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Abstract

A CARMA(p, q) process is defined by suitable interpretation of the formal
pth order differential equation a(D)Yt = b(D)DLt, where L is a two-sided
Lévy process, a(z) and b(z) are polynomials of degrees p and q, respectively,
with p > q, and D denotes the differentiation operator. Since derivatives of
Lévy processes do not exist in the usual sense, the rigorous definition of a
CARMA process is based on a corresponding state space equation. In this
note, we show that the state space definition is also equivalent to the integral
equation a(D)JpYt = b(D)Jp−1Lt + rt, where J , defined by Jft :=

∫ t

0
fs ds,

denotes the integration operator and rt is a suitable polynomial of degree at
most p− 1. This equation has well defined solutions and provides a natural
interpretation of the formal equation a(D)Yt = b(D)DLt.

Keywords: CARMA process, continuous time autoregressive moving
average process, differential equation, integral equation

1. Introduction

Just as ARMA processes play a central role in the representation of time
series with discrete time parameter, (Yn)n∈Z, CARMA (continuous-time au-
toregressive moving average) processes play an analogous role in the repre-
sentation of time series with continuous time parameter, (Yt)t∈R. Lévy-driven
CARMA processes permit the modelling of heavy-tailed and asymmetric time
series, allowing for a wide variety of sample-path and distributional proper-
ties. In recent years there has been a resurgence of interest in these processes
and in continuous-time processes more generally, partly as a result of the very
successful application of stochastic differential equation models to problems
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in finance, particularly to the pricing of options. In this context the cele-
brated Ornstein-Uhlenbeck stochastic volatility model of Barndorff-Nielsen
and Shephard uses a Lévy-driven CAR(1) process as a continuous-time model
for spot volatility and Brockwell and Lindner (2013) have extended this to a
more general CARMA representation. Gaussian CARMA models were used
very successfully by Jones (1981) for the modelling of irregularly-spaced data.
More recent applications include the application of stable CARMA processes
to futures pricing in electricity markets (Garcia et al. (2011)), the CARMA
interest rate model (Andresen et al. (2014)), and applications to signal ex-
traction (McElroy (2013)). They have also been used to approximate high-
frequency discrete-time data encountered in both financial and turbulence
studies. In this note we give a new and direct characterization of CARMA
processes.

Let L = (Lt)t∈R be a two-sided Lévy process, i.e. a process with homoge-
neous independent increments, continuous in probability, with càdlàg sample
paths (i.e. right-continuous with finite left-limits) and L0 = 0. For integers
p and q such that p > q , let a1, . . . , ap, b0, . . . , bp−1 be complex valued co-
efficients such that bj = 0 for j > q, bq ̸= 0, let a0 := 1, and define the
polynomials a(z) and b(z) by

a(z) = zp + a1z
p−1 + . . .+ ap, and b(z) = b0 + b1z + . . .+ bp−1z

p−1.

Denote by D the differentiation operator with respect to t. It is natural,
by analogy with the definition of an ARMA process, to attempt to define a
CARMA(p, q) process as a process Y satisfying the formal pth-order stochas-
tic differential equation

a(D)Yt = b(D)DLt. (1)

However, since Lévy processes are not differentiable, DLt does not exist
in the usual sense, so that CARMA processes are rigorously defined by a
corresponding state-space representation. More precisely, let

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

 , ep =


0
0
...
0
1

 , b =


b0
b1
...

bp−2

bp−1

 ∈ Cp

with A ∈ Cp×p. For p = 1 the matrix A is to be understood as A = (−a1).
A (complex valued) CARMA(p, q)-process Y = (Yt)t∈R driven by L and with
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characteristic polynomials a(z) and b(z) is then defined as

Yt = b′Xt, t ∈ R, (2)

(a prime will be used throughout to denote the transpose of a matrix or
vector), where X = (Xt)t∈R is a Cp-valued state-vector process satisfying the
stochastic differential equation,

dXt = AXt dt+ ep dLt,

i.e.

Xt = Xs +

∫ t

s

AXu du+ ep(Lt − Ls), ∀ s ≤ t ∈ R, (3)

see Brockwell (2001). The solution of Equation (3) is unique for any given
X0 and satisfies

Xt = eA(t−s)Xs +

∫
(s,t]

eA(t−u)ep dLu, ∀s ≤ t ∈ R. (4)

The state vector process X is not necessarily uniquely determined by Y ,
L, a(z) and b(z), but it is if a(z) and b(z) have no common zeroes, see
(Brockwell and Lindner, 2015, Proposition 2.1 (ii)). Observe that CARMA
processes and state vector processes are necessarily càdlàg processes.

The aim of the present note is to bypass the state-space representation,
giving a rigorous interpretation of the formal differential equation (1) itself
in such a way that the solution for Y coincides with the CARMA process as
defined by (2) and (3). In so doing we shall clarify the precise nature of the
sample-paths of Y and indeed give a rigorous interpretation of (1) when L
is assumed only to be a càdlàg process with L0 = 0.

The idea is simply to formally integrate the differential equation (1) p
times. This gives the equation,

a(D)JpYt = b(D)Jp−1Lt + (polynomial of degree ≤ p− 1),

both sides of which are obviously well-defined if Y is a càdlàg process. Here
J denotes the integration operator, defined by Jft :=

∫ t

0
fs ds for any càdlàg

process (ft)t∈R. We shall show that the resulting specification of Y coincides
indeed with the definition via (2) and (3), providing a natural and rigorous
interpretation of (1).
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2. Results

Let J be the integration operator, which associates with any càdlàg func-
tion f = (ft)t∈R : R → C, t 7→ ft, the function Jf , defined by

Jft :=

∫ t

0

fs ds,

(where
∫ t

0
is interpreted as −

∫ 0

t
if t < 0). We say that a function g : R →

C is differentiable with càdlàg derivative Dg, if g is continuous and there
exists a càdlàg functionDg such g is right-differentiable and left-differentiable
at every point t ∈ R with right-derivative Dgt and left-derivative Dgt− =
limε↓0,ε̸=0 Dgt−ε, respectively. Since a càdlàg function has only countably
many jumps, this implies that g is differentiable at all but countably many
points, and since Dg is bounded on compacts, it follows that g must be
absolutely continuous, (see e.g. Cohn (2013), Theorem 6.3.11).The derivative
Dg is then obviously uniquely determined.

It is easy to see that Jf is differentiable with càdlàg derivativeDJ(f) = f
for any càdlàg function f . We say that a function U is p-times differentiable
with pth càdlàg derivative, if it is (p− 1)-times continuously differentiable in
the usual sense, and if the (p − 1)st-derivative is differentiable with càdlàg

derivative. We then write U
(j)
t = DjUt for the jth derivative, j = 0, . . . , p.

With a0, . . . , ap, b0, . . . , bp−1 and a(z) and b(z) as in the introduction, de-
fine the polynomials

ã(z) := 1+a1z+a2z
2+ . . .+apz

p and b̃(z) := b0z
p−1+ b1z

p−2+ . . .+ bp−1.

Then
a(D)Jpf = ã(J)f and b(D)Jp−1f = b̃(J)f

for each càdlàg function f .

Theorem 1. Suppose that q < p and L = (Lt)t∈R is a two-sided Lévy pro-
cess. Then, with the notation already introduced, the following statements
are true.
(a) If Y is a CARMA(p, q)-process driven by L with characteristic polyno-
mials a(z) and b(z), then there exists a Cp-valued random vector V0 such
that

a(D)JpYt = b(D)Jp−1Lt + a(D)Jp(b′eAtV0), t ∈ R, (5)
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or equivalently
ã(J)Yt = b̃(J)Lt + ã(J)(b′eAtV0). (6)

(b) Conversely, for every Cp-valued random vector V0, there exists a unique
càdlàg solution Y = (Yt)t∈R of (5) (equivalently (6)), and this solution is a
CARMA(p, q)-process driven by L with characteristic polynomials a(z) and
b(z). The state-vector process (Xt)t∈R of this CARMA process can be chosen
to satisfy X0 = V0.
(c) Denoting by λ1, . . . , λp the (not necessarily distinct) zeroes of the polyno-
mial a(z) and by Jλ the operator which maps any càdlàg function f : R → C
into the function,

Jλft =

∫ t

0

eλ(t−u)fu du, t ∈ R,

the unique càdlàg solution Y of (5) is

Yt = b(D)D[Jλ1 · · · JλpLt] + b′eAtV0, t ∈ R. (7)

Proof. (a) Consider first a CARMA process (Yt = b′Xt)t∈R driven by L
with characteristic polynomials a(z) and b(z), and such that X0 = 0. Write
Xt = (X1

t , . . . , X
p
t )

′. Since X0 = 0 and L0 = 0, equation (3) is equivalent to

Xj
t =

∫ t

0

Xj+1
s ds = JXj+1

t ∀ j = 1, . . . , p− 1, and

Xp
t = −ap

∫ t

0

X1
s ds− . . .− a1

∫ t

0

Xp
s ds+ Lt,

hence
Xj

t = Jp−jXp
t ∀ j = 1, . . . , p (8)

and

Lt = Xp
t + a1JX

p
t + . . .+ apJX

1
t = Xp

t + a1JX
p
t + a2J

2Xp
t + . . .+ apJ

pXp
t

= ã(J)Xp
t . (9)

From (8) and (9) we conclude that

ã(J)Xj
t = ã(J)Jp−jXp

t = Jp−j ã(J)Xp
t = Jp−jLt.

Hence, by (2),

ã(J)Yt = ã(J)b′Xt =

p∑
j=1

bj−1ã(J)X
j
t =

p∑
j=1

bj−1J
p−jLt = b̃(J)Lt.
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This shows that Y satisfies (5), or equivalently (6), with V0 = 0.
Now let Y = (Yt = b′Xt)t∈R be a CARMA-process driven by L with

characteristic polynomials a(z) and b(z) and some state vector process X =

(Xt)t∈R, which does not necessarily satisfy X0 = 0. Let Ỹ = (Ỹt = b′X̃t)t∈R
be the CARMA-process whose state vector process X̃ satisfies X̃0 = 0 (and

(3)). Then d(Xt − X̃t) = A(Xt − X̃t) dt, hence

Xt = X̃t + eAt(X0 − X̃0) = X̃t + eAtX0 ∀ t ∈ R

(this follows easily for both t ≥ 0 and t < 0 from (4)). We conclude that

Yt = Ỹt + b′eAtX0 and hence

a(D)JpYt = a(D)JpỸt+a(D)Jp(b′eAtX0) = b(D)Jp−1Lt+a(D)Jp(b′eAtX0).

This shows that Y satisfies (5) (equivalently (6)) with V0 := X0.
(b) Now let V0 be a Cp-valued random vector. We have already seen

that the CARMA process with state vector process X satisfying X0 = V0 is
a solution of (5), hence we only have to address uniqueness. Let Y and

Ŷ be two solutions of (5) with the same V0 and let Ut = Jp(Yt − Ŷt).

Then a(D)Ut = 0. Writing Wt = (Ut, U
(1)
t , . . . , U

(p−1)
t )′, this is equivalent

to DWt = AWt, hence Wt = eAtW0 from (4). But W0 = 0 by definition of

U . This shows U = 0 and hence Y = Ŷ .
(c) Let Y be the unique càdlàg solution of (5). Observe that by partial

integration (see e.g. (Cohn, 2013, Corollary 6.3.9)),

Jλ(D − λ)ft = eλt
∫ t

0

(
e−λuDfu − λe−λufu

)
du = eλt(e−λtft − f0) = ft (10)

for any differentiable function f with càdlàg derivative such that f0 = 0 and
any λ ∈ C. Since a(D) = (D − λp) · · · (D − λ1), applying Jλp , . . . , Jλ1 and
Dp successively to (5) gives

Yt = DpJλ1 · · · Jλp [b(D)Jp−1Lt] + b′eAtV0. (11)

Since DJλft = λJλft + ft = JλDft by (10) for any differentiable function f
with càdlàg derivative such that f0 = 0, and since Jp−1Lt is (p − 1)-times
differentiable with (p − 1)st càdlàg derivative with DjJp−1Lt|t=0 = 0 for all
j ∈ {0, . . . , p−1}, it follows that Jλ1 · · · Jλp and b(D) in (11) commute. Since
also JλJµft = JµJλft for any λ, µ ∈ C and càdlàg function f (as a consequence
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of (D−λ)(D−µ) = (D−µ)(D−λ) and the facts that (D−λ)Jλft = ft and
JλJµft|t=0 = Jµft|t=0 = 0), we may also interchange Jλ1 · · · Jλp with Jp−1, so
that Yt = Dpb(D)Jp−1Jλ1 · · · JλpLt + b′eAtV0, giving (7).

Remark 1. Equations (5) and (7) give rigorous and intuitive interpretations
of (1). Equation (7) can be understood as applying formally the operator
Jλ1 · · · Jλp to (1), which can be regarded as the inverse operator of a(D) as
seen in the proof of part (c).

Corollary 1. For any Cp-valued random vector V0 let U = U(V0) be the
unique p-times differentiable solution with pth càdlàg derivative of the differ-
ential equation

a(D)Ut = b(D)Jp−1Lt + a(D)Jp(b′eAtV0) (12)

with initial conditions U0 = U
(1)
0 = . . . = U

(p−1)
0 = 0. Let Y be a stochastic

process. Then Y is a CARMA(p, q)-process driven by L with characteristic
polynomials a(z) and b(z) if and only if Y = U (p)(V0) for some random
variable V0.

Proof. This follows as in the proof of Theorem 1.

As expected, a(D)Jp(b′eAtV0) = ã(J)(b′eAtV0) turns out to be a poly-
nomial in t of degree at most p−1, but it is interesting to observe that when
varying V0 over all p-variate random vectors, we do not necessarily get all
random polynomials of degree at most p−1. In fact this happens only in the
case when a(z) and b(z) have no common zeroes. More precisely, we have
the following result.

Proposition 1. If q < p and V0 is a Cp-valued random vector then:

(a)

a(D)Jp(b′eAtV0) = ã(J)(b′eAtV0) =

p−1∑
m=0

1

m!

(
m∑
k=0

am−kb
′AkV0

)
tm, (13)

a random polynomial in t of degree at most p−1. Hence there is a Cp-valued
random vector W = (W 0, . . . ,W p−1)′ such that

a(D)Jp(b′eAtV0) = ã(J)(b′eAtV0) =

p−1∑
m=0

Wmtm.
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(b) If Rp−1 is the set of all random polynomials of degree at most p−1, i.e. if
Rp−1 := {

∑p−1
m=0W

mtm : (W 0, . . . ,W p−1)′ a Cp-valued random vector}, and
if Qp−1 is the set of all random polynomials that are expressible in the form
ã(J)(b′eAtV0) for some Cp-valued random vector V0, then Qp−1 ⊂ Rp−1 by
(a), and Qp−1 = Rp−1 if and only if a(z) and b(z) have no common zeroes.

Proof. (a) From eAt =
∑∞

k=0
tk

k!
Ak we obtain J leAt =

∑∞
k=0

tk+l

(k+l)!
Ak, hence

ã(J)eAt =

p∑
l=0

al

∞∑
k=0

tk+l

(k + l)!
Ak =

p−1∑
m=0

m∑
k=0

am−kA
k t

m

m!
+

∞∑
m=p

p∑
l=0

alA
m−l t

m

m!

=

p−1∑
m=0

m∑
k=0

am−kA
k t

m

m!
,

since a(z) is the characteristic polynomial of A and

p∑
l=0

alA
m−l =

(
p∑

l=0

alA
p−l

)
Am−p = a(A)Am−p = 0

since a(A) = 0 by the Cayley-Hamilton theorem. This gives (13).
(b) That Qp−1 ⊂ Rp−1 follows from (a). Define c′m := 1

m!

∑m
k=0 am−kb

′Ak

form ∈ {0, . . . , p−1}. Then cm ∈ Cp and a(D)Jp(b′eAtV0) =
∑p−1

m=0 c
′
mV0t

m.
It follows that Qp−1 = Rp−1 if and only if (c0, . . . , cp−1) ∈ Cp×p has rank p,
i.e. if and only if c0, . . . , cp−1 are linearly independent. But by definition
of the vectors cm and the fact that a0 = 1, this is equivalent to the linear
independence of b′,b′A,b′A2, . . . ,b′Ap−1, which in turn is equivalent to the
matrix (b, A′b, (A′)2b, . . . , (A′)p−1b) ∈ Cp×p having rank p. In the language
of control theory this is expressed as observability of the pair (A,b′). As
shown in Proposition 2.1(i) of Brockwell and Lindner (2015), this follows if
a(z) and b(z) have no common zeroes and it is easy to see from the proof
that the reverse implication also holds.

Remark 2. When a(z) and b(z) have no common zeroes, Proposition 1 al-
lows an obvious reformulation of Corollary 1 with a(D)Jp(b′eAtV0) replaced
by any random polynomial P (t) of degree at most p− 1 and U(V0) replaced
by U(P ). This is not possible however if a(z) and b(z) have common zeroes.

When a(z) and b(z) have common zeroes, then by Theorem 4.1 in Brock-
well and Lindner (2009), the common zeroes of a(z) and b(z) can be factored
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out to give polynomials ā(z) and b̄(z), and every CARMA process with poly-
nomials a(z) and b(z) is also a CARMA process with polynomials ā(z) and
b̄(z) and the same driving noise. Conversely, it is easy to see by inverting the
arguments in the proof of Theorem 4.1 in Brockwell and Lindner (2009) that
every CARMA process with polynomials ā(z) and b̄(z) is a CARMA process
with polynomials a(z) and b(z) and the same driving noise.

Equation (5) gives sense to the formal equation a(D)Yt = b(D)DLt by
integrating it p-times, which ensures that JpYt is p-times differentiable with
càdlàg pth derivative and JpDLt = Jp−1Lt is (p−1)-times differentiable with
càdlàg (p − 1)st derivative. If the order q of the CARMA-process is less
than p − 1, then it seems natural to integrate the formal equation (1) only
(q+1)-times in order to give sense to it. That this is true in a rigorous way is
the content of the next result, which together with Theorem 1 gives another
characterization of CARMA processes.

Proposition 2. Suppose that q < p, a(z), b(z) and L are as in Theorem 1,
V0 is a Cp-valued random vector and Y is a càdlàg stochastic process. Then
Y is the (unique) solution of (5) if and only if, for some (equivalently, all)
k ∈ {q + 1, . . . , p}, Y is (p − k)-times differentiable with (p − k)th càdlàg
derivative and satisfies the equations

a(D)JkYt = b(D)Jk−1Lt + a(D)Jk(b′eAtV0), (14)

Y0 = a(D)Jp(b′eAtV0)
∣∣
t=0

, and (15)

Y
(j)
0 = a(D)Jp−j(b′eAtV0)

∣∣
t=0

−
j∑

i=1

aiY
(j−i)
0 , 1 ≤ j < p− k. (16)

(Note the recursive nature of (15) and (16) in Y
(j)
0 .)

Proof. Suppose that k ∈ {q + 1, . . . , p} and let g = (gt)t∈R and f = (ft)t∈R
be two stochastic processes such that f is (p − k)-times differentiable with
(p− k)th càdlàg-derivative. By the fundamental theorem of calculus for the
Lebesgue-integral (see e.g. Cohn (2013), Theorem 6.3.11) we have g = f if
and only if g is (p − k)-times differentiable with (p − k)th càdlàg derivative
such that

g(p−k) = f (p−k) and g
(j)
0 = f

(j)
0 ∀ j ∈ {0, . . . , p− k − 1}. (17)

Now let ft = b(D)Jp−1Lt + a(D)Jp(b′eAtV0) and gt = a(D)JpYt. Then

f is (p − k)-times differentiable with càdlàg derivative f (p−k) and f
(j)
t =
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b(D)Jp−1−jLt + a(D)Jp−j(b′eAtV0) for all j ∈ {0, . . . , p − k}, in particular

f
(j)
0 = a(D)Jp−j(b′eAtV0)

∣∣
t=0

. From (17) we then see that Y satisfies (5) if

and only if Y is (p−k)-times differentiable with càdlàg derivative Y (p−k) and
such that Y satisfies (14) along with

a(D)Jp−jYt

∣∣
t=0

= f
(j)
0 = a(D)Jp−j(b′eAtV0), j = 0, . . . , p− k − 1. (18)

But (18) is equivalent to Y0 = f
(0)
0 for j = 0 and to

(Dp + a1D
p−1 + . . .+ apD

0)Jp−jYt = Y
(j)
0 + a1Y

(j−1)
0 + . . .+ ajY

(0)
0 = f

(j)
0

for j = 1, . . . , p− k− 1, which gives the desired equations (15) and (16).

We have seen what the CARMA equations mean when integrating k times
with k ∈ {q + 1, . . . , p}. It is also possible to integrate to an order k > p:

Proposition 3. Suppose that q < p, a(z), b(z), ã(z), b̃(z) and L are as in
Theorem 1, V0 is a Cp-valued random vector and Y is a càdlàg stochastic
process. Then Y is the (unique) solution of (5) (equivalently of (6)) if and
only if, for some (equivalently, all) k ∈ {p+ 1, p+ 2, . . .},

ã(J)Jk−pYt = b̃(J)Jk−p−1Lt + ã(J)Jp−k(b′eAtV0).

Proof. This is clear since two càdlàg process f and g satisfy f = g if and
only if Jk−pf = Jk−pg.

Remark 3. Stationarity of Lévy driven CARMA processes was investigated
in detail in Brockwell and Lindner (2009). Applying these results, it fol-
lows that the solution (7) is strictly stationary if the zeroes of a(z) all have
non-zero real parts, if E log(max{|L1|, 1}) < ∞ and if V0 =

∫∞
−∞ f(−u) dLu,

where f(t) = f1(t)1[0,∞)(t)−f2(t)1(−∞,0)(t) and f1(t) and f2(t) are the residues
of the mapping z 7→ [1 z . . . zp−1]′ezt/a(z) in the left and right halves of the
complex plane respectively. To see this, observe that by Theorem 1(b), Y
has a state-space representation with X0 = V0. But if X0 =

∫∞
−∞ f(−u) dLu

(observe that this converges almost surely as a consequence of the assump-
tions on a(z) and L) then, since the solution of (3) is uniquely determined by
X0 and since Xt =

∫∞
−∞ f(t− u) dLu, t ∈ R, is known to be a solution which

is also strictly stationary (Brockwell and Lindner (2009)), it follows that Y
satisfies Yt =

∫∞
−∞ b′f(t− u) dLu, t ∈ R, and is therefore strictly stationary.

By similar arguments, if all the zeroes of a(z) all have strictly negative real
parts, if E log(max{|L1|, 1}) < ∞ and if V0 is independent of L with the
distribution of

∫∞
0

eAtep dLt, then (Yt)t≥0 given by (7) is strictly stationary.
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Remark 4. Theorem 1 also shows why it is in general impossible to define
CARMA(p, q) processes with q ≥ p unless allowing generalized stochastic
processes as done in Brockwell and Hannig (2010). To see this, suppose that
there is a stochastic process Yt that satisfies the formal equation a(D)Yt =
b(D)DLt with q ≥ p, where L is a non-degenerate Lévy process. Let us
interpret this by saying that there should exist some càdlàg process Y =
(Yt)t∈R which satisfies the equation

a(D)Jq+1Yt = b(D)JqLt + rt,

where rt is some random polynomial and bq ̸= 0. Since q ≥ p, a(D)Jq+1Yt−rt
must be differentiable (with càdlàg derivative). On the other hand, b(D)JqLt

is not differentiable, as bqD
qJqLt = bqLt is not differentiable, but bjD

jJqLt is
differentiable with càdlàg derivative for j < q. This indicates that solutions
to CARMA equations when q ≥ p are only possible in terms of generalized
random processes.

Remark 5. It should be noted that none of our results from Theorem 1 to
Proposition 3 depend on the fact that L is a Lévy process, but require only
that L be a càdlàg process with L0 = 0. Observe also that for (2) and (3)
to make sense it is not necessary for L to be an (increment) semimartingale.
The càdlàg property suffices since integration is with respect to t only.

Remark 6. Let L be a stochastic process with L0 = 0 whose sample paths
are p-times continuously differentiable (when L is additionally a Lévy process,
this means that Lt = ρt for some ρ ∈ R). For each Cp-valued random vector

V0, let U be the unique solution of (12) with U0 = U
(1)
0 = . . . = U

(p−1)
0 = 0

and let Y = U (p) as in Corollary 1. Since, by Proposition 1, a(D)Jp(b′eAtV0)
is a polynomial of degree at most p− 1, we obtain

a(D)Yt = Dpa(D)Ut = Dpb(D)Jp−1Lt +Dpa(D)Jp(b′eAtV0) = b(D)DLt,

which is (1). Observe that (1) makes sense here in the usual way since L is
sufficiently smooth. Observe further that for each fixed ω in the underlying
sample space Ω, the set of (pathwise) solutions of (1) is a p-dimensional affine
function space. On the other hand, as seen in the proof of Theorem 1 and by
the argument just given, the set of (pathwise) solutions of (5) with varying
V0(ω) ∈ Cp is a k-dimensional affine subspace of this with k ≤ p, where
k = p if and only if a(z) and b(z) have no common zeroes by Proposition

11



1. This shows that the seemingly obvious equivalence of (1) and (5) is not
as straightforward as it appears at first sight, and actually is an equivalence
only if a(z) and b(z) have no common zeroes.
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