
FRAMES AND THE FEICHTINGER CONJECTURE

PETER G. CASAZZA, OLE CHRISTENSEN,
ALEXANDER M. LINDNER, ROMAN VERSHYNIN

Abstract. We show that the conjectured generalization of the Bourgain-
Tzafriri restricted-invertibility theorem is equivalent to the conjecture of
Feichtinger, stating that every bounded frame can be written as a finite
union of Riesz basic sequences. We prove that any bounded frame can
at least be written as a finite union of linear independent sequences. We
further show that the two conjectures are implied by the paving conjecture.
Finally, we show that Weyl-Heisenberg frames over rational lattices are
finite unions of Riesz basic sequences.

1. Introduction

The purpose of this paper is to relate a large number of conjectures appear-
ing in different branches of analysis. We state the exact conjectures later in
this Section, but in order to proceed we need some definitions.

A frame for a Hilbert space H is a family of vectors {fi}i∈I in H so that
there are constants A,B > 0 satisfying:

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2, for all f ∈ H.

The constants A and B are called lower and upper frame bounds, respectively.
If we can choose A = B we say that {fi}i∈I is a B-tight frame. If at least
the upper frame condition is satisfied we call {fi}i∈I a Bessel sequence, with
Bessel constant B. For any Bessel sequence {fi}i∈I it is immediate that

sup
i∈I
‖fi‖ <∞.

A sequence {fi}i∈I in H is bounded if

0 < inf
i∈I
‖fi‖ ≤ sup

i∈I
‖fi‖ <∞.

A bounded unconditional basis for H is called a Riesz basis for H. It is known
that {fi}i∈I is a Riesz basis for H if and only if {fi}i∈I is complete in H and
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there are constants A,B > 0 so that for all finite families of scalars {ai}i∈I′⊂I
we have

A
∑
i∈I′
|ai|2 ≤ ‖

∑
i∈I′

aifi‖2 ≤ B
∑
i∈I′
|ai|2.

In this case we call A a lower Riesz basis bound of {fi}i∈I and B an upper
Riesz basis bound. Riesz bases are special kinds of frames. More precisely,
a sequence {fi}i∈I is a Riesz basis for H if and only if it is a frame for H
which fails to be a frame for H if any of its elements are removed. For a Riesz
basis the Riesz basis bounds and the frame bounds coincide. If {fi}i∈I is a
Riesz basis for its closed linear span we call it a Riesz basic sequence. For the
basic properties of frames, Bessel sequences, Riesz sequences and Riesz basic
sequences we refer the reader to [Ca2, Ch, Y].

We now formulate the conjectures we will deal with in this paper. We begin
with the original conjecture by Feichtinger:

Conjecture 1.1 (Feichtinger). Every bounded frame can be written as a finite
union of Riesz basic sequences.

Given N ∈ N, let `N2 denote CN equipped with `2-norm. We now state a
conjecture concerning frames for `N2 , which we refer to as the finite Feichtinger
conjecture.

Conjecture 1.2 (Finite Feichtinger Conjecture). For every B,C > 0 there is
a natural number M = M(B,C) and an A = A(B,C) > 0 so that whenever
{fi}i∈I is a frame for `N2 (N ∈ N) with upper frame bound B and ‖fi‖ ≥ C for
all i ∈ I, then I can be partitioned into {Ij}Mj=1 so that for each 1 ≤ j ≤ M ,
{fi}i∈Ij is a Riesz basic sequence with lower Riesz basis bound A and upper
Riesz basis bound B.

The corresponding conjectures for Bessel sequences are:

Conjecture 1.3. Every bounded Bessel sequence can be written as a finite
union of Riesz basic sequences.

Conjecture 1.4. For every B > 0 there exists a natural number M = M(B)
and an A = A(B) so that every Bessel sequence {fi}ni=1 with Bessel constant
B > 0 and ‖fi‖ = 1, for all 1 ≤ i ≤ n, can be written as a union of M Riesz
basic sequences each with lower Riesz basis bound A.

Throughout this paper, {ei} will denote an orthonormal basis for what-
ever Hilbert space we are working in. In 1987, Bourgain and Tzafriri [BT1]
proved the following fundamental result known as the Restricted-Invertibility
Theorem:

Theorem 1.5 (Bourgain-Tzafriri). There is a universal constant c > 0 so that
whenever T : `n2 → `n2 is a linear operator for which ‖Tei‖ = 1 for 1 ≤ i ≤ n,
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then there exists a subset σ ⊂ {1, 2, · · · , n} of cardinality |σ| ≥ cn
‖T‖2 so that

‖
∑
j∈σ

ajTej‖2 ≥ c
∑
j∈σ

|aj|2,

for all choices of scalars {aj}j∈σ.

Theorem 1.5 gave rise to the following conjecture which is still open today:

Conjecture 1.6. For every B > 0 there is a natural number M = M(B)
and an A = A(B) > 0 so that if T : `n2 → `n2 is a linear operator for which

‖Tei‖ = 1 for all 1 ≤ i ≤ n, and ‖T‖ ≤
√
B, then there is a partition {Ij}Mj=1

of {1, 2, · · · , n} so that for each 1 ≤ j ≤ M and all choices of scalars {ai}i∈Ij
we have:

‖
∑
i∈Ij

aiTei‖2 ≥ A
∑
i∈Ij

|ai|2.

We will show that Conjectures 1.1,1.2 and 1.6 are equivalent in the sense that
all three have positive answers or all three have negative answers. We will also
show that these conjectures are equivalent to the corresponding conjectures
about Bessel sequences and that all of these are true if the well known Paving
Conjecture holds. Given a subset I of the integers, we denote by PI the
orthogonal projection in `2 onto the subspace spanned by {ei}i∈I .
Conjecture 1.7 (The Paving Conjecture [KS]). For any ε > 0, there is a
constant M = M(ε) such that for every integer n and every linear operator S
on `n2 whose matrix with respect to {ei}ni=1 has zero diagonal, one can find a
partition {σj}Mj=1 of {1, · · · , n}, such that

‖PσjSPσj‖ ≤ ε‖S‖ for all j = 1, 2, · · · ,M .

The paving conjecture is known to be equivalent to the Kadison-Singer
conjecture [KS] (See also [BT2] for a deep analysis of the paving conjecture). In
an interesting paper [W], Weaver gives several reformulations of the Kadison-
Singer conjecture and thus of the Paving conjecture. One of these, in terms of
frames, is the following:

Conjecture 1.8. There exists a universal constant B ≥ 2 and a natural num-
ber M such that the following holds. Let {fi}Ni=1 be a B-tight frame for `n2
with ‖fi‖ ≤ 1, for all i = 1, 2, · · · , N . Then there is a partition {Ij}Mj=1 of
{1, 2, · · · , N} such that for all 1 ≤ j ≤M we have∑

i∈Ij

|〈f, fi〉|2 ≤ (B − 1)‖f‖2, for all f ∈ `n2 .

It is possible that all these conjectures have negative answers in general.
In this case it becomes important to know the strongest results available. In
this direction we will show that conjectures 1.2, 1.4 and 1.6 are true - up to
a logarithmic factor. We also show that these conjectures hold for {fi}ni=1 if
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the off-diagonal elements of the Grammian matrix (〈fi, fj〉)i,j satisfies for some
γ > 0:

|〈fi, fj〉| ≤
1

log1+γ n
, for all i 6= j.

We also prove that any Bessel sequence can at least be decomposed into a
finite union of linearly independent sets. Finally we consider frames with a
special structure, namely, Weyl-Heisenberg frames, and give a sufficient con-
dition for the decomposition into a finite number of Riesz basic sequences.

2. Equivalence of the conjectures

To simplify the proof of the main result of this section, we first prove an
elementary proposition.

Proposition 2.1. Fix a natural number M and assume for every natural
number n we have a partition {Ini }Mi=1 of {1, 2, · · · , n}. Then there are natural
numbers {n1 < n2 < · · · } so that if j ∈ I

nj
i for some i ∈ {1, · · · ,M}, then

j ∈ Inki , for all k ≥ j. Hence, if Ii = {j|j ∈ Inji } then
(1) {Ii}Mi=1 is a partition of N.
(2) If Ii = {j1 < j2 < · · · } then for every natural number k we have
{j1, j2, · · · , jk} ⊂ Inki .

Proof: For each natural number n, 1 is in one of the sets {Ini }Mi=1. Hence,
there are natural numbers n1

1 < n1
2 < n1

3 < · · · and an 1 ≤ i ≤ M so that

1 ∈ In
1
j

i , for all j ∈ N. Now, for every natural number n1
j , 2 is in one of the

sets {In
1
j

i }Mi=1. Hence, there is a subsequence {n2
j} of {n1

j} and an 1 ≤ i ≤ M

so that 2 ∈ In
2
j

i , for all j ∈ N. Continuing by induction, we get a subsequence

{n`+1
j }∞j=1 of {n`j}∞j=1 and an 1 ≤ i ≤ M so that ` + 1 ∈ In

`+1
j

i , for all j ∈ N.

Letting {nj}∞j=1 be {njj}∞j=1 gives the conclusion of the proposition. �
We can now state the main result of this section.

Theorem 2.2. Conjectures 1.1, 1.2, 1.3, 1.4 and 1.6 are all equivalent in the
sense that either all four of these conjectures have positive answers or all four
have negative answers.

Proof: Conjecture 1.3 ⇒ Conjecture 1.1: This is obvious.

Conjecture 1.1 ⇒ Conjecture 1.4: We will prove the contrapositive. So we
assume that Conjecture 1.4 fails. Then there is a constant B > 0 so that
for every M ∈ N and for every A > 0 there is an n = n(M,A) ∈ N, a
finite dimensional Hilbert space H and a Bessel sequence {fi}ni=1 in H with
Bessel constant B and ‖fi‖ = 1, for all 1 ≤ i ≤ n, and whenever we partition
{1, 2, · · · , n} into sets {Ij}Mj=1, then there exists some 1 ≤ ` ≤ M and a set of
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scalars {ai}i∈I` with

‖
∑
i∈I`

aifi‖2 ≤ A
∑
i∈I`

|ai|2.

Now, for each k ∈ N, we can choose a finite dimensional Hilbert space Hk and
letting M = k and A = 1/k above we can choose nk = n(k, 1/k) and {fki }

nk
i=1

satisfying the above conditions. Let H = (
∑
⊕Hk)`2 and consider {fki }

nk ,∞
i=1,k=1

as elements of H. This family is now a Bessel sequence with Bessel constant B
and ‖fki ‖ = 1, for all 1 ≤ i ≤ nk, k ∈ N. Assume we can partition {fki }

nk ,∞
i=1,k=1

into M sets of Riesz basic sequences each with lower Riesz basis bound A.
But, for all k with k ≥ M and 1/k ≤ A, {fki }

nk
i=1 cannot be partitioned into

M sets each with lower Riesz basis bound ≥ A, and hence {fki }
nk ,∞
i=1,k=1 cannot

be partitioned this way. This shows that Conjecture 1.1 fails.

Conjecture 1.4⇒ Conjecture 1.2. Given {fi} as in Conjecture 1.2, the sequence
{ fi
‖fi‖} is a Bessel sequence in `N2 with Bessel constant B

C2 . So Conjecture 1.2

follows from Conjecture 1.4, since every frame is automatically bounded from
above.

Conjecture 1.2 ⇒ Conjecture 1.6. This is obvious.

Conjecture 1.6 ⇒ Conjecture 1.3. Let {fi}∞i=1 be a bounded Bessel sequence
for an infinite dimensional Hilbert space H with Bessel constant B. Without
loss of generality we may assume that ‖fi‖ = 1, for all 1 ≤ i < ∞. For each
n, choose an n-dimensional Hilbert space Hn containing the span of {fi}ni=1

and let {eni }ni=1 be an orthonormal basis for Hn. Define Tn : Hn → Hn by

Teni = fi. Then ‖Tn‖ ≤
√
B and so by assuming that Conjecture 1.6 has a

positive answer, we can find a partition {Inj }Mj=1, M = M(B), of {1, 2, · · · , n}
so that for every 1 ≤ j ≤ k, {fi}i∈Inj is a Riesz basic sequence with lower

Riesz basis bound A = A(B). By Proposition 2.1, we can partition N into
sets {Ii}Mi=1 so that if Ii = {j1 < j2 < · · · }, then for every natural number
k we have that {j1, j2, · · · , jk} ⊂ Inki . It follows that {fj`}k`=1 is a Riesz basic
sequence with the same lower Riesz basis bound A for all k ∈ N. Hence,
{fj}j∈Ii has lower Riesz basis bound A, for all 1 ≤ i ≤ M . Also, B is an
upper Riesz basis bound for all these sets. This shows that Conjecture 1.3 has
a positive answer. �

3. The Paving Conjecture

Kadison and Singer raised the problem, which is still open, whether every
pure state on D, the C∗-algebra of the diagonal operators on `2, admits a
unique extension to a (pure) state on L(`2), the C∗-algebra of all bounded
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linear operators on `2. The problem of Kadison and Singer reduces to (and is
equivalent to) the Paving Conjecture [KS] (see also [DS]).

Proposition 3.1. The Paving Conjecture implies Conjecture 1.4.

Proof. Let {fi}ni=1 be a unit norm Bessel sequence in `n2 with Bessel constant
B. Define the linear operator T on `n2 by setting Tei = fi for all i. Then

‖T‖ ≤
√
B. Consider the operator S = T ∗T − I. Then the (i, j)-entry of the

matrix of S is

〈Sei, ej〉 =

{
〈fi, fj〉, i 6= j,

0, i = j.

By the Paving Conjecture, for any ε > 0 there exists a number M = M(ε)
and a partition {σk}Mk=1 of the set {1, · · · , n} such that

‖PσkSPσk‖ ≤ ε‖S‖ for all x ∈ `n2 and all k.

Applying this with ε = 1
2(B+1)

, and noting that ‖S‖ ≤ B + 1, we obtain:

‖PσkSPσkx‖ ≤
1

2
‖x‖ for all k.

Now,

〈PσkSPσkx, x〉 = 〈Pσk(T ∗T − I)Pσkx, x〉
= 〈(T ∗T − I)Pσkx, Pσkx〉
= 〈T ∗TPσkx, Pσkx〉 − 〈Pσkx, Pσkx〉
= 〈TPσkx, TPσkx〉 − ‖Pσkx‖2

= ‖TPσkx‖2 − ‖Pσkx‖2.

Hence ∣∣‖TPσkx‖2 − ‖Pσkx‖2
∣∣

‖x‖
=
|〈PσkSPσkx, x〉|

‖x‖
≤ ‖PσkSPσkx‖ ≤

1

2
‖x‖.

In particular,∣∣‖TPσkx‖2 − ‖Pσkx‖2
∣∣ ≤ 1

2
‖Pσkx‖2 for all x ∈ `n2 .

Thus,
1

2
‖Pσkx‖2 ≤ ‖TPσkx‖2 ≤ 3

2
‖Pσkx‖2 for all x ∈ `n2 .

By the definition of T , this implies that {fi}i∈σk is a Riesz basic sequence with
lower Riesz basis bound 1/2 and upper Riesz basis bound 3/2. The proposition
is proved. �

The Paving Conjecture is known to be true for various classes of operators T
on `n2 ; see [BT2] for references. In particular, the Paving Conjecture is proved
for the operators whose matrices have small entries, O(1/ log1+γ n) for some
γ > 0.
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Theorem 3.2 (Bourgain-Tzafriri). Let ε > 0 and S be a linear operator on `n2
whose matrix has zero diagonal and all entries are bounded by 1/ log1+γ n for
some γ > 0. Then S satisfies the conclusion of the Paving Conjecture: there
exists a partition {σk}k≤M of the set {1, · · · , n}, where M = M(γ, ε), and such
that

‖PσkSPσk‖ ≤ ε‖S‖ for all k.

Actually, the partition {σk} constructed by Bourgain and Tzafriri is random,
i.e. σk is the image of the interval {1, · · · , n/M} under a random permutation
π of the interval {1, · · · , n}; for such a partition, the conclusion holds with
probability close to one.

Theorem 3.2 implies the positive answer to Conjecture 1.4 for sequences
which are in a certain sense “well separated”. It is clear that similar statements
hold for conjectures 1.2 and 1.6 as well.

Corollary 3.3. Let {fi}ni=1 be a Bessel sequence with Bessel constant B > 0
and with ‖fi‖ = 1 for all i. Assume that

|〈fi, fj〉| ≤
1

log1+γ n
for all i 6= j.

Then the sequence {fi}ni=1 can be written as a union of M = M(B, γ) Riesz
basic sequences each with lower Riesz basis bound 1/2 and upper Riesz basis
bound 3/2.

Proof. This follows from Theorem 3.2 with an argument analogous to that
of Proposition 3.1. �

4. Positive results

It is possible that all these conjectures have negative answers. In this case
it will be of interest to know the strongest results available. We will look at
some positive results now.

First we will show that bounded Bessel sequences can be decomposed into
a finite union of linearly independent sets. For this, we need a result of Chris-
tensen and Lindner [CL].

Proposition 4.1. Let M ∈ N, I a finite subset of N and let {fi}i∈I be a
sequence of nonzero elements in a Hilbert space. The following are equivalent:

(1) I can be partitioned into M disjoint sets I1, I2, · · · , IM so that each
family {fi}i∈Ij (j = 1, 2, · · · ,M) is linearly independent.

(2) For any nonempty subset J ⊂ I we have

|J |
dim span{fj}j∈J

≤M.

We now can show:
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Theorem 4.2. Every Bessel sequence {fi}i∈I with Bessel bound B and ‖fi‖ ≥
C > 0, for every i ∈ I, can be decomposed into dB/C2e linearly independent
sets.

Proof: We proceed by way of contradiction. Assume that {fi}i∈I is a se-
quence, with Bessel bound B and ‖fi‖ ≥ C > 0, which cannot be decomposed
into dB/C2e linearly independent sets. By Proposition 2.1, with the same
reasoning as used for the implication “Conjecture 1.6 =⇒ Conjecture 1.3”, we
can assume that I is finite. By Proposition 4.1 there is a finite subset J ⊂ I
so that

|J |
dim span{fj}j∈J

>

⌈
B

C2

⌉
.

Now, {fj/‖fj‖}j∈J is a frame for its span with upper frame bound BJ ≤ d BC2 e.
Denote the corresponding frame operator by S, i.e.

S : span {fj}j∈J → span {fj}j∈J , f 7→
∑
j∈J

〈f, fj〉fj.

It is known that S has exactly dim span{fj}j∈J eigenvalues (counted with
multiplicity), that all these eigenvalues are positive and less than or equal to
BJ , and that their sum equals |J |, see [Ch, Th. 1.2.1]. Thus it follows that
the largest eigenvalue λmax must satisfy:

λmax ≥
|J |

dim span{fj}j∈J
>

⌈
B

C2

⌉
.

But, λmax ≤ BJ and so BJ > d BC2 e, which is a contradiction. �
Next, we will show that, up to a logarithmic factor, the generalized Bourgain-

Tzafriri invertibility theorem (and hence the finite Feichtinger conjecture) is
true. Namley, we can iterate Theorem 1.5 to obtain:

Proposition 4.3. There is a universal constant c > 0 and a function d =
d(‖T‖) so that whenever T : `n2 → `n2 (n ≥ 2) is a linear operator for which

‖Tei‖ = 1, for 1 ≤ i ≤ n, then there is a partition {Ij}bd lognc
j=1 of {1, 2, · · · , n}

so that for each 1 ≤ j ≤ bd log nc and all choices of scalars {ai}i∈Ij we have:

(4.1) ‖
∑
i∈Ij

aiTei‖2 ≥ c
∑
i∈Ij

|ai|2.

Proof: Let 0 < c < 1 be as in Theorem 1.5, 0 < b = c
‖T‖2 < 1 and let

d > 0 be such that bd log nc > − logn
log(1−b) for all n ≥ 2. By Theorem 1.5 we can

find a set I1 ⊂ {1, 2, · · · , n} with |I1| ≥ bn and satisfying inequality (4.1). Let
J1 = {1, 2, · · · , n} \ I1. Choose a (possibly into) isometry U1 : Rng T|`J1

2
→

span {ei}i∈J1 . Then U1T : `J1
2 → `J1

2 satisfies Theorem 1.5, so there is a set
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I2 ⊂ J1 with |I2| ≥ b(n − |I1|) and satisfying inequality (4.1). Continuing,

there are disjoint sets {Ij}bd lognc
j=1 with

|Ij| ≥ b(n− |I1| − |I2| − · · · − |Ij−1|)

and each Ij satisfies inequality (4.1). Denoting ak :=
∑k

j=1 |Ij|, we have ak ≥
bn+ (1− b)ak−1 for any k ≥ 2, and with a1 ≥ bn this shows

bd lognc∑
j=1

|Ij| = abd lognc ≥ bn

bd lognc−1∑
j=0

(1− b)j = n(1− (1− b)bd lognc) > n− 1

by the definition of d. Hence
∑bd lognc

j=1 |Ij| = n, completing the proof. �
We can obtain a slightly more general result, namely

Theorem 4.4. There is a universal constant c > 0 and a D = D(B) so
that whenever {fi}ki=1 is a frame for an n-dimensional Hilbert space H with
‖fi‖ = 1 for all 1 ≤ i ≤ k and upper frame bound B, then there is a partition

{Ij}bD lognc
j=1 of {1, 2, · · · , k} so that for each 1 ≤ j ≤ bD log nc, {fi}i∈Ij is a

Riesz basic sequence with lower Riesz basis bound c.

Proof: By Theorem 4.2, {fi}ki=1 can be decomposed into dBe linearly inde-
pendent sets, each of which has dimension at most n. In particular, k ≤ dBen.
Then if d denotes the constant appearing in Proposition 4.3, it suffices to
choose D such that

bd log(dBen)c = bd logdBe+ d log nc ≤ bD log nc for all n ≥ 2.

�
Using Theorem 1.5, Casazza [Ca1] showed:

Theorem 4.5. There is a function g : R3 → R
+ with the following property:

Let {fi}ki=1 be a frame for an n-dimensional Hilbert space Hn with frame bounds
A,B, ‖fi‖ = 1, for all 1 ≤ i ≤ k, and let 0 < ε < 1. Then there is a subset
σ ⊂ {1, 2, · · · , n} with |σ| ≥ (1 − ε)n so that {fi}i∈σ is a Riesz basis for its
span with lower Riesz basis constant g(ε, A,B).

Vershynin [V1], [V2] removed the assumption in Theorem 4.5 that the frame
elements be bounded above and below and got the conclusion that there is a
“large” subset of the frame which is an unconditional basis for its span.

5. Weyl-Heisenberg Frames

In this section we show that the Feichtinger conjecture is true for certain
Weyl-Heisenberg frames. If g ∈ L2(R), a, b > 0 we define for all m,n ∈ Z:

Embg(t) = e2πimbtg(t)

and
Tnag(t) = g(t− na).
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If {EmbTnag}n,m∈Z is a frame for L2(R), we call it a Weyl-Heisenberg or Ga-
bor frame. Our purpose is to show that whenever ab is rational, a Weyl-
Heisenberg frame can be written as a finite union of Riesz basic sequences. In
[G], Gröchenig shows that frames with a certain “localization property” can
always be written as finite unions of Riesz basic sequences. This includes the
case of Weyl-Heisenberg frames when g lies in a certain modulation space. The
latter assumption is not required in our approach at a cost of having to work
with rational lattices.

Theorem 5.1. Let g ∈ L2(R) and 0 < ab < 1 with ab rational. If {EmbTnag}m,n∈Z
is a Weyl-Heisenberg frame for L2(R) then it can be written as a finite union
of Riesz basic sequences.

Proof: After a change of variables we may assume that b = 1 and a = p
q

with p, q ∈ N. We first reduce the problem to the case of integer oversampling.
Notice that

{EmT 1
q
ng}m,n∈Z = ∪p−1

k=0{EmT 1
q

(np+k)g}m,n∈Z

= ∪p−1
k=0{EmT p

q
n+ k

q
g}m,n∈Z.

Since each of the families {EmT p
q
n+ k

q
g}m,n∈Z is a Bessel sequence (and a frame

for k = 0) we conclude that {EmT 1
q
ng}m,n∈Z is a frame. In the rest of the proof

we show that {EmT 1
q
ng}m,n∈Z is a finite union of Riesz basic sequences. Since

{EmT p
q
ng}m,n∈Z ⊂ {EmT 1

q
ng}m,n∈Z the conclusion of the theorem follows from

here.
We use a result by Ron and Shen [RS] (see also [G, Th. 7.4.3]), stating that

{EqmTng}m,n∈Z is a Riesz basic sequence. Now,

{EmTn
q
g}m,n∈Z = ∪q−1

k=0{EmTnq+k
q
g}m,n∈Z

= ∪q−1
k=0{EmTn+ k

q
g}m,n∈Z

= ∪q−1
k=0 ∪

q−1
j=0 {Eqm+jTn+ k

q
g}m,n∈Z.

By the commutator relations between the translation and modulation opera-
tors, {Eqm+jTn+ k

q
g}m,n∈Z is a Riesz basic sequence (with the same Riesz basis

bounds as {EqmTng}m,n∈Z) for all j, k, from which the result follows. �

Remark 5.2. The proof of Theorem 5.1 shows that a frame {EmT p
q
ng}m,n∈Z

is a union of q2 Riesz basic sequences.
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