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Summary. For a separated sequence Λ = {λk}k∈Z of real numbers there is a close
link between the lower and upper densities D−(Λ), D+(Λ) and the frame properties
of the exponentials {eiλkx}k∈Z: in fact, {eiλkx}k∈Z is a frame for its closed linear
span in L2(−γ, γ) for any γ ∈]0, πD−(Λ)[∪]πD+(Λ),∞[. We consider a classical
example presented already by Levinson [10] with D−(Λ) = D+(Λ) = 1; in this case,
the frame property is guaranteed for all γ ∈]0,∞[\{π}. We prove that the frame
property actually breaks down for γ = π. Motivated by this example, it is natural to
ask whether the frame property can break down on an interval if D−(Λ) 6= D+(Λ).
The answer is yes: We present an example of a family Λ with D−(Λ) 6= D+(Λ) for
which {eiλkx}k∈Z has no frame property in L2(−γ, γ) for any γ ∈]πD−(Λ), πD+(Λ)[.

1 Introduction

While frames nowadays are a recognized tool in many branches of harmonic
analysis and signal processing, it is interesting to remember that Duffin and
Schaeffer [6] actually introduced the concept in the context of systems of
complex exponentials. The starting point was the possibility of nonharmonic
Fourier expansions, as discovered by Paley and Wiener. Much of the study is
also rooted in the study of sampling theories tracing back to Paley-Wiener,
Levinson, Plancherel-Polya and Boas; a complete treatment is given by John
Benedetto in Irregular Sampling and Frames [2]. That paper also contains
original work on irregular sampling using Fourier frames, as well as new prop-
erties of Fourier frames. In particular, density issues for Fourier frames and
distinctions as well as interconnections among uniform density, natural density
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and the lower and upper Beurling densities D−(Λ) and D+(Λ) of a sequence
Λ ≡ {λk}k∈Z ⊂ R are discussed in detail in Sections 7 and 9 of [2].

The frame properties for systems of exponentials {eiλkx}k∈Z are closely
related to density issues concerning the sequence {λk}k∈Z, as revealed by, e.g.,
[8], [9], [12]. A combination of well known results shows that for a separated
sequence {λk}k∈Z ⊂ R, the exponentials {eiλkx}k∈Z form a frame sequence
in L2(−γ, γ) for all γ ∈]0, πD−(Λ)[ ∪ ]πD+(Λ),∞[. On the other hand, it
is known that there might be no frame property for the limit cases γ =
πD−(Λ), γ = πD+(Λ). This appears, e.g., in a classical example presented by
Levinson [10] which we consider in Example 2: here D−(Λ) = D+(Λ) = 1,
and the exponentials {eiλkx}k∈Z form a frame sequence in L2(−γ, γ) exactly
for γ ∈]0,∞[ \{π}. The above considerations leave an interesting gap on the
interval ]πD−(Λ), πD+(Λ)[. In particular, it is natural to ask whether there are
exponentials {eiλkx}k∈Z with D−(Λ) 6= D+(Λ) and having no frame property
in the gap ]πD−(Λ), πD+(Λ)[. The answer turns out to be yes; and we provide
a concrete example.

The paper is organized as follows. Section 2 concerns the general frame
terminology and definitions. Section 3 summarizes known results of Seip and
Beurling, in which it is shown that exponentials {eiλkx}k∈Z form a frame
sequence in L2(−γ, γ) for all γ /∈ [πD−(Λ), πD+(Λ)]. A necessary condition
for {eiλkx}k∈Z being a frame for L2(−γ, γ), due to Landau [9], is phrased as a
no-go theorem as a preparation for applications in later sections. In Section 4,
a lemma by Jaffard is presented and discussed; this is the foundation for the
construction of the aforementioned example in Section 6. Section 5 analyzes
the limit case of the frame version of the classical Kadec’s 1/4-Theorem and
discuss the example presented by Levinson. Then in Section 6, we give an
explicit example with no frame property for γ ∈]πD−(Λ), πD+(Λ)[.

2 General frames

We will formulate the basic concepts in somewhat larger generality than
needed in the present paper. Thus, in this section we consider a separable
Hilbert space H with the inner product 〈·, ·〉 linear in the first entry. In later
sections we will mainly consider H = L2(−γ, γ) for some γ ∈]0,∞[.

We begin with some definitions.

Definition 1. Let {fk}∞k=1 be a sequence in H. We say that

(i) {fk}∞k=1 is a frame for H if there exist constants A,B > 0 such that

A ||f ||2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. (1)

(ii) {fk}∞k=1 is a frame sequence if there exist constants A,B > 0 such that
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A ||f ||2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ span{fk}∞k=1.

(iii){fk}∞k=1 is a Riesz basis for H if span{fk}∞k=1 = H and there exist con-
stants A,B > 0 such that

A
∑
|ck|2 ≤

∣∣∣∣∣∣∑ ckfk

∣∣∣∣∣∣2 ≤ B∑ |ck|2 (2)

for all finite scalar sequences {ck}.
(iv) {fk}∞k=1 is a Riesz sequence if there exist constants A,B > 0 such that

A
∑
|ck|2 ≤

∣∣∣∣∣∣∑ ckfk

∣∣∣∣∣∣2 ≤ B∑ |ck|2

for all finite scalar sequences {ck}.

The frame definition goes back to the paper [6] by Duffin and Schaeffer. More
recent treatments can be found in the books [13], [5], or [3].

Any numbers A,B > 0 which can be used in (1) will be called frame
bounds. If {fk}∞k=1 is a frame for H, there exists a dual frame {gk}∞i=1 such
that

f =
∞∑
i=1

〈f, gk〉fk =
∞∑
i=1

〈f, fk〉gk, ∀f ∈ H. (3)

The series in (3) converges unconditionally; for this reason, we can index the
frame elements in an arbitrary way. In particular, we can apply the general
frame results discussed in this section to frames of exponentials, which are
usually indexed by Z.

A Riesz basis is a frame, so a representation of the type (3) is also available
if {fk}∞k=1 is a Riesz basis. Furthermore, the possible values of A,B in (2)
coincide with the frame bounds. Riesz bases are characterized as the class of
frames which are ω-independent, cf. [7]: that is, a frame {fk}∞k=1 is a Riesz
basis if and only if

∑∞
k=1 ckfk = 0 implies that ck = 0 for all k ∈ N. Thus,

Riesz bases are the frames which are at the same time bases. This means
that a frame which is not a Riesz basis is redundant: it is possible to remove
elements without destroying the frame property. However, in general, not
arbitrary elements can be removed:

Example 1. If {ek}∞k=1 is an orthonormal basis for H, then

{e1, e2, e2, e3, e3, e4, e4, ....}

is a frame for H. If any ek, k ≥ 2, is removed, the remaining family is still
a frame for H. However, if e1 is removed, the remaining family is merely a
frame sequence.
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We note in passing that the above example is typical: the removal of an
element from a frame might leave an incomplete family, which can’t be a
frame for the same space. However, the remaining family will always be a
frame sequence. These considerations of course generalize to the removal of a
finite number of elements; but not to removal of arbitrary collections.

Note that a frame sequence also leads to representations of the type (3) –
but only for f ∈ span{fk}∞k=1.

3 Frames of exponentials

In this section we consider the frame properties for a sequence of complex
exponentials {eiλkx}k∈Z, where Λ = {λk}k∈Z is a sequence of real numbers.
Before we discuss the frame properties, we introduce some central concepts
related to the sequence Λ.

We say that Λ is separated if there exists δ > 0 such that |λk − λl| ≥ δ for
all k 6= l. If Λ is a finite union of separated sets, we say that Λ is relatively
separated. It can be proved that {eiλkx}k∈Z satisfies the upper frame condition
if and only if Λ is relatively separated.

In this paper we concentrate on separated sequences Λ. Given r > 0, let
n−(r) (resp. n+(r)) denote the minimal (resp. maximal) number of elements
from Λ to be found in an interval of length r. The lower (resp. upper) density
of Λ is defined by

D−(Λ) = lim
r→∞

n−(r)
r

resp. D+(Λ) = lim
r→∞

n+(r)
r

.

The sufficiency parts of Theorems 2.1 and 2.2 in [12] can be formulated as
follows:

Theorem 1. Let Λ = {λk}k∈Z be a separated sequence of real numbers. Then
the following holds:

(a) {eiλkx}k∈Z forms a frame for L2(−γ, γ) for any γ < πD−(Λ).
(b) {eiλkx}k∈Z forms a Riesz sequence in L2(−γ, γ) for any γ > πD+(Λ).

As illustration of this result, we encourage the reader to consider the family
{eikx}k∈Z: it is an orthonormal basis for L2(−π, π), a frame for L2(−γ, γ) for
any γ ∈]0, π[, and a (non-complete) Riesz sequence in L2(−γ, γ) for γ > π.
This corresponds to the fact that D−(Z) = D+(Z) = 1. This example is
considered in detail in the paper [7] in this volume.

In terms of frame sequences Theorem 1 gives the following:

Corollary 1. Let Λ be a separated sequence of real numbers. Then {eiλkx}k∈Z
is a frame sequence in L2(−γ, γ) whenever

γ ∈]0, πD−(Λ)[ ∪ ]πD+(Λ),∞[.
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Corollary 1 serves as motivation for our new results in Section 5 and Sec-
tion 6. In Section 5 we consider an example with D−(Λ) = D+(Λ) = 1, where
it turns out that the frame property holds in L2(−γ, γ) for any γ 6= π. In
Section 6 we prove that if D−(Λ) 6= D+(Λ), then {eiλkx}k∈Z might not have
any frame property when considered in L2(−γ, γ), γ ∈]πD−(Λ), πD+(Λ)[.

We need a deep result due to Landau [9] (see Ortega-Cerda and Seip [11],
p. 791-792 for a discussion of this result).

Theorem 2. A separated family of complex exponentials {eiλx}λ∈Λ is not a
frame for L2(−γ, γ) if πD−(Λ) < γ.

In [12], Seip considers removal of elements from a frame of exponentials.
In particular, he proves that it always is possible to remove elements in a way
such that the remaining family is still a frame, but now corresponding to a
separated family:

Lemma 1. Assume that Λ is relatively separated and that {eiλkx}k∈Z is a
frame for L2(−γ, γ) for some γ > 0. Then there exists a separated subfamily
Λ′ ⊆ Λ such that {eiλx}k∈Λ′ is a frame for L2(−γ, γ).

4 Jaffard’s lemma

We need a lemma by Jaffard, [8] (Lemma 4, p. 344). Jaffard states the lemma
as follows: Suppose a sequence of functions {ek}k∈Z is a frame for L2(I) for
an interval I. Then {ek}k 6=0 is a frame on each interval I

′ ⊂ I such that
|I ′ | < |I|.

However, the lemma is false in that generality. Before we illustrate this
with an example, let us examine the mistake in the proof which appears in
the first two lines. Here the following is stated: The {ek}k∈Z are a frame of
L2(I

′
). Then, either {ek}k 6=0 is a frame of L2(I

′
), and we have nothing to

prove, or the {ek}k∈Z are a Riesz basis of L2(I
′
). This, of course, is not true.

If {ek}k∈Z is a redundant frame for L2(I) and if e0 is not in the closed linear
span of {ek}k 6=0 in L2(I

′
) then {ek}k 6=0 is not a frame for L2(I

′
) but {ek}k∈Z

is still a redundant frame for its span and not a Riesz basis. For example, let
{ek}k∈Z be an orthonormal basis for L2(0, 1) with supp e0 ⊂ [0, 1/2]. Since
e0 ⊥ ek for all k 6= 0 on L2(0, 1) and e0(t) = 0, for all 1/2 ≤ t ≤ 1, it follows
that e0 ⊥ ek for all k 6= 0 on L2(0, 1/2). Hence, {ek}k 6=0 is not a frame for
L2(0, 1/2).

We need, as did Jaffard, a very special case of this lemma which is true.

Lemma 2. Let {eiλx}λ∈Λ be a frame for L2(−R,R) and let J ⊂ Λ be a finite
set. Then, {eiλx}λ∈Λ−J is a frame for L2(−A,A), for all 0 < A < R.

Jaffard’s proof works to prove Lemma 2 because of a result of Seip [12] (p.
142, Lemma 3.15) which makes the first two lines of Jaffard’s proof correct in
this special case. We state the Lemma below.
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Lemma 3. Let {eiλx}λ∈Λ be a frame for L2(−R,R). Then either {eiλx}λ∈Λ
is a Riesz basis for L2(−R,R) or {eiλx}λ∈Λ−{λ0} is a frame for L2(−R,R)
for every λ0 ∈ Λ.

However, for completeness we give an independent proof of Lemma 2. It
was communicated to us by D. Speegle.

Proof of Lemma 2: We will rely on Theorem 2. First, we assume that Λ is
separated. By Theorem 2 we know that D−(Λ) ≥ R

π . It is clear that D− is
unchanged if we delete a finite number of elements. So for all 0 < A < R,

D−(Λ− J) = D−(Λ) ≥ R

π
>
A

π
.

So by Theorem 1 we have that {eiλx}λ∈Λ−J is a frame for L2(−A,A).
If Λ is not separated, Lemma 1 shows that there is a Λ

′ ⊂ Λ, with Λ
′

separated so that {eiλx}λ∈Λ′ is also a frame for L2(−R,R). Now, {eiλx}λ∈Λ′−J
is a frame for L2(−A,A) for all A < R and hence so is {eiλx}λ∈Λ−J . �

5 The limit case of Kadec’s 1/4-Theorem

The classical Kadec’s 1/4-theorem concerns perturbations of the orthonor-
mal basis {eikx}k∈Z for L2(−π, π): it states that if {λk}k∈Z is a sequence of
real numbers and supk∈Z |λk − k| < 1/4, then {eiλkx}k∈Z is a Riesz basis
for L2(−π, π). It is well known that the result is sharp, in the sense that
{eiλkx}k∈Z might not be a Riesz basis for L2(−π, π) if supk∈Z |λk − k| = 1/4
(see Example 2 below). In Proposition 1 we shall sharpen this result, using
the following extension of Kadec’s theorem to frames, which was proved in-
dependently by Balan [1] and Christensen [4]:

Theorem 3. Let {λk}k∈Z and {µk}k∈Z be real sequences. Assume that {eiλkx}k∈Z
is a frame for L2(−π, π) with bounds A,B, and that there exists a constant
L < 1/4 such that

|µk − λk| ≤ L and 1− cosπL+ sinπL <
A

B
.

Then {eiµkx}k∈Z is a frame for L2(−π, π) with bounds

A

(
1− B

A
(1− cosπL+ sinπL)

)2

, B(2− cosπL+ sinπL)2.

With the help of Theorem 3 we can now prove the following:

Proposition 1. Let {λk}k∈Z be a sequence of real numbers such that

sup
k∈Z
|λk − k| = 1/4.

Then either {eiλkx}k∈Z is a Riesz basis for L2(−π, π) or it is not a frame for
L2(−π, π).
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Proof: For t ∈ [0, 1], define

λk(t) := k + t(λk − k).

Then
sup
k∈Z
|λk(t)− k| = t · sup

k∈Z
|λk − k| =

t

4
.

Furthermore, λk(1) = λk for all k ∈ Z. Now, suppose that {eiλkx}k∈Z is a
frame for L2(−π, π), with lower bound A, say. By Theorem 3, there exists a
t0 ∈ [0, 1[ such that {eiλk(t)x}k∈Z is a frame for L2(−π, π) with lower bound
A/2 for any t ∈ [t0, 1[. But, by Kadec’s 1/4-Theorem, {eiλk(t)x}k∈Z is a Riesz
basis for L2(−π, π) for all t ∈ [t0, 1[, too; since Riesz bounds and frame bounds
coincide, it is thus a Riesz basis with lower bound A/2. Thus we have for
t ∈ [t0, 1[:

A

2

N∑
k=−N

|ck|2 ≤

∥∥∥∥∥
N∑

k=−N

cke
iλk(t)(·)

∥∥∥∥∥
2

L2(−π,π)

∀ N ∈ N, c−N , . . . , cN ∈ C.

Taking the limit t→ 1, we obtain

A

2

N∑
k=−N

|ck|2 ≤

∥∥∥∥∥
N∑

k=−N

cke
iλk(·)

∥∥∥∥∥
2

L2(−π,π)

∀ N ∈ N, c−N , . . . , cN ∈ C.

Thus {eiλkx}k∈Z satisfies the lower Riesz sequence condition in L2(−π, π).
Since it is also a frame by assumption, it is complete and satisfies the upper
condition, too. Thus it is a Riesz basis for L2(−π, π). �

We will now reconsider the classical example presented by Levinson [10].
Example 2. Consider the sequence

λk :=


k − 1/4 if k > 0
k + 1/4 if k < 0
0 if k = 0.

It is clear that D−(Λ) = D+(Λ) = 1, thus, by Corollary 1 {eiλkx}k∈Z is
a frame sequence in L2(−γ, γ) when γ ∈]0, π[∪]π,∞[. It is also known [13]
that {eiλkx}k∈Z is complete in L2(−π, π) but not a Riesz basis for L2(−π, π).
Thus, by Lemma 1 we conclude that {eiλkx}k∈Z is not a frame sequence in
L2(−π, π). �

6 Exponentials {eiλkx}k∈Z with no frame property in
L2(−γ, γ) for γ ∈]πD−(Λ), πD+(Λ)[

Corollary 1 does not provide us with any conclusion for γ ∈ [πD−(Λ), πD+(Λ)];
and for γ = πD−(Λ) and γ = πD+(Λ), Example 2 shows that no frame prop-
erty might be available. If D−(Λ) < D+(Λ) we are thus missing information
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on a whole interval. Our purpose is now to show that Corollary 1 is optimal
in the sense that for any a, b ∈]0,∞[, a < b, we can construct sequences
Λ ⊂ R with a = D−(Λ), b = D+(Λ), for which {eiλkx}k∈Z has no frame
property for any γ ∈]πa, πb[. This is stronger than Example 2, where we had
D−(Λ) = D+(Λ).

Theorem 4. For any 0 < a < b, there are real numbers Λ = {λk}k∈Z satisfy-
ing:

(1) D−(Λ) = a.
(2) D+(Λ) = b.
(3) { 1√

2πb
eiλkx}k∈Z is a subsequence of an orthonormal basis for L2(−πb, πb).

(4) {eiλkx}k∈Z spans L2(−γ, γ) for every 0 < γ < πb.
It follows that:
(5) {eiλkx}k∈Z is a frame for L2(−γ, γ) for all 0 < γ ≤ πa.
(6) {eiλkx}k∈Z is not a frame sequence in L2(−γ, γ) for πa < γ < πb.
(7) {eiλkx}k∈Z is a Riesz sequence in L2(−γ, γ) for all πb ≤ γ.

Proof. To simplify the notation, we will do the case a = 1, b = 2. The
general case follows immediately from here by a change of variables. We let

{fk}k∈J = {eikx, ei(k+1/2)x}k∈Z.

Our purpose is to exhibit a subfamily {fk}k∈Λ, Λ ⊂ J , which has the required
properties.

Now, {fk}k∈J is an orthogonal basis for L2(−2π, 2π). The idea of the
construction is to carefully delete (by induction) a family of subsets of J ,
J1 ⊂ J2 ⊂ · · · , so that Λ = J − ∪∞n=1Jn has the required properties. The
difficult part is to maintain property (4). First, let J1 = {1 + 1/2} and α =
1 + 1/2. By Lemma 2, there is a sequence {aα,1k } ∈ `2 so that

eiαx =
∑

k∈J−J1

aα,1k fk ∈ L2(−2π + π, 2π − π).

Choose a natural number N1 > 1 + 1
2 so that

‖
∑
|k|≥N1

aα,1k fk‖L2(−2π+π,2π−π) ≤ 1.

Let

J2 = {1 + 1/2, N1 + 1/2, N1 + 1 + 1/2} = J1 ∪ {N1 + 1/2, N1 + 1 + 1/2}.

Since {fk}k∈J−J2 is a frame for L2(−2π + π
2 , 2π −

π
2 ) by Lemma 2, for each

α ∈ J2 there is a sequence of scalars {aα,2k } ∈ `2 so that

eiαx =
∑

k∈J−J2

aα,2k fk ∈ L2(−2π +
π

2
, 2π − π

2
).
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Choose a natural number N2 > N1 + 1 + 1
2 so that for each α ∈ J2 we have

‖
∑
|k|≥N2

aα,2k fk‖L2(−2π+π
2 ,2π−

π
2 ) ≤ 1/2.

Now by induction, we can for each n choose natural numbers {Nj}nj=1 with
Nj−1 + j − 1 + 1

2 < Nj and sets J1 ⊂ J2 ⊂ · · · ⊂ Jn with

Jn = ∪n−1
j=1 Jj ∪ {Nn−1 + 1/2, Nn−1 + 1 + 1/2, · · · , Nn−1 + n− 1 + 1/2}

satisfying:
(i) {fk}k∈J−Jn is a frame for L2(−2π + π/n, 2π − π/n).
(ii) For every α ∈ Jn there is a sequence {aα,nk } ∈ `2 so that

eiαx =
∑

k∈J−Jn

aα,nk fk ∈ L2(−2π + π/n, 2π − π/n),

and
(iii)

‖
∑
|k|≥Nn

aα,nk fk‖L2(−2π+π/n,2π−π/n) ≤
1
n
.

Now, let Λ = J −∪∞n=1Jn; we claim that {fk}k∈Λ has the required properties.
For (1), by the definition of the sets Jn,

|Λ ∩ [Nn−1 + 1
2 , Nn−1 + n− 1 + 1

2 ]|
(Nn−1 + n− 1 + 1

2 )− (Nn−1 + 1
2 )

=

|{Nn−1 + 1
2 , Nn−1 + 1 + 1

2 , . . . , Nn−1 + n− 1 + 1
2}|

(Nn−1 + n− 1 + 1
2 )− (Nn−1 + 1

2 )
=

n

n− 1
.

So D−(Λ) ≤ 1. But, since Λ contains Z it follows that D−(Λ) ≥ 1.
For (2), for any N ∈ N we have

|Λ ∩ [−2N,−N ]|
−N − (−2N)

=
|{−2N,−2N + 1

2 ,−2N + 1, . . . ,−N}|
N

=
2N + 1
N

.

So 2 ≤ D+(Λ) ≤ D+(J) = 2.
(3) This is obvious.
(4) Fix 0 < γ < 2π and choose M > 0 such that γ < 2π − π

M . Fix j ∈ N
and choose any α ∈ Jj . For all n ≥ max {j,M}, we have

‖eiαx −
∑

k∈J−Jn,|k|≤Nn

aα,nk fk‖L2(−γ,γ) ≤

‖eiαx −
∑

k∈J−Jn,|k|≤Nn

aα,nk fk‖L2(−2π+π/n,2π−π/n) ≤
1
n
.
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In the rest of the argument for (4) we consequently consider the vectors fk
as elements in the vector space L2(−γ, γ). Since J1 ⊂ J2 ⊂ · · · and max
Jn ≤ Nn < min(Jn+1 − Jn), it follows that∑

k∈J−Jn,|k|≤Nn

aα,nk fk ∈ span {fk}k∈Λ.

Hence,
eiαx ∈ span {fk}k∈Λ.

That is, for all j,
fj ∈ span {fk}k∈Λ.

Since {fk}k∈J is a frame for L2(−γ, γ), we have (4).
(5) For 0 < γ < πa, this follows from Theorem 1(a) and the fact that

D−(Λ) = a = 1. For γ = πa, we note that {fk}k∈Λ contains {eikx}k∈Z,
which is an orthonormal basis for L2(−π, π). Therefore {fk}k∈Λ is a frame for
L2(−π, π).

(6) Since the closed linear span of {fk}k∈Λ equals L2(−γ, γ) by (4), if it
was a frame sequence then it would be a frame, contradicting Theorem 2.

(7). For γ > πb, this is a consequence of Theorem 1(b). For γ = πb, we
note that {fk}k∈Λ is a subset of {fk}k∈J , which is an orthogonal basis for
L2(−2π, 2π); this implies that {fk}k∈Λ is a Riesz sequence in L2(−2π, 2π).

This completes the proof of the theorem. �
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