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Summary We suggest moment estimators for the parameters of a continuous time
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1. INTRODUCTION

The GARCH(1,1) process is a model widely used by practitioners in the financial industry.
It is defined as

Yi = σi ǫi with σ2
i = β + λY 2

i−1 + δσ2
i−1 , i ∈ N, (1.1)

where β > 0, λ, δ ≥ 0 and (ǫi)i∈N is an i.i.d. innovation sequence. This model captures
some of the most prominent features in financial data, in particular in the volatility
process. Empirical studies show that volatility changes randomly in time, has heavy or
semi-heavy tails and clusters on high levels. These stylized features are modelled by the
GARCH family as has been shown for the GARCH(1,1) process in detail in Mikosch and
Stărică (2000).

The modern treatment of stochastic volatility models is mostly in continuous time
aiming at the analysis of high-frequency data. Approaches to create a continuous time
GARCH model go back to Nelson (1990) and we refer to Drost and Werker (1996)
for an overview. Such processes are diffusion limits to discrete time GARCH models,
where, unfortunately, many of the above features of the GARCH process are wiped out
in the limit; see Fasen et al. (2005). Since empirical work indicates upwards jumps in the
volatility, a model driven by a Lévy process seems a natural approach. In Klüppelberg et
al. (2004, 2006) such a model was suggested by iterating the volatility equation in (1.1)
and replacing the noise variables ǫi by the jumps ∆Lt = Lt − Lt− of a Lévy process
L = (Lt)t≥0. A reparameterization, setting η = − log δ and ϕ = λ/δ, yields the following
continuous time GARCH(1,1) model, where the parameter space is given by β, η > 0 and
ϕ > 0 (the degenerate case ϕ = 0 will not be considered in this paper).



2 S. Haug, C. Klüppelberg, A. Lindner and M. Zapp

The COGARCH(1,1) process G = (Gt)t≥0 is defined as the solution to the SDEs

dGt = σt dLt , (1.2)

dσ2
t+ = (β − ησ2

t ) dt+ ϕσ2
t d[L,L]

(d)
t , (1.3)

where [L,L]
(d)
t =

∑
0<s≤t(∆Ls)

2, t ≥ 0, is the discrete part of the quadratic variation

process ([L,L]t)t≥0 of the Lévy process L; we define G0 := 0, and σ2
0 is taken to be

independent of L. Throughout we assume that L is càdlàg, and we denote by νL the
Lévy measure of L, which is assumed to be non-zero, and by τ2

L ≥ 0 the variance of
the Brownian motion component of L (see Sato (1999) for the basic definitions and
notations concerning Lévy processes). Whereas the process G is taken as being càdlàg,
for the volatility process we assume càglàd sample paths.

The quantity σ2
t is called the instantaneous volatility or spot volatility, which is assumed

to be stationary and latent. In contrast to classical stochastic volatility models, it is not
independent of the process, which drives the price process. On the contrary, L drives
both, the volatility and the price process. Note that G jumps at the same times as L
does with jump size ∆Gt = σt∆Lt, and that ∆Lt is independent of σt = σt−.

If our data consist of returns over time intervals of fixed length r > 0, we denote

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]

σs dLs , t ≥ r , (1.4)

and (G
(r)
ri )i∈N describes an equidistant sequence of such non-overlapping returns. Calcu-

lating the corresponding quantity for the volatility yields

σ
2(r)
ri := σ2

ri − σ2
r(i−1) =

∫

(r(i−1),ri]

(
(β − ησ2

s) ds+ ϕσ2
s d[L,L](d)

s

)

= βr − η

∫

(r(i−1),ri]

σ2
s ds+ ϕ

∫

(r(i−1),ri]

σ2
s d[L,L](d)

s . (1.5)

It is also worth noting that the stochastic process

Rt =
∑

0<s≤t

σ2
s(∆Ls)

2 =

∫

(0,t]

σ2
s d[L,L](d)

s , t ≥ 0 ,

is the discrete part of the quadratic variation [G,G]t =
∫ t

0
σ2

s d[L,L]s, t ≥ 0, of G, so that∫
(r(i−1),ri] σ

2
s d[L,L]

(d)
s in (1.5) corresponds to the jump part of the quadratic variation

of G accumulated during (r(i− 1), ri].
The goal of this paper is to estimate the model parameters β, η, ϕ. Moreover, we shall

present a simple estimate of the volatility. This estimation approach was first presented
in a preliminary form in the diploma thesis of Zapp (2004). We would like to mention
that Müller (2005) developed an MCMC estimation procedure for the COGARCH(1,1)
model, which works also for irregularly spaced observations. The approach is, however,
restricted to finite variational driving processes L.

The paper is organised as follows. In the next section we present some preliminary
results regarding the moment structure of the COGARCH(1, 1) process. Then, in Sec-
tion 3, we introduce a moment estimator for the parameter vector and derive its asymp-
totic properties. The estimator is applied in Section 4 to a simulated COGARCH(1, 1)
process driven by an (infinite-activity) variance gamma process, and a method for esti-
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mating the volatility process is outlined. Finally, Section 5 is concerned with an empirical
data analysis, and concludes with some extension of the model to include leverage effects.
Longer proofs are presented in the appendices.

2. PRELIMINARY RESULTS

An important role is played by the auxiliary process

Xt = ηt−
∑

0<s≤t

log(1 + ϕ (∆Ls)
2) , t ≥ 0 . (2.1)

The stationary volatility process has, for instance, the representation

σ2
t =

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt− , t ≥ 0 , (2.2)

with β > 0 and σ2
0

d
= β

∫∞

0 e−Xtdt, independent of L. The auxiliary process (Xt)t≥0

itself is a spectrally negative Lévy process of bounded variation with drift η, no Gaussian
component (i.e. τ2

X = 0), and Lévy measure νX given by

νX [0,∞) = 0, νX (−∞,−x] = νL

(
{y ∈ R : |y| ≥

√
(ex − 1)/ϕ}

)
, x > 0.

We shall also need the Laplace transform Ee−sXt = etΨ(s) with Laplace exponent

Ψ(s) = −ηs+

∫

R

((1 + ϕx2)s − 1) νL(dx) , s ≥ 0 . (2.3)

The Laplace exponent was calculated in Lemma 4.1 in Klüppelberg et al. (2004). For
fixed s ≥ 0 the Laplace transform Ee−sXt is finite for one and hence all t > 0, if and
only if the integral appearing in (2.3) is finite. This is equivalent to E|L1|2s < ∞. In
particular, there exists a stationary version of the volatility process, if Ψ(s) ≤ 0 for some
s > 0 (cf. Klüppelberg et al. (2006), Section 3).

One of the advantages of the COGARCH(1,1) is that its second order structure is well-

known. In the following result we present the moments of G
(r)
t , which are independent of

t by stationarity: expressions (2.4) and (2.6) have been already proved in Proposition 5.1
of Klüppelberg et al. (2004), however, under additional assumptions such as bounded
variation of L for (2.6). In Appendix A we shall give a different proof under less restrictive
assumptions and also calculate the fourth moment of G.

Proposition 2.1. Suppose that the Lévy process (Lt)t≥0 has finite variance and zero
mean, and that Ψ(1) < 0. Let (σ2

t )t≥0 be the stationary volatility process, so that (Gt)t≥0

has stationary increments. Then E(G2
t ) < ∞ for all t ≥ 0, and for every t, h ≥ r > 0 it

holds

E(G
(r)
t ) = 0 , E(G

(r)
t )2 =

βr

|Ψ(1)|E(L2
1) , Cov(G

(r)
t , G

(r)
t+h) = 0. (2.4)
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If further E(L4
1) <∞ and Ψ(2) < 0, then E(G4

t ) <∞ for all t ≥ 0 and, if additionally the
Lévy measure νL of L is such that

∫
R
x3νL(dx) = 0, then it holds for every t, h ≥ r > 0

E(G
(r)
t )4 = 6E(L2

1)
β2

Ψ(1)2
(
2η

ϕ
+ 2τ2

L − E(L2
1))

(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
r − 1 − e−r|Ψ(1)|

|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
r + 3

β2

Ψ(1)2
(E(L2

1))
2r2 (2.5)

and

Cov((G
(r)
t )2, (G

(r)
t+h)2) = E(L2

1)
β2

|Ψ(1)|3
(

2η

ϕ
+ 2τ2

L − E(L2
1)

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)

×
(
1 − e−r|Ψ(1)|

)(
er|Ψ(1)| − 1

)
e−h|Ψ(1)| > 0 . (2.6)

Lemma 2.2. Under the conditions of Proposition 2.1 the process ((G
(r)
ri )2)i∈N has for

each fixed r > 0 the autocorrelation structure of an ARMA(1,1) process.

Proof. Denote by γ(h) = Cov((G
(r)
ri )2, (G

(r)
r(i+h))

2), h ∈ N0, the autocovariance function

and by ρ(h) = Corr((G
(r)
ri )2, (G

(r)
r(i+h))

2), h ∈ N0, the autocorrelation function of the

discrete time process ((G
(r)
ri )2)i∈N as defined in (1.4). Then

ρ(h)

ρ(1)
=
γ(h)

γ(1)
= e−(h−1)r|Ψ(1)| , h ≥ 1 .

Moreover, for h = 1 we get

ρ(1) =
γ(1)

Var(G2
r)
.

Recalling the autocorrelation function of an ARMA(1,1) process (see e.g. Brockwell and
Davis (1987), Exercise 3.16), we identify e−r|Ψ(1)| as the autoregressive root φ. The
moving average root θ can be determined by matching ρ(1) = (1+φθ)(φ+θ)/(1+θ2+2φθ).
2

Remark 2.3. From Corollary 4.1 of Klüppelberg et al. (2004) we know for k ∈ N the
moment E(σ2k) of the stationary volatility process, which exists if and only if E(L2k

1 ) <∞
and Ψ(k) < 0. In particular, if E(L4

1) <∞ and Ψ(2) < 0, then for t, h ≥ 0

E(σ2
t ) =

β

|Ψ(1)| and E(σ4
t ) =

2β2

|Ψ(1)Ψ(2)| , (2.7)

Cov(σ2
t , σ

2
t+h) = β2

(
2

|Ψ(1)Ψ(2)| −
1

Ψ(1)2

)
e−h|Ψ(1)| = Var(σ2

t ) e−h|Ψ(1)| . (2.8)

Econometric literature suggests that volatility is quite persistent, which would imply that
e−|Ψ(1)| is close to 1; i.e. Ψ(1) < 0 near 0. This should be kept in mind, when estimating
the model parameters.
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3. METHOD OF MOMENT ESTIMATION

3.1. Identifiability of the model parameters

We aim at estimation of the model parameters (β, η, ϕ) from a sample of equally spaced
returns by matching empirical autocorrelation function and moments to their theoretical
counterparts given in Proposition 2.1. In our next result we show that the parameters
are identifiable by this estimation procedure for driving Lévy processes L as in Propo-
sition 2.1. We assume throughout that E(L1) = 0 and Var(L1) = 1; furthermore, we
assume that the variance τ2

L of the Brownian motion component in L is known. This
last assumption is crucial for our analysis and we will comment on it in Section 4, when
setting up our simulation study. For the sake of simplicity we set r = 1.

Theorem 3.1. Suppose (Lt)t≥0 is a Lévy process such that E(L1) = 0, Var(L1) = 1, the
variance τ2

L of the Brownian motion component of L is known with 0 ≤ τ2
L < Var(L1) = 1,

E(L4
1) < ∞ and

∫
R
x3 νL(dx) = 0. Assume also that Ψ(2) < 0, and denote by (G

(1)
i )i∈N

the stationary increment process of the COGARCH(1,1) process with parameters β, η, ϕ >
0. Let µ, γ(0), k, p > 0 be constants such that

E((G
(1)
i )2) = µ,

Var((G
(1)
i )2) = γ(0),

ρ(h) = Corr((G
(1)
i )2, (G

(1)
i+h)2) = ke−hp , h ∈ N .

Define

M1 := γ(0) − 2µ2 − 6
1 − p− e−p

(1 − ep)(1 − e−p)
k γ(0) , (3.1)

M2 :=
2kγ(0)p

M1(ep − 1)(1 − e−p)
. (3.2)

Then M1,M2 > 0, and the parameters β, η, ϕ are uniquely determined by µ, γ(0), k and
p and are given by the formulas

β = p µ , (3.3)

ϕ = p
√

1 +M2 − p, (3.4)

η = p
√

1 +M2 (1 − τ2
L) + p τ2

L = p+ ϕ(1 − τ2
L) . (3.5)

Proof. Since r = E(L2
1) = 1, we obtain from Proposition 2.1

µ =
β

|Ψ(1)| , (3.6)

γ(0) = 6
β2

|Ψ(1)|3
(

2η

ϕ
+ 2τ2

L − 1

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
|Ψ(1)| − 1 + e−|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
+

2β2

Ψ(1)2
(3.7)

=: β2γ̃(0),

p = |Ψ(1)|, (3.8)

(3.9)
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k =
γ̃−1(0)

|Ψ(1)|3
(

2η

ϕ
+ 2τ2

L − 1

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
1 − e−|Ψ(1)|

)(
e|Ψ(1)| − 1

)
(3.10)

Then (3.6) and (3.8) immediately give (3.3). Inserting (3.10) in (3.7) and using (3.6) and
(3.8) we obtain

γ(0) = 6
p− 1 + e−p

(1 − e−p)(ep − 1)
kγ(0) +

2µ2p2

ϕ2

(
2

|Ψ(2)| −
1

p

)
+ 2µ2.

By definition of M1 and (A.5) we see that

M1 =
2µ2p2

ϕ2

(
2

|Ψ(2)| −
1

p

)
=

2µ2p2

ϕ2

ϕ2

|Ψ(2)|p

∫

R4

x4 νL(dx) > 0,

so that

2

|Ψ(2)| −
1

p
=
M1ϕ

2

2µ2p2
.

Inserting this in (3.10) and using (3.3) gives

kγ(0) =
2ηϕ−1 + 2τ2

L − 1

p3

M1ϕ
2

2
(1 − e−p)(ep − 1),

so that

0 < pM2 =
2kγ(0)p2

M1(ep − 1)(1 − e−p)
=

2ηϕ−1 + 2τ2
L − 1

p
ϕ2 =

(
2 +

ϕ

p

)
ϕ,

where we used

p = |Ψ(1)| = η − ϕ(E(L2
1) − τ2

L) (3.11)

from (2.3). Solving this quadratic equation for ϕ gives (3.4), which together with (3.11)
implies (3.5). 2

We conclude from (3.3)–(3.5) that our model parameter vector (β, η, ϕ) is a continuous
function of the first two moments µ, γ(0) and the parameters of the autocorrelation
function p and k. Hence, by continuity, consistency of the moments will immediately
imply consistency of the corresponding plug-in estimates for (β, η, ϕ).

3.2. The estimation algorithm

The parameters are estimated under the following assumptions:

(H1) We have equally spaced observations Gi, i = 0, . . . , n, giving return data

G
(1)
i = Gi −Gi−1, i = 1, . . . , n.

(H2) E(L1) = 0 and Var(L1) = 1, i.e. σ2 can be interpreted as the volatility.

(H3) The variance τ2
L of the Brownian motion component of L is known and in [0, 1).

(H4)
∫

R
x3 νL(dx) = 0, E(L4

1) <∞ and Ψ(2) < 0.

Define the parameter vectors θ := (k, p) and ϑ := (β, ϕ, η), where k and p are as in
Theorem 3.1.
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Remark 3.2. In Theorem 3.1, under the chosen conditions, ρ(h) > 0 for all h ∈ N.
Furthermore, it was shown that M1 and M2 are strictly positive. However, this does not
imply that the corresponding empirical estimates are strictly positive. As we shall prove
in Theorem 3.9 the above estimators are strongly consistent, this implies for almost all
sufficiently large sample paths that the empirical estimates will be strictly positive and
all parameter estimates are well-defined.

Algorithm 3.3. (1) Calculate the moment estimator

µ̂n :=
1

n

n∑

i=1

(G
(1)
i )2

of µ and for fixed d ≥ 2 the empirical autocovariances γ̂n := (γ̂n(0), γ̂n(1), . . . , γ̂n(d))T

as

γ̂n(h) :=
1

n

n−h∑

i=1

(
(G

(1)
i+h)2 − µ̂n

)(
(G

(1)
i )2 − µ̂n

)
, h = 0, . . . , d .

(2) Compute the empirical autocorrelations ρ̂n := (γ̂n(1)/γ̂n(0), . . . , γ̂n(d)/γ̂n(0))T .

(3) For fixed d ≥ 2 define the mapping H : R
d+2
+ → R by

H(ρ̂n,θ) :=
d∑

h=1

(log(ρ̂n(h)) − log k + ph)2 .

Compute the least squares estimator

θ̂n := arg min
θ∈R2

+

H(ρ̂n,θ) . (3.12)

(4) Define the mapping J : R4
+ → [0,∞)3 by

J(µ, γ(0),θ) :=

{
(pµ, p

√
1 +M2 − p, p

√
1 +M2 (1 − τ2

L) + p τ2
L) if p,M2 > 0 ,

(0, 0, 0) otherwise,

(3.13)

where M2 is defined as in (3.2). Compute the estimator

ϑ̂n = J(µ̂n, γ̂n(0), θ̂n) .

In part (3), alternatively, we could also have based the least squares estimation on the
autocovariance function. It turned out, however, that the estimators chosen as above are
considerably more accurate. The reason for this is that k is independent of β (see (3.10))

in contrast to kγ := Cov((G
(1)
i )2, (G

(1)
i+1)

2) ep.
In addition to Remark 3.2 we emphasize that for a stationary model the parameter p

has to be strictly positive. But if we compute the unrestricted minimum of H(ρ̂n,θ) we
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get

p̂∗n := −
∑d

h=1

(
log(ρ̂n(h)) − log(ρ̂n)

) (
h− d+1

2

)

∑d
h=1

(
h− d+1

2

)2 (3.14)

k̂n := exp

{
log(ρ̂n) +

d+ 1

2
p̂∗n

}
, (3.15)

with log(ρ̂n) := 1
d

∑d
h=1 log(ρ̂n(h)), and p̂∗n may be negative. As a remedy we define the

estimator of p as

p̂n := max{p̂∗n, 0} (3.16)

and take p̂n = 0 as an indication that the data is non-stationary.
Defining the mapping S : R

d+1
+ → R2

+ by the equations (3.14)–(3.16) and noting that

ρ̂n(h) = γ̂n(h)/γ̂n(0) presents the least squares estimator θ̂n := (k̂, p̂) as a function of
γ̂n:

θ̂n = S(γ̂n) . (3.17)

3.3. Asymptotic properties of the moment estimators

Strong mixing properties guarantee strong consistency and asymptotic normality of the
empirical moments. In this section we summarize the necessary results, which we prove
in Appendix B. The definition of the strong mixing coefficient can also be found in the
Appendix. The following remark is the starting point of our analysis.

Remark 3.4. Let σ2 := (σ2
t )t≥0 be the strictly stationary volatility process given by

(2.2). Then σ2
+ falls into the class of generalised Ornstein-Uhlenbeck processes; see Lind-

ner and Maller (2005), Section 5. Consequently, the result of Fasen (2006) applies giving
that σ2 is exponentially β-mixing. This implies in particular that σ2 is strongly mixing
(also called α-mixing) with exponentially decreasing rate.

In the following theorem we show that also the COGARCH(1,1) process satisfies a
strong mixing condition.

Theorem 3.5. Suppose that (Lt)t≥0 is such that E(L4
1) <∞ and the parameters of the

COGARCH(1,1) process satisfy Ψ(2) < 0. Let (σ2
t )t≥0 be the strictly stationary volatility

process given as solution to (1.3). Then for every r > 0 the process (G
(r)
ir )i∈N is α-mixing

with exponentially decreasing rate.

Since we assumed in the above theorem that σ2 is strictly stationary, the return process
is also strictly stationary and together with the strong mixing property this implies that

(G
(r)
ir )i∈N is ergodic. This enables us to apply Birkhoff’s ergodic theorem to give strong

consistency of the empirical moments and autocovariance function of ((G
(1)
i )2)i∈N:

Corollary 3.6. Under the same conditions as in Theorem 3.5 we obtain for n→ ∞

µ̂n
a.s.−→ E((G

(1)
t )2) , γ̂n

a.s.−→ γ . (3.18)
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Corollary 3.6 will imply strong consistency of the estimators (ϑ̂n)n∈N, as stated in
(3.22) below. To obtain asymptotic normality of the empirical estimates we want to
apply a central limit theorem for strongly mixing processes.

Proposition 3.7. Let the same conditions hold as in Theorem 3.5. Assume further

(H5) There exists a positive constant δ > 0 such that E
(
G8+δ

1

)
<∞.

Then as n→ ∞,

√
n

([
µ̂n

γ̂n

]
−
[
µ
γ

])
d−→ Nd+2 (0,Σ) , (3.19)

where the covariance Σ has components

Σk+2,l+2 = Cov((G
(1)
1 )2(G

(1)
1+k)2, (G

(1)
1 )2(G

(1)
1+l)

2)

+2

∞∑

j=1

Cov((G
(1)
1 )2(G

(1)
1+k)2, (G

(1)
1+j)

2(G
(1)
1+l+j)

2)

for k, l = 0, . . . , d,

Σ1,k+2 = Cov((G
(1)
1 )2, (G

(1)
1 )2(G

(1)
1+k)2) + 2

∞∑

j=1

Cov((G
(1)
1 )2, (G

(1)
1+j)

2(G
(1)
1+k+j)

2)

for k = 0, . . . , d and Σ1,1 = γ(0) + 2
∑∞

h=1 kγe
−ph.

Proof. We will first concentrate on the asymptotic behaviour of (µ̂n,γ
∗
n), where γ∗

n =

(γ∗n(0), . . . , γ∗n(d)) and γ∗n(h) = 1
n

∑n
i=1[(G

(1)
i+h)2 − µ][(G

(1)
i )2 − µ], h = 0, . . . , d. Denote

Yi := ((G
(1)
i )2, [(G

(1)
i )2 −µ]2, [(G

(1)
i )2 −µ][(G

(1)
i+1)

2 −µ], . . . , [(G
(1)
i )2 −µ][(G

(1)
i+d)

2 −µ])T .

For (3.19) to hold for (µ̂n,γ
∗
n) in place of (µ̂n, γ̂n), by the Cramér-Wold device, we have

to show that as n→ ∞,

√
n

(
1

n

n∑

i=1

λTYi − λT

[
µ
γ

])
d−→ N(0,λT Σλ) , (3.20)

for all vectors λ ∈ Rd+2 such that λT Σλ > 0. But as strong mixing is preserved under
linear transformations as well as the rate, the sequence (λT Yi)i∈N is strongly mixing
with exponentially decaying rate. Hence we get

∑∞
k=1{αλT

Y
(k)}c < ∞ for every c > 0,

and since E|Yi|2+δ < ∞ for some δ > 0 by (H5), the central limit theorem for strongly
mixing processes is applicable (see Theorem 18.5.3 in Ibragimov and Linnik (1971)).
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Therefore, as n→ ∞,

√
n

(
1

n

n∑

i=1

λT Yi − λT

[
µ
γ

])
d−→ N(0, σ2) ,

with

σ2 := Var(λTY1) + 2
∞∑

i=1

Cov(λTY1,λ
TY1+i) . (3.21)

Evaluation of (3.21) and rearranging with respect to λ shows σ2 = λT Σλ. Observing

that
√
n
(
n−1

∑n
i=1 λTYi − λT

(
bµn

bγn

))
converges in probability to zero as n→ ∞ for every

λ ∈ Rd+2 such that λT Σλ > 0 (see e.g. the proof of Proposition 7.3.4 in Brockwell and
Davis (1987)), it follows that (µ̂n, γ̂n) has the same asymptotic behaviour as (µ̂n,γ

∗
n),

giving (3.19). 2

Applying the delta method (see Theorem 3.1 in van der Vaart (1998)), we obtain:

Corollary 3.8. Let the same conditions hold as in Proposition 3.7. Then as n→ ∞,

√
n(ρ̂n − ρ)

d−→ Nd(0,Σρ) .

The following theorem gives asymptotic normality of our parameter estimates. The
true parameter vector and the corresponding moments are form now on indicated by ϑ0,
µ0 and γ0 respectively. We shall also denote by Pϑ0

the probability with respect to the
parameter vector ϑ0.

Theorem 3.9. Let the same conditions hold as in Theorem 3.5. Assume that (H1)–(H4)
are satisfied. For S(γ) as in (3.17), define the mapping Q : R

d+2 → R
3 by (µ,γT ) 7→

Q((µ,γT )) := J(µ, γ(0), S(γ)). Then as n→ ∞,

ϑ̂n
a.s.−→ ϑ0 . (3.22)

Assume additionally (H5). Then, under Pϑ0 , as n→ ∞,

√
n(ϑ̂n − ϑ0)

d−→ ∂(µ,γ)Q((µ0,γ0))Nd+2 (0,Σ) , (3.23)

where Σ is as in Proposition 3.7.

Proof. Strong consistency of ϑ̂n follows from (3.18) and the fact that the mapping Q
is continuous in (µ,γ). Since (µ̂n, γ̂n) is asymptotically normal and Q is differentiable

at (µ0,γ0), we can apply the delta method and the asymptotic normality of ϑ̂n follows
from (3.19). 2

4. SIMULATION STUDY

In this section we investigate the small sample behaviour of the moment estimators of
Algorithm 3.3. As the driving Lévy process L we choose a variance gamma (VG) process
which has infinite activity and justifies the choice of τL = 0, i.e. we assume that L has
no Gaussian component. This seems reasonable since the VG process itself is used to
model stock log-prices, cf. Madan and Seneta (1990). Consequently, (H3) is satisfied.
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Assumption (H2) requires that the mean of L is zero and the variance is equal to one, so
that the characteristic function at time t ≥ 0 is given by

E(eiuLt) =

(
1 +

u2

2C

)−tC

for C > 0. The Lévy measure of L has the Lebesgue density

νL(dx) =
C

|x| exp
(
− (2C)

1/2 |x|
)
dx , x 6= 0 . (4.1)

Inserting (4.1) into (2.3) we obtain

Ψ(1) = −η + ϕ and Ψ(2) = −2η + 2ϕ+ 3ϕ2C−1 . (4.2)
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−50
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50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−50
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100

L
t

σ
2 t

G
t

G
(1

)
t

Figure 1. Simulated VG driven COGARCH(1,1) process (Gt)0≤t≤5 000 with parameters

β = 0.04, η = 0.053 and ϕ = 0.038 (first), the differenced COGARCH(1,1) process (G
(1)
t )

of order 1 (second), the volatility process (σ2
t ) (third), the driving VG process (Lt) with

parameter C = 1 (last).

The first condition of (H4) is satisfied by symmetry. The only delicate point for choosing
the parameters β, η and ϕ is the last condition of (H4). As indicated in Remark 1.5 the
autocovariance function of (G(1))2 should not decrease too fast as is observed in empirical
observations. From Proposition 2.1 we know that this is implied by Ψ(1) < 0 close to zero.
Setting β = 0.04, η = 0.053 and ϕ = 0.038 gives Ψ(1) = −0.015 and Ψ(2) = −0.0257
which are satisfactory values. Condition (H5) requires for G a finite moment of higher
order than the eighth, which is the case if E(L8+2δ

1 ) <∞ and the (4 + δ)-moment of the
volatility is finite i.e. ψ(4 + δ) < 0. The VG process has finite moments of all orders for
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every C > 0, but for given η and ϕ the finiteness of E(σ8+2δ
1 ) depends on C, since

Ψ(4) = −4η + 4ϕ+ 18ϕ2C−1 + 120ϕ3C−2 + 630ϕ4C−3

has to be strictly negative (this then implies Ψ(4+δ) < 0 for some δ > 0 by continuity of
Ψ, cf. Sato (1999), Lemma 26.4). Therefore we chooseC = 1, resulting in Ψ(4) = −0.0261.

We will perform the estimation procedure for two different sample sizes, namely 5 000
and 20 000. The estimates p̂n (3.14) and k̂n (3.15) are sensitive to the choice d of lags
used and to outliers in the empirical autocorrelation function. Based on experience for
linear models (recall Lemma 2.2), it seems reasonable to choose d ≈ √

n. Numerical
experiments have indeed shown that d equal to 50 is sufficient for both our sample sizes.
Moreover, we performed a robust linear regression (see e.g. Chapter 7 in Huber (2004))
to estimate the parameters, i.e. they are estimated by an iteratively reweighted least
squares algorithm instead of ordinary least squares. The resulting estimates are not only
less sensitive to outliers in the data, but also to the number of lags d taken into account.

4.1. Estimation results

We first simulate 1 000 samples of n = 5 000 equidistant observations of G(1). Table 1
summarizes the estimation results of our simulation study concerning the parameters
β, η and ϕ.

The empirical mean of all the estimated parameter values β̂n, η̂n and ϕ̂n is shown in
the first line, with the empirical standard deviations in brackets. We also estimated mean
square error (MSE) and mean absolute error (MAE), again with the standard deviation
in brackets. The corresponding results for a sample size of n = 20 000 observations are
reported in the last three lines of Table 1.

n=5 000 β̂ η̂ ϕ̂
Mean 0.04172 (0.00073) 0.04897 (0.00068) 0.03329 (0.00046)
MSE 0.00053 (0.00003) 0.00048 (0.00002) 0.00023 (0.00001)
MAE 0.01772 (0.00046) 0.01724 (0.00043) 0.01208 (0.00029)

n=20 000 β̂ η̂ ϕ̂
Mean 0.04309 (0.00043) 0.05311 (0.00038) 0.03689 (0.00026)
MSE 0.00019 (9 · 10−6) 0.00015 (8 · 10−6) 0.00007 (4 · 10−6)
MAE 0.01089 (0.00028) 0.00954 (0.00024) 0.00651 (0.00017)

Table 1. Estimated mean, MSE and MAE for β̂, η̂ and ϕ̂ and corresponding estimated
standard deviations in brackets. The true values are β = 0.04, η = 0.053 and ϕ = 0.038.

The three estimators η̂n, ϕ̂n and β̂n show a similar power. This is not surprising since
they are all mappings of (µ̂n, γ̂n). Actually β̂n seems to have the largest small sample

variance. Whereas for n = 5 000 the estimated bias of β̂n is the smallest, for n = 20 000
estimated bias and variance of β̂n are the largest among the three estimators. When one
compares the estimates for the different sample sizes it can be seen that the MSE reduces
for all three estimators, when the sample size is increased, and the reduction is roughly of
a factor of four which would correspond to the asymptotic properties of the estimators.
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From (4.2) we know that Ψ(1) is equal to Ψ(1) = −η + ϕ. Thus these two parameters
give important characteristics of the model concerning stationarity and the rate p of
decrease of the autocovariance and autocorrelation function. In case of p̂n > 0, which
indicates that the data is stationary, it is also clear from (3.13), that the estimated
parameters will always correspond to a stationary model, since p > 0 implies Ψ(1) =
−η + ϕ < 0 and the same identity holds for the estimated parameters.

4.2. Estimation of the volatility σ2
t

Recall from (1.5) for r = 1,

σ2
i = σ2

i−1 + β − η

∫

(i−1,i]

σ2
sds+ ϕ

∑

i−1<s≤i

σ2
s(∆Ls)

2 , i ∈ N . (4.3)

Since σs is latent and ∆Ls is usually not observable, we have to approximate the integral
and the sum on the right hand side. For the integral we use a simple Euler approximation

∫

(i−1,i]

σ2
sds ≈ σ2

i−1 , i ∈ N .

As we observe G only at integer times we approximate
∑

i−1<s≤i

σ2
s(∆Ls)

2 ≈ (Gi −Gi−1)
2 = (G

(1)
i )2 , i ∈ N .

An estimate of the volatility process (σ2
t )t≥0 can therefore be calculated recursively by

σ̂2
i = β̂ + (1 − η̂)σ̂2

i−1 + ϕ̂ (G
(1)
i )2 , i ∈ N . (4.4)

Note that σ̂i defines the conditional variance of a discrete time GARCH(1,1) model,
which implies that we have to require 0 < η < 1. The estimator (4.4) is plotted in
Figure 2 together with the theoretical (σ2

t )t≥0 for one simulation.
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Figure 2. Sample paths of σ2
t (solid line) and σ̂2

t (dotted line) of one simulation.

Next we investigate the goodness of fit of our estimation method by a residual analysis.

The estimated residuals are given by G
(1)
i /σ̂i−1 for i = 1, . . . , n. Since we assumed a

symmetric jump distribution with zero mean, the residuals should be symmetric around
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zero and their mean should be close to zero. Furthermore, if the volatility has been
estimated correctly, we expect the standard deviation to be close to one.

Consequently, we estimated mean, MSE, MAE and the corresponding standard devi-

ations for the mean, the standard deviation and the skewness of the residuals G
(1)
i /σ̂i−1

based on 1 000 simulations. The results for both sample sizes are reported in Table 2 and
indicate a reasonable fit.

n=5 000 mean(G
(1)
n /σ̂n−1) std(G

(1)
n /σ̂n−1) skewness(G

(1)
n /σ̂n−1)

Mean 0.00011 (0.00044) 1.00931 (0.00021) -0.00152 (0.00428)
MSE 0.00019 (9 · 10−6) 0.00012 (8 · 10−6) 0.01838 (0.00098)
MAE 0.01110 (0.00027) 0.00945 (0.00020) 0.10671 (0.00264)

n=20 000 mean(G
(1)
n /σ̂n−1) std(G

(1)
n /σ̂n−1) skewness(G

(1)
n /σ̂n−1)

Mean 0.00018 (0.00022) 0.01078 (0.00014) -0.00285 (0.00205)
MSE 0.00005 (2 · 10−6) 0.00013 (4 · 10−6) 0.00422 (0.00019)
MAE 0.00577 (0.00013) 0.01079 (0.00014) 0.05119 (0.00126)

Table 2. Estimated mean, MSE and MAE for the mean, standard deviation and skewness
of the residuals with corresponding estimated standard deviations in brackets.

The correlation of the squared residuals was checked by performing a Ljung-Box test for
each sample. For n = 5 000 we computed the test statistic based on 70 ≈

√
5 000 lags and

had to reject the null hypothesis of no correlation 140 times out of 1 000 simulations at the
0.05 level. Whereas for n = 20 000 the test statistics were computed using 140 ≈

√
20 000

lags and the null hypothesis was rejected 137 times out of 1 000 simulations again at the
0.05 level.

5. REAL DATA ANALYSIS

The COGARCH(1,1) model will be fitted to five minutes log-returns of three different
stocks, which are General Motors (GM), Cisco and Intel. We have tick-by-tick data of
the Trades and Quotes database of the New York Stock Exchange (NYSE) and Nasdaq.
The GM stock is from NYSE, whereas Cisco and Intel belong to Nasdaq. The data spans
over 4 months starting in February 2002. We considered only the prices between 9.35am
and 4pm to compute the five minutes log-returns based on previous tick interpolation.
There were 83 trading days between the beginning of February and the end of May 2002.
Hence each of the series has a total length of 6 391 data points. This is part of a data
set, which was analysed in Brodin and Klüppelberg (2006) with respect to the extreme
dependence structure of the three stocks.

The effect of seasonality is common in high frequency data and also appears in the
raw data. Therefore, the data was deseasonalised by a median filter, which is explained
in Section 4.2 in Brodin and Klüppelberg (2006). The resulting time series are shown in
Figure 3.
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Figure 3. Deseasonalised 5 minutes log-returns of GM (top), Cisco (middle) and Intel
(bottom).

An application of Algorithm 3.3 produces moment estimates of β, η and ϕ under the
assumption that the driving Lévy processes of each stock have no Brownian component.
The results are shown in Table 3.

β̂ η̂ ϕ̂
GM 0.1091 0.1625 0.1357
Cisco 0.0621 0.0328 0.0126
Intel 0.0180 0.0396 0.0336

Table 3. β̂, η̂ and ϕ̂ for the GM, Cisco and Intel data.

To investigate the model fit, we performed a Ljung-Box test for squared residuals
of all three data sets. The test statistics used 80 lags of the corresponding empirical
autocorrelation function. The null hypothesis was not rejected for GM and Intel at the
0.05 level. For the GM squared residuals the p-value was 0.35, whereas for Intel it was
only 0.27. The test statistic for the Cisco squared residuals was equal to 202.62, which
led to a rejection of the null hypothesis, since the test had a critical value of 101.87 at the
0.05 level. This result is also obvious from Figure 4 were the empirical autocorrelation
function of the squared residuals are plotted on the right, showing significant correlations
of the Cisco residuals.
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Figure 4. Empirical acf of the squared 5 minutes log-returns (left) and the squared resid-
uals (right) of GM (top), Cisco (middle) and Intel (bottom).

The estimated mean, standard deviation and skewness of the residuals are summarized
in Table 4. The numbers show that the mean and variation of the residuals are according
to our model, but that the residuals are significantly skewed. This skewness can also be
seen in Figure 5 showing estimates of the log density for all three datasets.

mean(G
(1)
n /σ̂n−1) std(G

(1)
n /σ̂n−1) skewness(G

(1)
n /σ̂n−1)

GM -0.0143 1.0785 -0.3714
Cisco -0.0015 0.9832 -0.2082
Intel -0.0002 1.0100 -0.0626

Table 4. Mean, standard deviation and skewness of the GM, Cisco and Intel residuals.

It does not come as a surprise as it is a well-known fact that financial data are skewed.
Although we will not deal with the problem in this first paper on COGARCH(1,1) esti-
mation, we want to discuss the assumptions, which prevent the modelling of skewness
and also indicate some remedy to be worked out in detail in future work.

The observed skewness indicates that the first condition of (H4) requiring that∫
R
x3νL(dx) = 0 is violated. This introduces a bias into our estimates as in the cal-

culation of E(G4
t ) the last term in (A.2) does not disappear.

Instead of including the term
∫

R
x3νL(dx) in a statistical analysis we suggest to extend

the model by an extra term in a similar fashion as Glosten et al. (1993) for the discrete
time GARCH process, to model the leverage in the market explicitly; thus taking care
of the effect directly. Consequently, we extend the volatility model (1.3) for ρ > 0 to

dσ2
t+ = (β − ησ2

t ) dt+ ϕσ2
t d[L,L]

(d)
t + ρ σ2

t dUt , (5.1)

where

Ut :=
∑

0<s≤t

∆Ls<0

(∆Ls)
2
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Figure 5. Kernel estimates of the log density (solid line) of the squared GM (left), Cisco
(middle) and Intel (right) residuals together with a normal log density (dashed line) with
mean and variance of the corresponding residual series.

and ρ is a positive constant. Then

∆σ2
t =

{
ϕσ2

t (∆Lt)
2, if ∆Lt > 0,

(ϕ+ ρ)σ2
t (∆Lt)

2, if ∆Lt < 0,

so that a negative jump of L gives rise to a higher increase of the volatility than a positive
jump of the same modulus does. Note that (Ut)t≥0 is a subordinator, and so is

Mt := ϕ[L,L]
(d)
t + ρUt =

∑

0<s≤t

∆Ls>0

ϕ(∆Ls)
2 +

∑

0<s≤t

∆Ls<0

(ϕ+ ρ)(∆Ls)
2,

so that (5.1) can be rewritten as

dσ2
t+ = (β − ησ2

t ) dt+ σ2
t dMt,

an expression similar to (1.3).
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Fasen, V., Klüppelberg, C. and Lindner, A. (2005) Extremal behavior of stochastic
volatility models. In: Grossinho, M.d.R., Shiryaev, A.N., Esquivel, M. and Oliviera,
P.E. (Eds.) Stochastic Finance, pp. 107–155. New York: Springer.

Glosten, L.R., Jagannathan, R. and Runkle, D.E. (1993) On the relation between the
expected value and the volatility of the nominal excess return on stocks. J. Finance
43 (5), 1770–1801.

Huber, P.J. (2004) Robust Statistics. John Wiley & Sons, Inc., New York.
Ibragimov, I.A. and Linnik, Y.V. (1971) Independent and Stationary Sequences of Ran-

dom Variables. Wolters-Noordhoff Publishing, Groningen.
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APPENDIX

A. Calculating the moments

Proof of Proposition 2.1. Since L has finite variance and zero mean, it is a square
integrable martingale. Further, Ψ(1) < 0 implies E(σ2

t ) = β
|Ψ(1)| < ∞ by (2.7), and it

follows easily from the properties of the stochastic integral that

µ := E(G2
t ) = E[G,G]t = E

∫ t

0

σ2
s d[L,L]s = E[L,L]1

∫ t

0

E(σ2
s ) ds ,
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giving that E(G2
t ) is finite and has the form specified in (2.4). The remaining equations

in (2.4) are shown as in Proposition 5.1 of Klüppelberg et al. (2004).
Suppose that E(L4

1) <∞ and Ψ(2) < 0. Then E(G4
t ) is finite by the Burkholder-Davis-

Gundy inequality, cf. Protter (2004), p. 222, since

E
(
[G,G]2t

)
= E

(∫ t

0

σ2
s d[L,L]s

)2

is finite as a consequence of E(σ4
t ) <∞ and E(L4

1) <∞.
Now suppose additionally that

∫
R
x3 νL(dx) = 0. To calculate the value of E(G4

t ),
observe that by integration by parts,

G2
t = 2

∫ t

0

Gs− dGs + [G,G]t = 2

∫ t

0

Gs−σs dLs +

∫ t

0

σ2
s d[L,L]s, (A.1)

G4
t = 2

∫ t

0

G2
s− dG

2
s + [G2, G2]t

= 4

∫ t

0

G3
s−σs dLs + 2

∫ t

0

G2
s−σ

2
s d[L,L]s

+4

∫ t

0

G2
s−σ

2
s d[L,L]s +

∫ t

0

σ4
s d
[
[L,L], [L,L]

]
s

+4

∫ t

0

Gs−σ
3
s d
[
[L,L], L]s. (A.2)

Taking expectations in (A.2), the first and the last summand vanish due to the assump-
tions EL1 = 0 and

∫
R
x3 νL(dx) = 0, respectively, so that

E(G4
t ) = 6E(L2

1)

∫ t

0

E(G2
s−σ

2
s) ds+

∫

R

x4 νL(dx)

∫ t

0

E(σ4
s) ds. (A.3)

The expression E(G2
s−σ

2
s) was already calculated in the proof of Proposition 5.1 in

Klüppelberg et al. (2004), however, under additional assumptions which required in par-
ticular bounded variation of L. The following calculations do not require these restric-
tions.

Let Yt :=
∫ t

0
Gs−σs dLs, t ≥ 0. Then E(Yt) = 0 for all t ≥ 0, and integration by parts

and substituting from (1.3) give

Ytσ
2
t+ =

∫ t

0

Ys− dσ
2
s+ +

∫ t

0

σ2
s dYs + [σ2

+, Y ]t

=

∫ t

0

Ys−(β − ησ2
s) ds+

∫ t

0

Ys−ϕσ
2
s d[L,L]

(d)
t

+

∫ t

0

σ3
sGs− dLs +

[∫ ·

0

(β − ησ2
s) ds+

∫ ·

0

ϕσ2
s d[L,L](d)

s ,

∫ ·

0

Gs−σs dLs

]

t

.

Taking expectations gives

E(Ytσ
2
t+) =

(
ϕ(E(L2

1) − τ2
L) − η

) ∫ t

0

E(Ys−σ
2
s) ds+ E

∫ t

0

ϕσ3
sGs− d

∑

0<u≤s

(∆Lu)3

=
(
ϕ(E(L2

1) − τ2
L) − η

) ∫ t

0

E(Ysσ
2
s+) ds,
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where we used that
∫

R
x3 νL(dx) = 0 and that Ys−σ

2
s = Ysσ

2
s+ almost surely for fixed

s. Solving this integral equation and using that Y0 = 0 implies E(Y0σ
2
0+) = 0, it follows

that E(Ytσ
2
t+) = 0 for all t ≥ 0. Substituting
∫ t

0

σ2
s d[L,L]s =

∫ t

0

σ2
sτ

2
L ds+ ϕ−1

(
σ2

t+ − σ2
0 −

∫ t

0

(β − ησ2
s) ds

)

from (1.3), equations (A.1) and (2.8) now give

E(G2
tσ

2
t+) = E

(
σ2

t+

∫ t

0

σ2
s d[L,L]s

)

= (τ2
L + ϕ−1η)

∫ t

0

E(σ2
t σ

2
s) ds+ ϕ−1

E(σ4
t ) − ϕ−1

E(σ2
t σ

2
0) − ϕ−1βE(σ2

t )t

= (τ2
L + ϕ−1η)Var(σ2

0)
1 − e−t|Ψ(1)|

|Ψ(1)| + ϕ−1
Var(σ2

0)(1 − e−t|Ψ(1)|)

+
(
(τ2

L + ηϕ−1)(E(σ2
0))2 − βϕ−1

E(σ2
0)
)
t. (A.4)

Using (2.7), (2.8) and Ψ(1) = −η + ϕ
(
E(L2

1) − τ2
L

)
then leads to

E(G2
tσ

2
t+) =

β2

ψ(1)2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
(
2η

ϕ
+ 2τ2

L −E(L2
1))(1− e−t|Ψ(1)|) +

β2

Ψ(1)2
E(L2

1)t.

This then implies (2.5), where we used (A.3), (2.8) and the fact that by (2.3)
∫

R

x4 νL(dx) =
Ψ(2) − 2Ψ(1)

ϕ2
. (A.5)

For the autocorrelation of the squared increments, observe that by equation (5.4) of
Klüppelberg et al. (2004) we have

Cov((G
(r)
t )2, (G

(r)
t+h)2) =

(
er|Ψ(1)| − 1

|Ψ(1)|

)
E(L2

1)Cov(G2
r , σ

2
r) e−h|Ψ(1)| (A.6)

(in Klüppelberg et al. (2004) this was stated under the additional assumption that L is
a quadratic pure jump process (i.e. τ2

L = 0), but it can be seen that the proof given there
holds true also for L having a Brownian motion component). This then implies (2.6) by
(A.4), (2.4) and (2.7). 2

B. Strong mixing property of (G
(r)
ir )i∈N

We want to show that the sequence (G
(r)
ir )n∈N is α-mixing with exponentially fast decreas-

ing mixing coefficients. Recall the following definitions.

Definition B.1. For a stationary process Y = (Ys)s∈R define the σ-algebras F1 =
FY

(0,u] := σ((Ys)0≤s≤u) and F2 = FY
[u+t,∞) := σ((Ys)s≥u+t) for any u ≥ 0.

(a) Y is called α-mixing (or strongly mixing), if as t→ ∞
α(t) = α(F1,F2) := sup

A∈F1 , B∈F2

|P (A ∩B) − P (A)P (B)| → 0 .

Y is called α-mixing with exponential rate, if α(t) ≤ Ke−at for K, a > 0 for all t ≥ 0.
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(b) For t ≥ 0 denote by bFY
[t,∞) the set of bounded FY

[t,∞)-measurable random variables.

Let ‖ · ‖L1(P ) and ‖ · ‖∞ be the L1-norm under P and the supremum norm, respectively.
Then Y is called α̃-mixing, if as t→ ∞

α̃(t) = α̃(F1,F2) := sup
f∈bF2 , ‖f‖∞≤1

‖E(f |F1) − E(f)‖L1(P ) → 0 .

Y is called α̃-mixing with exponential rate, if α̃(t) ≤ K̃e−eat for K̃, ã > 0 for all t ≥ 0.

The following result shows that any α-mixing property is equivalent to the correspond-
ing α̃-mixing property.

Lemma B.2. α(F1,F2) ≤ α̃(F1,F2) ≤ 6α(F1,F2) holds for all F1,F2 ⊂ F .

For the left-hand inequality assume A∗ ∈ F1 and B∗ ∈ F2 are such that α(F1,F2) =
|P (A∗ ∩ B∗) − P (A∗)P (B∗)|. Then take f = χB∗ as the indicator of the set B∗, which
implies |P (A∗ ∩ B∗) − P (A∗)P (B∗)| ≤ ‖E(χB∗ |A∗) − E(χB∗)‖L1(P ). See Lemma 3.5 in
McLeish (1975) for the right-hand inequality.

Proof of Theorem 3.5. We show that (G
(r)
ir )i∈N is α̃-mixing. Define the σ-algebra

FdL
I := σ(Lt − Ls : s, t ∈ I) for I ⊂ R; i.e. generated from all increments of L over the

interval I. Using similarly notation as in Definition B.1 for the σ-algebras generated by

the return process (G
(r)
ir )i∈N and volatility process (σ2

t )t≥0, we can formulate the following
inclusions

FG(r)

{1,...,l} ⊂ FdL
[0,lr] ∨ Fσ2

[0,lr] =: FdL,σ2

[0,lr] ,

where ∨ denotes the σ-algebra generated by the union of the two σ-algebras, and

FG(r)

{k+l,k+l+1,... } ⊂ FdL
[(k+l−1)r,∞) ∨ Fσ2

[(k+l−1)r,∞) =: FdL,σ2

[(k+l−1)r,∞).

Using these relations we get

α̃G(r)(k) := sup
{
‖E(f |FG(r)

{1,...,l}) − E(f)‖L1(P ) : f ∈ bFG(r)

{k+l,k+l+1,... }, ‖f‖∞ ≤ 1
}

≤ sup
{
‖E(f |FdL,σ2

[0,lr] ) − E(f)‖L1(P ) : f ∈ bFdL,σ2

[(k+l−1)r,∞), ‖f‖∞ ≤ 1
}

= sup
{
‖E(f |FdL,σ2

[0,lr] ) − E(f)‖L1(P ) : f ∈ bFdL
[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r}, ‖f‖∞ ≤ 1
}

= sup
{
‖E(f |Fσ2

[0,lr]) − E(f)‖L1(P ) : f ∈ bFdL
[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r}, ‖f‖∞ ≤ 1
}

= sup
{
‖E(f |Fσ2

[0,lr]) − E(f)‖L1(P ) : f ∈ bFd[L,L]d

[(k+l−1)r,∞) ∨ bF
σ2

{(k+l−1)r}, ‖f‖∞ ≤ 1
}

= α̃σ2((k − 1)r).

The first equality (in the third line) holds since the driving process of σ2 is the dis-

crete part of the quadratic variation of L. FdL
[0,lr] and bFdL

[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r} are

conditionally independent given Fσ2

[0,lr], which is due to the Markov property of σ2 (see

Theorem 3.2 in Klüppelberg et al. (2004)) and the independence between FdL
[0,lr] and

bFdL
[(k+l−1)r,∞). This gives the second equality. The third one follows from the indepen-

dence of bFdL
[(k+l−1)r,∞) and bFd[L,L]d

[(k+l−1)r,∞) from Fσ2

[0,lr] and again the Markov property
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of σ2, whereas the last one is due to the fact that bFσ2

[(k+l−1)r,∞) = bFd[L,L]d

[(k+l−1)r,∞) ∨
bFσ2

{(k+l−1)r}.

Consequently, (G
(r)
ir )i∈N inherits the mixing properties from the volatility process σ2.

It has been shown in Fasen (2006) that σ2 is α-mixing with exponential rate, i.e. there
exist constants K, a > 0 such that

α̃G(r)(k) ≤ α̃σ2((k − 1)r) ≤ 6ασ2((k − 1)r) ≤ 6Ke−a(k−1)r ,

implying that (G
(r)
ir )i∈N is α-mixing with exponential rate. 2


