) = P (z2).

Hence µ2
1, . . . , µ

2
p−1 are the roots of P (z), in particular p′ = p − 1 and the roots of b(z)

can be labelled such that µ2
1 = µ̃2

1, . . . , µ
2
p−1 = µ̃2

p−1, and hence depend continuously on

the ARMA parameters.

Remark 3.7. (Strict stationarity and ergodicity) The sequence I∆ is strictly sta-

tionary by the strict stationarity of the process V and ergodic by the β-mixing property

of V established in Proposition 3.34 of Marquardt and Stelzer (2007). (Recall that we

assume that V is causal and that EL(1)2 <∞.)

Example 3.8. The CAR(1) process with defining stochastic differential equation,

(D − λ)Vt = DLt, λ < 0,

has strictly positive causal kernel, g(t) = eλtI[0,∞)(t), and, if L is a subordinator, has non-

negative sample-paths, making it a useful model for stochastic volatility as in Barndorff-

Nielsen and Shephard (2001). From (3.5) the autocovariance function of V is

γV (h) =
σ2

2|λ|e
λ|h|, h ∈ R.

Equations (3.1) and (3.2) for the integrated sequence I = I∆ with ∆ = 1 take the form,

(1− φB)In = (1 + θB)εn +
m

|λ|(1− φ),

where φ = eλ and θ is found by evaluating the autocorrelation function of the right-hand

side from (3.6) and (3.7) and calculating the corresponding value of θ. This value is readily

found to be

θ(λ) = −r −
√
r2 − 1, (3.9)

12



where

r =
1 + λ− e2λ(1− λ)

1 + 2λeλ − e2λ
.

The mapping λ 7→ (φ, θ) is one-to-one from (−∞, 0) onto the one-dimensional submanifold

of the Cartesian product, (−1, 1) × (−1, 1), which is shown as the curved line in Figure

1. The limits of θ as λ→ −∞ and λ→ 0 are 0 and 2−
√
3 respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

φ

θ

Figure 1: The parameter set for the ARMA(1,1) coefficients of the integrated CAR(1) process in Example

3.8.

Example 3.9. The CARMA(2, 1) process with defining stochastic differential equation,

(D − λ1)(D − λ2)Yt = (D − µ1)DLt,

where λ1 6= λ2, is invertible with strictly positive causal kernel if and only if the parameters

satisfy the conditions,

0 > λ1 > λ2 and 0 > λ1 > µ1. (3.10)

We assume also that µ1 6= λ2 since otherwise Y would be a CAR(1) process. The integrated

sequence I = I∆ with ∆ = 1 satisfies the ARMA(2,2) difference equations (3.1) and (3.2),

i.e.

(1− η1B)(1− η2B)In = (1− η1)(1− η2)
m|µ1|
λ1λ2

+ (1− ξ1B)(1− ξ2B)εn,

where η1 = eλ1 , η2 = eλ2 and ξ1 and ξ2 (with |ξ1| ≥ |ξ2|) can be found from the autocor-

relation function, γU , calculated from Corollaries 3.4 and 3.5 as in Example 3.8. Explicit

expressions for the mapping (b0, λ1, λ2) 7→ (η1, η2, ξ1, ξ2) are extremely unwieldy but we

know from Theorem 3.6 that it is injective with continuous inverse.
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4 Estimation

Given a sequence of daily realized volatilities we aim to find a CARMA model for spot

volatility V such that the corresponding integrated volatility process provides a good rep-

resentation of the realized volatility sequence. A complete solution requires the estimation

of the defining polynomials a(z) and b(z) and specification of L.

The daily realized volatility of the DM/US$ exchange rate from December 1, 1986,

through June 30, 1999 (kindly provided to us by Viktor Todorov), is shown in Figure 2

and its sample autocorrelation function is shown as the bar-graph in Figure 3. For details

on the determination of the realized volatility see Andersen et al. (2001). It is clear that a

good match between the sample autocorrelation function in Figure 3 for lags greater than

zero and a single exponential function (as would be derived from the Ornstein-Uhlenbeck

(CAR(1)) model for spot volatility) is not possible. The line graph in Figure 3 is based

on a CARMA(2,1) model for spot volatility which leads to a linear combination of two

exponential functions for the autocorrelations of integrated volatility at lags greater than

zero. Since a linear combination of two exponential functions appears to give a reasonably

good fit to the sample autocorrelation of realized volatility we shall focus attention on

modelling this data with a CARMA(2,1) model for the spot volatility.

Our goal then is to estimate the parameters a1, a2, b1 (or equivalently the parameters

λ1, λ2 and µ1 in the model (2.1) for spot volatility with

a(z) = (z − λ1)(z − λ2)

and

b(z) = (z − µ1),

where λ1, λ2 and µ1 satisfy the constraints (3.10). We also need to estimate EL(1) and

VarL(1) and to recover whatever additional information we can about the process L.

Method 1. An ad hoc method for choosing suitable polynomials a(z) and b(z) is to

compute, for given a(z) and b(z), the autocorrelation function of I∆ using Proposition

3.3 and to minimize numerically the sum of squares of deviations of the autocorrelation

function from the sample autocorrelation function of the realized volatility at selected

lags. This will give preliminary estimates.

Method 2. An alternative approach, which gives strongly consistent estimators of the

CARMA coefficients a1, a2 and b1, is to find numerically the values of a1, a2 and b1 which

minimize the sum of squares, S, of the one-step linear prediction errors of I∆ based on

the implied weak ARMA(2, 2) model. The sum of squares can be computed directly in

terms of a1, a2 and b1 by first computing the zeroes λ1 and λ2 of a(z). These determine

the polynomial φ(z) in (3.1). The moving average coefficients in (3.2) are then determined

by computing the autocovariance function (3.7) and hence the corresponding coefficients
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Figure 2: The realized daily volatility of the DM/US$ exchange rate, December 1, 1986, through June

30, 1999 .
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Figure 3: The vertical bars represent the sample autocorrelation function of the daily realized volatility

of the DM/US$ exchange rate. The line graph is the autocorrelation function of the integrated volatility

corresponding to a CARMA(2,1) model for spot volatility.

θ1 and θ2. (These coefficients can be found analytically from (3.7) when p = 2 and

numerically using Wilson’s algorithm (Wilson (1969)) for larger values of p.) Once the

autoregressive and moving average polynomials have been determined from a(z) and b(z),

the sum of squares S of the one-step prediction errors for I∆ can be calculated by standard
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time-series methods. Minimization of S with respect to a1, a2 and b1 is equivalent to

minimization with respect to the corresponding ARMA(2,2) coefficients, restricted to a

three-dimensional submanifold of R4. By the argument of Theorem 10.8.1 of Brockwell

and Davis (1991) the estimators of the ARMA coefficients are strongly consistent and

by continuity of the inverse of the injective mapping of the CARMA parameters into

the ARMA parameters (a special case of Theorem 3.6) the estimators of the CARMA

coefficients are also strongly consistent.

Remark 4.1. The procedure outlined above can clearly be extended to the estimation of

parameters of any CARMA(p, p − 1) process satisfying the assumptions of Theorem 3.6

and yields consistent estimators based on the observations of I∆.

Example 4.2. We now illustrate the procedure with the DM/US$ daily realized volatility

series shown in Figure 1. Measuring the spot volatility in units of volatility per day, the

realized volatility series corresponds to volatility integrated over time intervals of length

1, i.e I∆ with ∆ = 1.

Using Proposition 3.3 and minimizing the sum of squares of the deviations of the

autocorrelation functions of I∆ and V ∆ at lags 1, 2, 10, 20 and 40 gives the preliminary

spot-volatility model,

(D2 + 3.09054D + .10983)V (t) = (.23302 +D)DL(t),

with corresponding λ1 = −.035956 and λ2 = −3.05458.

Using these coefficients as initial values and minimizing the sum of squares of the

one-step linear prediction errors, computed as described above, we find the least-squares

model to be,

(D2 + 3.07141D + .11793)V (t) = (.23938 +D)DL(t), (4.1)

with corresponding λ1 = −.038890 and λ2 = −3.02152. The autocorrelation function of

the daily integrated volatility corresponding to this model is plotted as the line graph in

Figure 3.

It remains to identify a subordinator L which yields daily integrated volatilities com-

patible with the realized daily volatility series shown in Figure 2. This was done by trying

out potential subordinators, with parameters chosen to match the mean and variance

of the realized volatility series, and then simulating sample paths of the corresponding

CARMA(2,1) process defined by (4.1), integrating the sample-paths over successive days

and comparing the empirical cumulative distribution functions and kernel density esti-

mates of the realized volatility series with those of the integrated volatilities calculated

from the models. The results are shown in Figure 4 for three different subordinators.

The top graphs were generated by simulating the CARMA(2,1) process (4.1) driven

by a compound Poisson subordinator with exponentially distributed jumps. The mean
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Figure 4: The empirical cdf (left) and kernel density estimate (right) of the daily realized volatility of

the DM/US$ exchange rate are shown as dotted lines. The solid lines are the corresponding graphs

for daily integrated volatility of three subordinator-driven CARMA(2,1) spot volatility processes with

subordinator moments chosen to match the mean and variance of the integrated volatility with those of

the realized volatility. For the top graphs the driving subordinator is a compound Poisson process with

exponential jumps, for the middle graphs an inverse Gaussian subordinator and for the bottom graphs a

gamma subordinator.
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jump rate of the process was .5478 and the mean jump size was .6008. The simulation of

the CARMA process is greatly simplified by the decomposition (2.14) which reduces the

simulation to that of two Ornstein-Uhlenbeck processes with the same driving subordina-

tor. In fact from the simulated jump-times and jump-sizes the complete sample-path can

be constructed and the daily integrals easily computed. The same is true for compound-

Poisson-driven CARMA processes of any order as long as the zeroes of a(z) are distinct.

The middle graphs are derived from the spot volatility process (4.1) with inverse

Gaussian subordinator having EL(1) = .3291 and VarL(1) = .3954. Simulation in this

case was carried out by using an Euler approximation to generate values of the spot

volatility at intervals of .01 days and integrating numerically to get 40,000 daily integrated

volatility values.

The bottom graphs were derived in the same way, using a gamma subordinator with

EL(1) = .3291 and VarL(1) = .3954. The empirical cdf and kernel density estimates were

again based on 40,000 daily integrated volatility values.

The results show that all three models gave reasonably good fits to the marginal

distribution of the realized volatility series. The discrepancies are shown more clearly in

the kernel density estimates, but in the case of the gamma subordinator the empirical

and simulated distributions are virtually indistinguishable.

5 Conclusions.

By making use of the properties of integrated CARMA(p, q) processes, we have developed

a technique for estimating the parameters of a CARMA(p, q) model for spot volatility

which is compatible with realized (integrated) volatility. The procedure was illustrated

by application to a daily realized volatility sequence for the DM/US$ exchange rate. All

three candidate subordinators for driving the spot volatility process gave reasonably good

matches with the empirical marginal distribution of daily realized volatility, indicating

the difficulty of discriminating between them on this basis. The goodness of fit of the

gamma-driven model however was remarkable.
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CARMA processes. J. Business and Economic Statistics, 29, 250-259.

Marquardt, T. and Stelzer, R (2007). Multivariate CARMA processes. Stochastic Pro-

cesses and their Applications. 117, 96–120.

Todorov, V. (2011). Econometric analysis of jump-driven stochastic volatility models. J.

Econometrics, 160, 12-21.

Todorov, V. and Tauchen, G. (2006). Simulation methods for Lévy-driven CARMA stochas-
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