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1 Introduction

It is common wisdom among financial researchers and the banking industry
that volatility is stochastic, has jumps, and often exhibits long range depen-
dence. Since such financial data as log-prices and exchange rates often come
as high-frequency intra-day data, continuous time models are useful. There
have been two main approaches.

The first, mathematical one is based on semimartingale (no arbitrage)
theory, takes its starting point as the Black-Scholes model, and introduces
a stochastic volatility process. For an introduction and overview of stochas-
tic volatility models, we refer to Shephard [25]. The second, econometric,
approach is based on empirical properties of financial time series. A recent
model fitting into both these approaches and having received much attention
is the stochastic volatility model of Barndorff-Nielsen and Shephard [2, 3, 4].
There, the volatility process is modelled as an Ornstein-Uhlenbeck (OU) type
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process driven by a Lévy process (or a superposition of such OU type pro-
cesses), and thus can exhibit jumps. The price process is then obtained using
an independent Brownian motion as driving noise.

The majority of the models arising from the econometric approach are in
discrete time. In particular, GARCH models and their extensions have been
in the limelight as appropriate models to capture certain empirical facts of
the empirical volatility process; see Engle [13] for an overview on GARCH
modelling. In this area, motivated again by the availability of high-frequency
data and by the option pricing problem, classical diffusion limits have been
used in a natural way to suggest continuous time limits; see, e.g., Nelson [23]
and Duan [12].

Unfortunately, in these situations, the limiting models can lose certain es-
sential properties of the discrete time GARCH models. Moreover, they can
have distinctly different statistical properties. As has been shown recently
by Wang [28], parameter estimation in the discrete time GARCH and the
corresponding continuous time limit stochastic volatility model may yield dif-
ferent estimates. Thus the continuous time models are probabilistically and
statistically different from their discrete time progenitors.

It is surprising and counter-intuitive that Nelson’s diffusion limit of the
GARCH process is driven by two independent Brownian motions, i.e. has
two independent sources of randomness, whereas the discrete time GARCH
process is driven only by a single white noise sequence. One of the features of
the GARCH process is the idea that large innovations in the price process are
almost immediately manifested as innovations in the volatility process, but
this feedback mechanism is lost in models such as the Nelson continuous time
version.

The phenomenon that a diffusion limit is driven by two independent Brow-
nian motions, while the discrete time model is given in terms of a single white
noise sequence, is not restricted to the classical GARCH process. Indeed,
Duan [12] has shown that this occurs for many GARCH like processes. In this
respect, Jeantheau [20] only recently developed a discrete time model having
many features with the GARCH model in common, but having a diffusion
limit driven by a single Brownian motion only.

In Klüppelberg, Lindner and Maller [22], the authors proposed a different
approach to obtain a continuous time model. This “COGARCH” (continuous
time GARCH) model, based on a single background driving Lévy process, is
different from, though related to, other continuous time stochastic volatility
models that have been proposed. It generalises the essential features of the
discrete time GARCH process in a direct way.

It is natural to compare the two main approaches outlined above, i.e.
stochastic volatility and GARCH type modelling. An empirical, likelihood
inference based comparison between discrete time stochastic volatility and
discrete time GARCH processes is given in Kim, Shephard and Chib [21].
In the present paper, we aim to compare the probabilistic properties of the
COGARCH process with those of the stochastic volatility model of Barndorff-
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Nielsen and Shephard. It turns out that they share many mathematical prop-
erties, but that there are also certain differences. A striking difference is
manifested in the behaviour (lightness or heaviness) of the tails of their one-
dimensional distributions. The stochastic volatility model can exhibit many
different kinds of tail behaviour, depending on the driving Lévy process,
whereas the COGARCH model has Pareto like (heavy) tails for essentially
most driving Lévy processes.

The paper is structured as follows: in the next section, we recall the ba-
sic definitions of Lévy processes and give the definitions of the models un-
der consideration. We then proceed to collect the properties of the models
and compare them. The most obvious differences are pointed out in Sec-
tion 2.3, while in Section 3 we consider properties of the process itself, such
as strict stationarity, Markovian properties and pathwise behaviour. Then, in
Section 4, second order properties are considered. It is shown that both pro-
cesses have essentially the same kind of autocovariance structure. Section 5
focusses on distributional properties of both models. While it is well-known
that the stationary distribution of the squared volatility of the OU type pro-
cess of Barndorff-Nielsen and Shephard is self-decomposable, in Section 5.1 the
same is shown to hold for the COGARCH volatility. Then, in Section 5.3, we
prove some new results, showing that the COGARCH model has Pareto like
tails under wide conditions. Finally, a short conclusion is given in Section 6.

2 Definition of the models

Both the OU as well as the COGARCH model are driven by a Lévy process
L = (Lt)t≥0, assumed to be càdlàg and defined on a probability space with
appropriate filtration, satisfying the “usual conditions”, i.e. right-continuity
and completeness. We recall some properties of Lévy processes, see Bertoin [6]
and Sato [24]: for each t ≥ 0 the characteristic function of Lt at θ ∈ R can be
written in the form

E(eiθLt)

= exp
(
t

(
iγLθ − τ2

L

θ2

2
+
∫ ∞
−∞

(
eiθx − 1− iθx1{|x|≤1}

)
ΠL(dx)

))
. (1)

The constants γL ∈ R, τ2
L ≥ 0 (Gaussian part) and the measure ΠL on R form

the characteristic triplet of L; the Lévy measure ΠL is required to satisfy∫
R

min(1, x2)ΠL(dx) < ∞. If in addition
∫
R

min(1, |x|)ΠL(dx) < ∞, then
γL,0 := γL−

∫
[−1,1]

xΠL(dx) is called the drift of L. A Lévy process is of finite
variation if and only if

∫
R

min(1, |x|)ΠL(dx) < ∞ and τ2
L = 0. In that case,

the sample paths of (Lt)t≥0 have finite variation on compacts. A Lévy process
with nondecreasing sample paths is called a subordinator. These are exactly
the Lévy processes of finite variation with non-negative drift and having Lévy
measure concentrated on (0,∞). In the following considerations, we will only
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be interested in the situation when the Lévy measure is non-trivial, i.e. we
always assume that ΠL is nonzero.

2.1 The Barndorff-Nielsen and Shephard OU process

The stochastic volatility model presented in [2, 3, 4] specifies the volatility as
an Ornstein-Uhlenbeck process, driven by a subordinator. More precisely, let
(Lt)t≥0 be a subordinator and α > 0. Then the volatility process (σ̃t)t≥0 is
defined by the stochastic differential equation (SDE)

dσ̃2
t = −ασ̃2

t dt+ dLαt, t ≥ 0 , (2)

where σ̃2
0 is a finite random variable independent of (Lt)t≥0 and σ̃t :=

√
σ̃2
t .

The solution to (2) is the Ornstein-Uhlenbeck type process (“OU process”)

σ̃2
t =

(∫ t

0

eαsdLαs + σ̃2
0

)
e−αt , t ≥ 0 . (3)

The (logarithmic) price process (G̃t)t≥0 is then modelled by the SDE

dG̃t = (µ+ bσ̃2
t )dt+ σ̃t dWt , t ≥ 0 , G̃0 = 0 , (4)

where µ and b are constants and (Wt)t≥0 is standard Brownian motion, inde-
pendent of σ̃2

0 and the Lévy process (Lt)t≥0. The Itô solution of this SDE is
given by

G̃t = µt+ b

∫ t

0

σ̃2
s ds+

∫ t

0

σ̃s dWs , t ≥ 0 .

The logarithmic asset returns over time periods of length r > 0 are then given
by G̃

(r)
t := G̃t+r − G̃t, t ≥ 0. In the following, the notation G̃t and σ̃t (with

tildes) will always refer to the processes of Barndorff-Nielsen and Shephard
just defined. In contrast, the COGARCH process defined below will always be
denoted by Gt with volatility σt (without tildes). If the driving Lévy process
(Lt)t≥0 refers to the OU process, then it will always be assumed to be a
subordinator.

2.2 The COGARCH(1,1) model

The COGARCH(1,1) process (see [22]) is motivated by the discrete time
GARCH(1,1) process (Yn)n∈N0 , satisfying

Yn = εnσn,disc, where σ2
n,disc = β + λY 2

n−1 + δσ2
n−1,disc, n ∈ N, (5)

σn,disc :=
√
σ2
n,disc, and (εn)n∈N0 is a sequence of independent and identically

distributed random variables, independent of σ2
0,disc. Here, N = {1, 2, 3, . . .}
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denotes the set of positive integers and N0 = N ∪ {0}. The recursion in (5)
can be solved to give

σ2
n,disc

=

β ∫ n

0

exp

−
bsc∑
j=0

log(δ + λε2
j )

 ds+ σ2
0,disc

 exp


n−1∑
j=0

log(δ + λε2
j )

 .

To define the continuous time version, the innovations εn are replaced by the
jumps of a Lévy process. Let (Lt)t≥0 be a Lévy process with jumps ∆Lt =
Lt −Lt−, t ≥ 0, and let 0 < δ < 1, λ ≥ 0. Define a càdlàg process (Xt)t≥0 by

Xt = −t log δ −
∑

0<s≤t

log(1 + (λ/δ)(∆Ls)2), t ≥ 0 . (6)

Then, with β > 0 and σ2
0 a finite random variable, independent of (Lt)t≥0,

define the (left-continuous) volatility process (σt)t≥0 by

σ2
t =

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt− , t ≥ 0, (7)

where σt :=
√
σ2
t , and define the integrated continuous time GARCH process

(“COGARCH”) (Gt)t≥0 as the càdlàg process satisfying

dGt = σt dLt , t ≥ 0 , G0 = 0 . (8)

Thus G jumps at the same times as L does, and has jumps of size ∆Gt =
σt∆Lt, t ≥ 0. The logarithmic asset returns over time periods of length r > 0
are then modelled by G(r)

t := Gt+r −Gt, t ≥ 0.
In [22], Proposition 3.1, it is shown that the process (Xt)t≥0 is itself a spec-

trally negative Lévy process of finite variation, with drift γX,0 = − log δ and
zero Gaussian component τ2

X = 0. The Lévy measure ΠX is the image measure
of ΠL under the transformation R→ (−∞, 0], x 7→ − log(1 + (λ/δ)x2).

2.3 A first comparison

Despite their arising and being motivated in quite different ways, the volatility
processes σ2 and σ̃2 are strikingly analogous in satisfying the general Ornstein-
Uhlenbeck equations (3) and (7). But an obvious difference between the price
processes is that the OU process of Barndorff-Nielsen and Shephard is fed into
a Hull-White model, driven by an independent Brownian motion, whereas the
COGARCH price process is driven by the same Lévy process as is used in
the volatility. Furthermore, the SDE defining G̃t has an additional drift term
(µ+bσ̃2

t )dt, which does not occur in (8). It is possible to add such a drift term
to (8) as well, but we will not do this since there is already a correspondence
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of G to the discrete time GARCH process without the necessity for an extra
drift term.

Another obvious difference concerns the sample path properties of the
price processes: (G̃t)t≥0 will have continuous sample paths, inherited from
the driving Brownian motion (see e.g. Jacod and Shiryaev [19]), while (Gt)t≥0

exhibits jumps. Both these factors can be useful in different ways in practice.
For the volatility processes, note that both (σ̃2

t )t≥0 and (σ2
t )t≥0 exhibit

jumps. While (σ̃t)t≥0 is right-continuous, (σt)t≥0 is left-continuous. This is a
minor difference, since G̃t is driven by Brownian motion, and hence σ̃t in (4)
could equally well be replaced by σ̃t−. A more striking difference between the
volatility processes is that in (3) the driving Lévy process of the volatility is
in the integrator, while in (7) it appears in the integrand. Despite these facts,
we will see that both volatility processes nevertheless share many common
features.

3 Properties of the processes

In this section we shall consider Markov and stationarity properties, link the
integrated squared volatility and the quadratic variation for both processes,
and exhibit some pathwise properties of the volatility processes. We start by
mentioning that not only does σ̃t satisfy a SDE, but so does σt, see Proposi-
tion 3.1 below, which was proved in [22], Proposition 3.2.

Proposition 1. [SDE and solution for σ]
The squared volatility process (σ2

t )t≥0 of the COGARCH process satisfies the
stochastic differential equation

dσ2
t+ = βdt+ σ2

t eXt−d(e−Xt) , t > 0 ,

and we have

σ2
t = βt+ log δ

∫ t

0

σ2
sds+ (λ/δ)

∑
0<s<t

σ2
s(∆Ls)2 + σ2

0 , t ≥ 0. (9)

Both volatility processes are Markovian:

Theorem 1. [Markov properties of the processes]
Both the squared volatility processes (σ̃2

t )t≥0 and (σ2
t )t≥0, as given by (3) and

(7), respectively, are time-homogeneous Markov processes. Furthermore, the
bivariate processes (σ̃t, G̃t)t≥0 and (σt, Gt)t≥0 are time-homogeneous Markov
processes.

Proof. For the fact that (σ̃2
t )t≥0 is a time homogeneous Markov process if

α = 1 see Sato [24], Lemma 17.1 and its preceding discussion. For general
α > 0, the assertions on (σ̃2

t )t≥0 and (σ̃t, G̃t)t≥0 can be seen as follows. We
have



COGARCH versus Ornstein-Uhlenbeck models 7

σ̃2
t = σ̃2

y eα(y−t) +
∫ t

y

eα(s−t)dLαs = eα(y−t)

(
σ̃2
y +

∫ α(t−y)

0

ev dLv+αy

)
.

Since {Lαs}y≤s≤t is independent of the σ-algebra generated by (σ̃2
u)0≤u≤y,

the first equation gives the Markov property for σ̃t, and since the distribution
of the expression on the righthand side depends only on t− y we see that σ̃2

is time homogeneous. The Markovian property of (σ̃t, G̃t)t≥0 follows from

G̃t = G̃y + µ(t− y) + b

∫ t

y

σ̃2
s ds+

∫ t

y

σ̃s dWs, 0 ≤ y < t.

For the corresponding results on (σ2
t )t≥0 and (σt, Gt)t≥0, see [22], Theorem 3.2

and Corollary 3.1.

The Markov property of the squared volatility processes can be regarded
as a special case of a result on more general Ornstein-Uhlenbeck processes.
Carmona, Petit and Yor [10] consider processes of the form

Vt = eξt
(∫ t

0

e−ξs− dηs + V0

)
, t ≥ 0 ,

where (ξt, ηt)t≥0 is a two-dimensional Lévy process, independent of V0. Then
(Vt)t≥0 is a time homogeneous Markov process, see [10], Corollary 5.2. If

(ξt)t≥0 and (ηt)t≥0 are independent, then [10] shows that Vt
D=
∫ t

0
eξs− dηs +

V0eξt . (Throughout, “D=” means “equal in distribution”.) Without assuming
independence of ξ and η, Erickson and Maller [16], Theorem 2, give necessary
and sufficient conditions for the a.s. existence of the integral

∫∞
0

eξt− dηt.
When this occurs and ξ and η are independent, there is a stationary solution,
V∞, say, and Vt converges in distribution to this as t → ∞ (see Carmona et
al. [11], Theorem 3.1 and its proof). Theorem 2 below can be deduced from
these results. (We remark that separate proofs for the two types of volatility
process can be given without appealing to properties of the generalised OU-
process (Vt)t≥0. For (σ̃2

t )t≥0, see [2, 3] or Sato [24], Theorems 17.5, 17.11
and Corollary 17.9 (apart from part (c) below), while for (σ2

t )t≥0 see [22],
Theorems 3.1, 3.2 and Corollary 3.1.)

Theorem 2. [Stationarity condition for σ̃ and σ]
(a) The squared volatility process (σ̃2

t )t≥0 of the OU model converges in dis-
tribution to a finite random variable σ̃2

∞ as t→∞ if and only if∫ ∞
1

log(y)ΠL(dy) <∞. (10)

In that case,

σ̃2
∞

D=
∫ ∞

0

e−s dLs. (11)
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(b) The squared volatility process (σ2
t )t≥0 of the COGARCH model converges

in distribution to a finite random variable σ2
∞ as t→∞ if and only if∫

R

log(1 + (λ/δ)y2)ΠL(dy) < − log δ (12)

(which, since δ > 0, incorporates the requirement that the integral be finite),
in which case

σ2
∞

D= β

∫ ∞
0

e−Xtdt.

(c) If (10) or (12) are not satisfied, respectively, then the squared volatility
process diverges in probability to ∞ as t→∞.
(d) A stationary solution of (σ̃2

t )t≥0 or (σ2
t )t≥0 exists if and only if (10) or (12)

are satisfied, in which case the stationary distribution at time t is the distri-
bution of σ̃2

∞ or σ2
∞, respectively. In that case, (G̃t)t≥0 and (Gt)t≥0 have

stationary increments, i.e. the increment processes (G̃(r)
t )t≥0 and (G(r)

t )t≥0

are stationary for each fixed r > 0.

It is interesting to observe that the stationarity condition for (σ̃2
t )t≥0 and

the distribution of σ̃2
∞ depend on the Lévy measure ΠL only, whereas (12)

and σ2
∞ depend on ΠL and on the parameters δ and λ. For the OU model,

this is a consequence of the unusual timing dLαt in (2), chosen deliberately
by Barndorff-Nielsen and Shephard [3] to separate the stationary distribution
from the dynamical structure, which depends on α.

Next we investigate pathwise properties of the volatility processes, espe-
cially the behaviour between jumps if the driving Lévy process is compound
Poisson.

Proposition 2. [Pathwise behaviour of σ̃ and σ]
(a) The volatility σt at time t of the GOGARCH process satisfies

σ2
t ≥

β

− log δ
(1− et log δ), for all t ≥ 0.

If σ2
t0 ≥

β
− log δ for some t0, then σ2

t ≥
β

− log δ for every t ≥ t0.

If σ2
t
D= σ2
∞ is the stationary version, then

σ2
∞ ≥

β

− log δ
a.s. (13)

The stationary version σ̃2
∞ of the OU-process is bounded from below (i.e.

bounded away from 0) if and only if the drift term γL,0 of the subordina-
tor (Lt)t≥0 is strictly positive.
(b) The jumps of both squared volatility processes at time t > 0 are described
by

σ̃2
t − σ̃2

t− = ∆Lαt, σ2
t+ − σ2

t = (λ/δ)σ2
t (∆Lt)2.
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(c) Let (Lt)t≥0 be a compound Poisson process with jump times 0 = T0 <
T1 < . . . Then the OU volatility satisfies for t ∈ (Tj/α, Tj+1/α), j ∈ N0,

d
dt
σ̃2
t = −ασ̃2

t , σ̃2
t = σ̃2

Tj/α
e−(αt−Tj),

while the COGARCH volatility satisfies for t ∈ (Tj , Tj+1),

d
dt
σ2
t = β + (log δ)σ2

t , σ2
t =

β

− log δ
+
(
σ2
Tj+ +

β

log δ

)
e(t−Tj) log δ.

Proof. (a) From (6) follows that for 0 ≤ s < t,

Xs −Xt− = (t− s) log δ +
∑
s<u<t

log
(
1 + (λ/δ)(∆Lu)2

)
≥ (t− s) log δ. (14)

In particular,

σ2
t = β

∫ t

0

eXs−Xt− ds+ σ2
0 e−Xt−

≥ β

∫ t

0

e(t−s) log δ ds =
β

− log δ
(
1− et log δ

)
.

Then (13) follows as t→∞. Now let t > t0 and suppose that σ2
t0 ≥

β
− log δ . In

equation (3.12) of [22] it was shown that

σ2
t = eXt0−−Xt−σ2

t0 + β

∫ t

t0

eXs−Xt− ds.

From (14) then follows

σ2
t ≥ e(t−t0) log δ σ2

t0 + β

∫ t

t0

e(s−t0) log δ ds

≥ e(t−t0) log δ

(
β

− log δ

)
+
(

β

− log δ

)
(1− e(t−t0) log δ) =

β

− log δ
.

That σ̃2
∞ is bounded from below if and only if the drift is non-zero follows

from (11) and Sato [24], Example 17.10.
The proof of (b) and (c) follows easily from (3), (7) and (9).

Proposition 2 shows in particular that the stationary version of the CO-
GARCH volatility process is always bounded away from 0 once t > 0, which
is not necessarily the case for the OU volatility. From (b) it follows that if a
volatility jump occurs for either process, then this jump is necessarily positive.
For compound Poisson driving processes, between jumps the processes show
similarities, since both decay exponentially (more precisely, the COGARCH
process decays only once it rises above the lower bound β/(− log δ), and before
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that it increases). However, note that (σ̃2
t ) satisfies a homogeneous differential

equation, while (σ2
t ) satisfies an inhomogeneous differential equation, between

jumps.
Next, we link the integrated squared volatilities

∫ t
0
σ̃2
s ds and

∫ t
0
σ2
s ds with

the quadratic variations of the process G̃ andG, respectively. For the definition
and elementary properties of the quadratic variation [Y, Y ]t of a semimartin-
gale (Yt)t≥0, we refer to Jacod and Shiryaev [19], Chapter 1.

Proposition 3. [Quadratic variation and integrated squared volatility]
(a) For the stochastic volatility model of Barndorff-Nielsen and Shephard we
have

[G̃, G̃]t =
∫ t

0

σ̃2
s ds, t ≥ 0. (15)

(b) For the COGARCH model we have

λ

δ
[G,G]t− = (

λ

δ
τ2
L − log δ)

∫ t

0

σ2
s ds + σ2

t − σ2
0 − βt , t ≥ 0. (16)

Proof. (a) is clear from the general properties of stochastic integrals, see
e.g. [19], while (b) follows from

[G,G]t− =
∫ t−

0

σ2
s d[L,L]s

=
∫ t−

0

σ2
s d(sτ2

L +
∑

0<u≤s

(∆Lu)2) = τ2
L

∫ t

0

σ2
s ds+

∑
0<u<t

σ2
s(∆Ls)2.

Plugging this into (9) gives (16).

The integrated quadratic variation is a key measure for stochastic volatility
models. Its importance can be seen from equation (23) below. Now (15) means
that the integrated volatility can be recovered from the quadratic variation.
Equation (16) shows that for the COGARCH process, the integrated volatility
can at least be expressed with the aid of the quadratic variation and the
volatility at times t and 0 by a reasonably simple formula. An expression
in terms of the quadratic variation only cannot be expected, since the Lévy
process in (8) has jumps.

4 Second order properties

In this section we shall concentrate on moments and autocorrelation functions
of both the volatility processes and the price process. A short discussion of
the cumulant transform for the OU process is included.

From now on, in order to avoid the trivial case of a deterministic volatility,
we shall always assume λ > 0 when dealing with the COGARCH process.
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4.1 The volatility process

In this section we derive moments and autocorrelation functions of the squared
stochastic volatility processes (σ̃2

t )t≥0 and (σ2
t )t≥0. For convenience we shall

restrict ourselves to the case of the stationary versions of these volatility pro-
cesses. We start with a preparatory lemma on exponential moments of (Xt)t≥0

for the COGARCH volatility, which by (7) are related to moments of σ2
t .

Lemma 1. [Exponential moments of X]
Let Xt be given by (6), and keep κ > 0 throughout.
(a) Ee−κXt <∞ for some t > 0, or, equivalently, for all t > 0, if and only if
E|L1|2κ <∞.

(b) When Ee−κX1 < ∞, define Ψ(κ) = ΨX(κ) = logEe−κX1 . Then |Ψ(κ)| <
∞, Ee−κXt = etΨ(κ), and

Ψ(κ) = κ log δ +
∫
R

(
(1 + (λ/δ)y2)κ − 1

)
ΠL(dy). (17)

(c) If Ψ(κ) < 0 for some κ > 0, then Ψ(d) < 0 for all 0 < d < κ.

(d) If E|L1|2κ < ∞ and Ψ(κ) ≤ 0 for some κ > 0, then (12) holds, and a
stationary version of (σ2

t )t≥0 exists.

Proof. (a), (b) and (c) are proved in Lemma 4.1 of [22]. For (d), note that
Ψ(κ) ≤ 0 is equivalent to

1
κ

∫
R

((
1 +

λ

δ
y2

)κ
− 1
)
ΠL(dy) ≤ − log δ.

Since log(1 + (λ/δ)y2) < (1/κ)((1 + (λ/δ)y2)κ − 1) for any y 6= 0 (as a conse-
quence of x > 1 + log x for x > 1), this implies (12).

Next we give conditions for the existence of moments of the squared volatil-
ity processes. For σ̃2

∞ this is done in terms of the cumulants. Recall that the cu-
mulant transform of a random variable Y is defined as cumY (θ) := logEeiθY ,
and that the kth cumulant cumY,k exists if and only if E|Y |k <∞, in which
case it is given by

cumY,k :=
1
ik

dk

dθk
cumY (0).

In particular,
cumY,1 = EY, cumY,2 = Var(Y ).

Theorem 3. [Moments and ACF of σ̃ and σ]
Let σ̃2

∞ and σ2
∞ have the stationary distributions of the volatility processes,

respectively.
(a) The kth moment of σ̃2

∞ is finite if and only if ELk1 < ∞, k ∈ N. In this
case, the kth cumulants of σ̃2

∞ and L1 satisfy the relation
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cumσ̃2
∞,k

= k−1 cumL1,k.

In particular, Eσ̃2
∞ = EL1, Var(σ̃2

∞) = 2−1Var(L1). If EL2
1 < ∞, then the

autocovariance function of the stationary squared volatility process satisfies

Cov(σ̃2
t , σ̃

2
t+h) = 2−1Var(L1) e−αh, t, h ≥ 0. (18)

(b) The kth moment of σ2
∞ is finite if and only if EL2k

1 < ∞ and Ψ(k) < 0,
k ∈ N. In this case,

Eσ2k
∞ = k!βk

k∏
l=1

1
−Ψ(l)

. (19)

In particular, Eσ2
∞ = β

−Ψ(1) , Var(σ2
∞) = β2(2Ψ−1(1)Ψ−1(2) − Ψ−2(1)). If

EL4
1 < ∞ and Ψ(2) < ∞, then the autocovariance function of the stationary

squared volatility process satisfies

Cov(σ2
t , σ

2
t+h) = β2

(
2

Ψ(1)Ψ(2)
− 1
Ψ2(1)

)
e−|Ψ(1)|h , t, h ≥ 0 . (20)

Proof. (a) The existence of the moments of σ̃2
∞ is a consequence of

ELk1 ≤ ek E
(∫ 1

0

e−s dLs

)k
≤ ek E

(∫ ∞
0

e−s dLs

)k
(recall that Lt is a subordinator in the tilde setup) and

E

(∫ ∞
0

e−s dLs

)k
≤ E

( ∞∑
i=0

e−i(Li+1 − Li)

)k

=
∞∑
i1=0

. . .
∞∑
ik=0

e−i1−...−ikE ((Li1+1 − Li1) · · · (Lik+1 − Lik)) ,

and the latter is finite if ELk1 <∞ by independence and identical distribution
of the increments Lij+1 − Lij . The relation between the cumulants (when
they exist) and the formula for the autocovariance function can be found
in [3], page 172.

The proof of (b) can be found in [22], Proposition 4.2 and Corollary 4.1.
For (19), see also Carmona, Petit and Yor [10], Proposition 3.3.

Note that the moment condition EL2k
1 and Ψ(k) < 0 for the COGARCH

volatility already imply the existence of a stationary version by Lemma 1(d).
The same is true for the Ornstein-Uhlenbeck process, since EL1 < ∞ is
equivalent to

∫∞
1
xΠL(dx) <∞, implying (10).
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It should be noted that, for σ̃2
∞, the existence of moments depends only

on the driving Lévy process (Lt)t≥0, while for σ2
∞ it depends on the driving

Lévy process as well as on the parameters. This is highlighted in the following
Proposition, see [22], Proposition 4.3.

Proposition 4. [Dependence on parameters for moments of σ]
(a) For any Lévy process (Lt)t≥0 with nonzero Lévy measure such that∫
R

log(1 + y2)ΠL(dy) is finite, there exist parameters δ, λ ∈ (0, 1) for which
σ2
∞ exists, but Eσ2

∞ =∞.

(b) For any Lévy process (Lt)t≥0 such that EL2k
1 < ∞ (k ∈ N) and for any

δ ∈ (0, 1) there exists λδ > 0 such that the limit variable σ2
∞ exists with

Eσ2k
∞ <∞ for any pair of parameters (δ, λ) such that 0 < λ ≤ λδ.

(c) Suppose 0 < δ < 1, λ > 0. Then for no Lévy process (Lt)t≥0 (with nonzero
Lévy measure) do the moments of all orders of σ2

∞ exist. In particular, the
Laplace transform Ee−θσ

2
∞ of σ2

∞ does not exist for any θ < 0.

Much of the analysis in [3] is based on the connection between the cumulant
functions of L1 and σ̃2

∞. In [1], page 178, it is shown that

cumσ̃2
∞

(θ) =
∫ ∞

0

cumL1(e−sθ) ds, cumL1(θ) = θ
d
dθ

cumσ̃2
∞

(θ)

(provided they exist), see also [5], page 282, where a similar relation for
the logarithms of the Laplace transforms is established. In contrast, for the
COGARCH volatility, a feasible expression for the cumulant transform or
the Laplace transform does not seem to be at hand. By Proposition 4, the
Laplace transform of σ2

∞ does not exist in a (two-sided) neighbourhood of the
origin. However, the Laplace transform of the random variable σ−2

∞ exists in a
neighbourhood of the origin and σ2

∞ is determined by all its negative integer
moments. This was shown by Bertoin and Yor [7], Proposition 2, who also
give an expression for the negative integer moments.

4.2 The price process

In this section we investigate second order properties of the increments of the
price processes (G̃t)t≥0 and (Gt)t≥0. From Section 2 recall the notation

G̃
(r)
t := G̃t+r − G̃t, G

(r)
t := Gt+r −Gt, t ≥ 0, r > 0,

corresponding to logarithmic asset returns over time periods of length r. We
will work with the stationary version of the volatility process. By Theorem 2
this implies strict stationarity of the processes (G̃(r)

t )t≥0 and (G(r)
t )t≥0, re-

spectively.
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Theorem 4. [ACF of the price process]
Let r > 0 be a fixed constant, and let t ≥ 0.
(a) Let the price process (G̃t)t≥0 be defined by (4) for the stationary volatility
process (σ̃t)t≥0. Assume that EL2

1 <∞. Then

E(G̃(r)
t ) = (µ+ bEL1)r,

Var(G̃(r)
t ) = rEL1 + b2 Var(L1)

(
r/α− (1− e−αr)/α2

)
.

If µ = b = 0, then
Cov(G̃(r)

t , G̃
(r)
t+h) = 0

for any h ≥ r. If additionally EL4
1 < ∞, then there is a strictly positive

constant C̃r (not depending on t) such that

Cov((G̃(r)
t )2, (G̃(r)

t+h)2) = C̃r e−αh ∀ h ∈ rN.

(b) Let the COGARCH process (Gt)t≥0 be defined by (8) for the stationary
volatility process (σt)t≥0. Suppose (Lt)t≥0 is a quadratic pure jump process
(i.e. τ2

L = 0 in (1)) with EL2
1 < ∞, EL1 = 0, and that Ψ(1) < 0. Then for

any h ≥ r > 0,

E(G(r)
t ) = 0,

E(G(r)
t )2 =

βr

−Ψ(1)
EL2

1,

Cov (G(r)
t , G

(r)
t+h) = 0.

Assume further that EL4
1 < ∞ and Ψ(2) < 0. Then there is a non-negative

constant Cr (not depending on t) such that

Cov((G(r)
t )2, (G(r)

t+h)2) = Cr e−|Ψ(1)|h ∀ h ≥ r.

Assume further that EL8
1 < ∞, ψ(4) < 0, that (Lt)t≥0 is of finite variation

and that
∫
R
x3ΠL(dx) = 0. Then Cr is strictly positive.

The proof of (a) can be found in Section 4 of [3], while the proof of (b) is
given in [22], Proposition 5.1.

Theorem 4 tells us that for both models the returns are uncorrelated,
while the squared returns are correlated. This agrees very much with empirical
findings. In both models, the autocorrelation function of the squared returns
decreases exponentially. Furthermore, we see that Var(G(r)

t ) is linear in r,
while Var(G̃(r)

t ) is asymptotically (affine) linear in r as r approaches 0 or ∞
(however, with different slopes for r → 0 and r →∞).

5 Distributional properties of the models

In this section we investigate further properties of the stationary distribution
of the volatility processes and the price processes.
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5.1 Self-decomposability

The distribution of a random variable Y is called self-decomposable if for any
c ∈ (0, 1) there exists a random variable Zc, independent of Y , such that

Y
D= cY + Zc.

Every self-decomposable distribution is infinitely divisible, and an infinitely
divisible distribution is self-decomposable if and only if its Lévy measure has
a Lévy density w, which can be represented as

w(x) =
k+(x)
x

1x>0 +
k−(|x|)
|x|

1x<0, x ∈ R, (21)

where k+ and k− are non-increasing non-negative functions on (0,∞). Not
only has the Lévy measure a density, but also the distribution itself has.
See Sato [24], Theorem 27.13, and Sections 15-17 there for examples and
properties of self-decomposable distributions. As a further example, the class
of generalised inverse Gaussian distributions is considered in [3].

The stationary distributions σ̃2
∞ of the Ornstein-Uhlenbeck model of

Barndorff-Nielsen and Shephard [3] now have the nice property that they
are self-decomposable. Furthermore, as L varies over all subordinators, they
constitute the class of all possible self-decomposable distributions whose sup-
port is contained in [0,∞), see Sato [24], Example 17.10 and Theorem 24.10.
The correspondence between the Lévy density w of σ̃2

∞ and the Lévy measure
ΠL of the driving Lévy process (Lt)t≥0 is given by

w(x) = x−1ΠL((x,∞)), x > 0, (22)

see [4], equation (4.17). Interestingly, the stationary distribution σ2
∞ of the

COGARCH process is self-decomposable, too. This was communicated to us
by Samorodnitsky [27], who more generally showed that

∫∞
0
e−Xtdt is self-

decomposable for any spectrally negative Lévy process (Xt)t≥0 such that
Xt → +∞ a.s. We state this as a Theorem, and include Samorodnitsky’s
proof.

Theorem 5. The stationary distributions σ̃2
∞ and σ2

∞ of both the squared
volatility processes of the OU-process and the COGARCH process are self-
decomposable.

Proof. We only need to show the result for σ2
∞. The process (Xt)t≥0 defined

in (6) is spectrally negative. Further, Xt → +∞ a.s. as t → ∞ as a conse-
quence of (12) (see [22], proof of Theorem 3.1). From this follows that the
stopping time Th, defined for arbitrary but fixed h > 0 by

Th := inf{t ≥ 0 : Xt = h},
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is almost surely finite. Let Ft be the σ-algebra generated by (Xs)0≤s≤t,
and consider the stopping time σ-algebra FTh . Then by the strong Markov
property of Lévy processes, see Bertoin [6], Proposition 6 of Chapter I,
(XTh+t − XTh)t≥0 is independent of FTh and has the same distribution as
(Xt)t≥0. Writing

σ2
∞

D= β

∫ ∞
0

e−Xtdt = β

∫ Th

0

e−Xtdt+ β

∫ ∞
Th

e−Xtdt =: Ah +Bh, say,

we see that Ah is FTh-measurable and that

Bh = β

∫ ∞
Th

e−(Xt−Xh)e−XThdt = e−hβ
∫ ∞
Th

e−(Xt−XTh )dt

is independent of Ah and has the same distribution as e−hσ2
∞. Thus we have

for every h > 0,
σ2
∞

D= Ah + e−hσ2
∞

with Ah and σ2
∞ being independent, showing that σ2

∞ is self-decomposable.

The self-decomposability of σ2
∞ is somewhat surprising, for

∫∞
0

e−Xtdt
does not even need to be infinitely divisible for every Lévy process Xt tending
to +∞ a.s. For example, if Xt = Nt+ct, t ≥ 0, with a Poisson process (Nt)t≥0

and a constant c > 0, then

0 ≤
∫ ∞

0

e−Xtdt =
∫ ∞

0

e−Nt−ctdt ≤
∫ ∞

0

e−ctdt = 1/c,

showing that
∫∞

0
e−Xtdt is not infinitely divisible as a bounded non-constant

random variable (see Sato [24], Corollary 24.4). This example was constructed
by Samorodnitsky [27].

As a self-decomposable distribution, σ2
∞ has a density, l say. Moreover, if

EL2
1 < ∞, then l is infinitely many times differentiable on (β/(− log δ),∞)

and satisfies the integro-differential equation

((− log δ)x− β)l(x)

=
∫ x

β/(− log δ)

ΠL

(
{y ∈ R : |y| >

√
(
x

v
− 1)δ/λ}

)
l(v) dv, x >

β

− log δ
.

This follows from Proposition 2.1 of Carmona, Petit and Yor [10]. In Sec-
tion 5.3 we shall derive another property of σ2

∞, showing that its distribution
has Pareto like tails under suitable conditions.

5.2 Conditional distributions and tail behaviour of the OU process

Since the price process (G̃t)t≥0 in the model of Barndorff-Nielsen and Shep-
hard [2, 3] is driven by a Brownian motion independent of the volatility, it
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is not surprising that conditional returns are normally distributed. More pre-
cisely, for t ≥ 0, r > 0, let G̃(r)

t = G̃t+r − G̃t as in Section 2, and set

(σ̃2∗
t )(r) :=

∫ t+r

t

σ̃2
s ds,

i.e. the increments of length r of the integrated squared volatility. Then the
conditional distribution of G̃(r)

t given (σ̃2∗
t )(r) is normal, more precisely

G̃
(r)
t |(σ̃2∗

t )(r) ∼ N(µr + b(σ̃2∗
t )(r), (σ̃2∗

t )(r)), (23)

see [3], page 170. This is one indication of the fundamental importance of the
integrated squared volatility in stochastic volatility models.

For the COGARCH process no easy expression for the returns of the price
process is known. However, if (Lt)t≥0 has Gaussian part τ2

L, drift γL,0 and
finite Lévy measure coming from a compound Poisson process with jump
times T1 < T2 < . . . and jump distribution ρ = ΠL/ΠL(R), then from∆GTj =
σTj∆LTj follows

∆GTj |σTj ∼ ρ.

For the increments between two jumps, observe that (with (τ2
LWs)s≥0 denoting

the Brownian motion component of (Lt)t≥0)

GTj+1− −GTj−
= ∆GTj +GTj+1− −GTj

= σTj∆LTj + γL,0

∫ Tj+1

Tj

σs ds+ τ2
L

∫ Tj+1

Tj

σs dWs.

In particular, it can be seen that GTj+1− − GTj−, conditioned on Tj+1 − Tj ,
σTj and ∆LTj , is normally distributed.

The tail behaviour of σ̃2
∞ in the OU model depends heavily on the driving

Lévy process (Lt)t≥0. Recall that the Lévy density of σ̃2
∞ and the tail of

the Lévy measure of L1 are connected by the simple formula (22). Since any
positive self-decomposable distribution can occur as σ̃2

∞, this allows for many
different tail behaviours. For example, if k+(x) in (21) is chosen to decrease like
x−κ as x→∞ where κ > 0, then limx→∞ xκP (σ̃2

∞ > x) = 1/κ, see Embrechts
and Goldie [14] or also Embrechts, Goldie and Veraverbeke [15] in this context.
On the other hand, if σ̃2

∞ is generalised inverse Gaussian GIG(a1, a2, a3), then
it has a probability density given by f(x) = cxa1−1 exp{−a2

2x
−1/2− a2

3x/2},
x > 0, with a positive constant c (see, e.g., [3], page 173), so it will not have
Pareto like tails unless a3 = 0.

For G̃t, from (23) it should be expected that the tail behaviour of
∫ t

0
σ̃2
sds

carries somehow over to the tail behaviour of G̃t. In order to get insight into
the tail behaviour of

∫ t
0
σ̃2
sds, Barndorff-Nielsen and Shephard [5], equation

(31), give a formula for the Lévy density v of
∫ t

0
σ̃2
sds in terms of the Lévy
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density of L1 (provided L1 has a Lévy density; infinite divisibility of the in-
tegrated squared volatility can be seen from equation (4) in [5] and the fact
that the class of infinitely divisible distributions is closed under convolution
and weak convergence). In particular, if either L1 or σ̃2

∞ is tempered sta-
ble or gamma distributed, it is shown that v(x) behaves asymptotically like
d1x
−d2 exp{−d3x} as x→∞, where d1, d3 > 0, d2 ∈ [1, 3), see [5], Table 3. In

particular, Pareto like tails of G̃t are not to be expected in these cases. This
is in contrast to the COGARCH process, as will be shown next.

5.3 Tail behaviour of the COGARCH process

We now concentrate on the tail behaviour of the COGARCH process, and
show that both the tail of the stationary volatility σ∞ as well as the tail of
Gt are Pareto like under weak assumptions, given in terms of the parameters
δ, λ and the driving Lévy process (Lt)t≥0. Recall the notion of Ψ(κ) from
Lemma 1. Also, for x ≥ 0, denote log+ x = log(max{x, 1}). Further, as in
Section 4, we assume λ > 0 throughout to avoid a deterministic volatility.

We start with the tail behaviour of σ2
∞. It can be derived by a simple

transformation applied to Lemma 4 of Rivero [26]. For completeness, we shall
not deduce it from his result, but rather include a short proof along the lines
of [26].

Theorem 6. [Pareto tail behaviour of σ]
Suppose there is κ > 0 such that

E|L1|2κ log+ |L1| <∞ and Ψ(κ) = 0. (24)

Let (σ2
t )t≥0 be the stationary version of the squared volatility process (which

exists by Lemma 1(d)). Then there is a constant C > 0 (which does not depend
on t) such that, for any t ≥ 0,

lim
x→∞

xκP (σ2
t > x) = C. (25)

Proof. From (7) it is seen that the volatility process (σ2
t )t≥0 satisfies

σ2
t = e−Xt−σ2

0 + β

∫ t

0

eXs−Xt− ds, t > 0,

where σ2
0 is independent of

(
e−Xt− , β

∫ t
0

eXs−Xt− ds
)

by definition of the

COGARCH volatility. Thus (since σ2
0
D= σ2

t
D= σ2

∞) the stationary solution
σ2
∞ satisfies for every t > 0 the distributional fixed point equation

σ2
∞

D= Mtσ
2
∞ +Qt,

where σ2
∞ is independent of (Mt, Qt) and
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Mt
D= e−Xt , Qt

D= β

∫ t

0

e−Xs ds.

The claim then follows from Theorem 4.1 in Goldie [18], once we have shown
that there is some t > 0 such that

(i) For no r > 0 is the law of −Xt concentrated on rZ
(ii)E|Mt|κ = 1
(iii)E|Mt|κ log+ |Mt| <∞
(iv)E|Qt|κ <∞.

To show (i), recall that (−Xs)s≥0 is a Lévy process of finite variation
with drift γ0,−X1 := γ0,−X = log δ, zero Gaussian component and non-zero
Lévy measure Π−X1 := Π−X being concentrated on (0,∞). The character-
istic triplet of the Lévy process (−Xs)s≥0 is the characteristic triplet of the
infinitely divisible distribution −X1. For fixed t, the characteristic triplet of
−Xt is t times the characteristic triplet of −X1. In particular, the drift and
Lévy measure of −Xt satisfy γ0,−Xt = tγ0,−X1 and Π−Xt = tΠ−X1 . Now let
r > 0. Then −Xt is supported on rZ if and only if −r−1Xt is supported on
Z, which is equivalent to −r−1Xt having drift γ0,−r−1Xt in Z and its Lévy
measure being supported on Z, see Sato [24], Corollary 24.6. In terms of −Xt

this is equivalent to r−1t log δ ∈ Z and Π−Xt being supported on rZ. Since
the supports of the Lévy measures Π−X1 and Π−Xt are the same for every
t > 0, but since the drift terms differ by a factor t, there cannot exist positive
numbers r1 and r2 such that

r−1
1 log δ ∈ Z, supp (Π−X1) ⊂ r1Z, r−1

2

√
2 log δ ∈ Z and

supp (Π−X√2
) ⊂ r2Z.

This gives (i), by chosing t either equal to 1 or to
√

2.
For (ii), note that

E|Mt|κ = exp{logEe−κXt} = exp{tΨ(κ)} = 1

by assumption. Furthermore, Emax(0,−Xt)e−κXt < ∞ if and only if∫
x>1

xeκxΠ−X(dx) < ∞, see Sato [24], Theorem 25.3. Using the fact that
ΠX is the image measure of ΠL under the transformation R → (−∞, 0],
y 7→ − log(1 + (λ/δ)y2), this is equivalent to∫

|y|>
√

(e−1)δ/λ

(
1 +

λ

δ
y2

)κ
log
(

1 +
λ

δ
y2

)
ΠL(dy) <∞,

which again is equivalent to E|L1|2κ log+ L2
1 <∞, showing (iii).

From (14) follows −Xt ≥ t log δ. Thus Ee−κXt <∞ implies Eeκ|Xt| <∞,
giving E exp{κ sup0≤s≤t |Xs|} <∞, see Sato [24], Theorem 25.18. Claim (iv)
then follows from

E|Qt|κ = βκE

(∫ t

0

e−Xs ds
)κ
≤ (βt)κE exp{κ sup

0≤s≤t
|Xs|} <∞.
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A sufficient condition for (24) to hold is:

Proposition 5. [A sufficient condition]
Suppose that (12) holds. Let D := {d ∈ [0,∞) : E|L1|2d < ∞} and d0 :=
supD ∈ [0,∞]. Suppose that d0 6∈ D, or that there is θ0 > 0 such that
0 < Ψ(θ0) <∞. Then (24) holds.

Proof. Suppose d0 6∈ D. Then d0 > 0 and D is an interval containing [0, ε) for
some ε > 0. Lemma 1 shows that Ψ(d) is finite for d ∈ D, while limd↗d0 Ψ(d) =
Ψ(d0) = +∞. This follows by application of Fatou’s Lemma to (17). Choose
θ0 ∈ (0, d0) such that Ψ(θ0) > 0. Now Ψ is C1 on (0, θ0), and it follows from
(17) that

Ψ ′(d) = log δ +
∫
R

(
1 +

λ

δ
y2

)d
log
(

1 +
λ

δ
y2

)
ΠL(dy)

for 0 < d < d0. Letting d↘ 0, it follows that

lim
d↘0

Ψ ′(d) = log δ +
∫
R

log
(

1 +
λ

δ
y2

)
ΠL(dy) < 0

by (12). Since Ψ(0) = 0 and Ψ is continuous on [0, θ0), it follows that there
is θ1 > 0 such that Ψ(θ1) < 0, and hence there exists κ ∈ (θ1, θ0) such that
Ψ(κ) = 0. Since 0 < κ < θ0 < d0, finiteness of E|L1|2θ0 implies finiteness of
E|L1|2κ log+ |L1|.

If there is a θ0 > 0 such that 0 < Ψ(θ0) < ∞ then (17) shows that
E|L1|2θ0 <∞, so θ0 ∈ D. We then find κ > 0 such that Ψ(κ) = 0 as before.

Example 1. (a) Let 0 < δ < 1, λ > 0, and suppose that (12) holds. Then if
all moments of L1 exist, or if |L1| has a Pareto like tail, then σ2

∞ has Pareto
like tail. This follows readily from Proposition 5 and Theorem 6. For example
when L1 is generalised inverse Gaussian GIG(a1, a2, a3) with a3 > 0 (see
Section 5.2), then all moments of L1 exist.
(b) Suppose that E|L1|2d <∞ for some d > 0. Then for every κ ∈ (0, d) there
exist δκ ∈ (0, 1) and λκ > 0 such that σ2

∞ exists and has Pareto like tails. To
see this, define

δκ := λκ := exp
{
− 1
κ

∫
R

(
(1 + y2)κ − 1

)
ΠL(dy)

}
.

Then δκ ∈ (0, 1) and with these parameters, Ψ(κ) = 0. The claim then follows
from Theorem 6.

Our next aim is to show how the Pareto like tail of σ2
∞ carries over to

a Pareto like tail of the distribution of Gt for the COGARCH process itself.
Before we start proving this, we need the following two lemmas. The first is
well known, but for convenience we outline a short proof. Note that no inde-
pendence assumptions are made. For the definition and properties of regularly
varying functions we refer to Bingham et al. [8], or also Feller [17].
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Lemma 2. Let Y and Z be random variables an a common probability space
such that Y has regularly varying right tail with index −κ < 0. Let d > κ and
suppose that E|Z|d <∞. Then

lim
x→∞

P (Y + Z > x)
P (Y > x)

= 1.

Proof. E|Z|d < ∞ implies limx→∞ xd
′
P (|Z| > x) = 0 for every d′ < d, so

limx→∞
P (|Z|>x)
P (Y >x) = 0. Then lim supx→∞

P (Y+Z>x)
P (Y >x) ≤ 1 follows from

P (Y + Z > x) ≤ P (Y > x(1− ε)) + P (Z > xε), x > 0, ε > 0.

To show lim infx→∞
P (Y+Z>x)
P (Y >x) ≥ 1, note that for arbitrary ε > 0,

P (Y +Z > x) ≥ P (Y > (1+ε)x,Z > −εx) ≥ P (Y > (1+ε)x)−P (Z ≤ −εx)),

so that

lim inf
x→∞

P (Y + Z > x)
P (Y > x)

≥ lim
n→∞

P (Y > (1 + ε)x)
P (Y > x)

− lim sup
x→∞

P (Z ≤ −εx)
P (Y > x)

= (1 + ε)−κ.

The following lemma seems intuitively clear. However, its proof requires
some technicalities.

Lemma 3. Let (Lt)t≥0 be a Lévy process of finite variation, and let Xt be

given by (6). Let θ > 0 and t0 > 0. Then P
(∫ t0

0
e−θXs− dLs > 0

)
> 0 if and

only if (−Lt)t≥0 is not a subordinator.

Proof. For simplicity in notation we assume θ = 1 throughout. It is clear that
if (−Lt)t≥0 is a subordinator, then P

(∫ t0
0

e−Xs− dLs > 0
)

= 0, so we only
have to prove the converse. So suppose that (Lt)t≥0, with Lévy measure ν and
drift γ0, is not the negative of a subordinator. Suppose first that ν|(0,∞) 6= 0.
Then there are 0 < a < b <∞ such that ν|(a,b) > 0.

Let t0 > 0 be fixed. Let 0 < ε < min{1/2, a, t0} and k ∈ N0. Define the
sets B1,ε, B2,ε and B3,ε,k by

B1,ε :=

ω :
∑

0<s≤t0−ε

|∆Ls(ω)| < ε

 ,

B2,ε :=

ω :
∑

t0−ε<s≤t0,|∆Ls(ω)|≤a

|∆Ls(ω)| < ε

 ,

B3,ε,k := {ω : ∆Ls(ω) ∈ (a, b) happens for exactly k values of s in (t0 − ε, t0]}
∩ {ω : ∆Ls(ω) ∈ R \ [−a, b) never happens for s in (t0 − ε, t0]} .
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Since (Lt)t≥0 is of finite variation and ν(a, b) > 0, it follows that P (B1,ε) >
0, P (B2,ε) > 0 and P (B3,ε,k) > 0 (see Sato [24], Theorems 21.9 and 24.10).
Moreover, since (Ls)0≤s≤t0−ε and (Ls − Lt0−ε)s≥t0−ε are independent and
since for any Lévy process the occurence of large jumps is independent from
the occurence of small jumps, it follows that B1,ε, B2,ε and B3,ε,k are all
independent. In particular, for Bε,k := B1,ε ∩ B2,ε ∩ B3,ε,k it follows that
P (Bε,k) > 0.

From (6) follows, for any t > 0,

t log δ ≤ −Xt ≤
∑

0<s≤t

log
(

1 +
λ

δ
(∆Ls)2

)
.

In particular, on the set Bε,k,

−Xt ≤
λ

δ

∑
0<s≤t

(∆Ls)2 ≤ λ

δ

∑
0<s≤t0−ε

|∆Ls| ≤
λε

δ
≤ λ

δ
, 0 ≤ t ≤ t0 − ε,

−Xt ≤
∑

0<s≤t

log
(

1 +
λ

δ
(∆Ls)2

)
≤ λ

δ
+ k log

(
1 +

λ

δ
b2
)
, t0 − ε < t ≤ t0.

Setting c1 := et0 log δ and c2 := eλ/δ, we obtain for 0 < ε < min{1/2, a, t0}
and k ∈ N0 on the set Bε,k,

c1 ≤ e−Xs− ≤

{
c2, for s ≤ t0 − ε,
c2
(
1 + λ

δ b
2
)k
, for t0 − ε < s ≤ t0.

From this we derive on Bε,k the estimate∫ t0

0

e−Xs− dLs

=

 ∑
0<s≤t0−ε

+
∑

t0−ε<s≤t0,|∆Ls|≤a

+
∑

t0−ε<s≤t0,∆Ls∈(a,b)

 e−Xs−∆Ls

+γ0

∫ t0−ε

0

e−Xs− ds+ γ0

∫ t0

t0−ε
e−Xs− ds

≥ −c2ε− c2
(

1 +
λ

δ
b2
)k

ε+ kc1a− |γ0|c2t0 − |γ0|c2
(

1 +
λ

δ
b2
)k

ε.

Choosing k so large such that kc1a−|γ0|c2t0 > 0 and then ε sufficiently small,
the last estimate will be strictly positive and we obtain for such ε and k that∫ t0

0
e−Xs−(ω) dLs(ω) > 0 for ω ∈ Bε,k. Since P (Bε,k) > 0, the claim follows

for ν|(0,∞) 6= 0.
Now suppose that ν|(0,∞) = 0. Since (−Lt)t≥0 is not a subordinator,

the drift γ0 of (Lt)t≥0 must be strictly positive. Define the set Dε,k as
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ω :
∑

0<s≤t0 |∆Ls| < ε
}

. Then P (Dε,k) > 0, and with c1 and c2 as before it
is the case that, on Dε,k,∫ t0

0

e−Xs− dLs =
∑

0<s≤t0

e−Xs−∆Ls + γ0

∫ t0

0

e−Xs− ds ≥ −c2ε+ γ0c1t0,

showing that P
(∫ t0

0
e−Xs− dLs > 0

)
> 0 when ε is chosen such that ε <

γ0c1t0/c2.

The following theorem now gives the Pareto type tail behaviour of Gt.
We need slightly more stringent moment conditions than in Theorem 6, and
assume that the driving Lévy process is of finite variation.

Theorem 7. [Tail behaviour of G]
Suppose there is κ > 0 and d > 4κ such that

E|L1|d <∞ and Ψ(κ) = 0. (26)

Suppose further that (Lt)t≥0 is of finite variation. Let (σ2
t )t≥0 be the stationary

version of the volatility process, and Gt =
∫ t

0
σs dLs the corresponding CO-

GARCH process. Then if (−Lt)t≥0 is not a subordinator, for every t > 0 there
exists a positive constant C1,t such that

lim
x→∞

x2κP (Gt > x) = C1,t,

and if (−Lt)t≥0 is a subordinator, then Gt ≤ 0 a.s. Similarly, if (Lt)t≥0 is
not a subordinator, then there exists C2,t > 0 such that

lim
x→∞

x2κP (Gt ≤ −x) = C2,t,

and if (Lt)t≥0 is a subordinator, then Gt ≥ 0 a.s.

Proof. For 0 ≤ s ≤ t, define

As := e−Xs− , Bs := β

∫ s

0

eXu−Xs− du.

Then from (7)

σs =
√
Asσ2

0 +Bs =
√
Asσ0 +

Bs√
Asσ2

0 +Bs +
√
Asσ2

0

.

Defining

Yt := σ0

∫ t

0

√
As dLs, ζs :=

Bs√
Asσ2

0 +Bs +
√
Asσ2

0

, and

Zt :=
∫ t

0

ζs dLs,
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we obtain

Gt =
∫ t

0

σsdLs = Yt + Zt, t > 0.

From Theorem 6 we know that limx→∞ x2κP (σ0 > x) = C for some pos-
itive constant C. Suppose we show that there is an d′ > 2κ such that

E
∣∣∣∫ t0 √As dLs

∣∣∣d′ < ∞. Then a result of Breiman [9], using the indepen-

dence of σ0 and
∫ t

0

√
As dLs, yields the existence of strictly positive constants

C1,t, C2,t such that

lim
x→∞

x2κP (Yt > x) = C1,t, lim
x→∞

x2κP (Yt ≤ −x) = C2,t, (27)

provided P
(∫ t

0

√
As dLs > 0

)
> 0 and P

(∫ t
0

√
As dLs < 0

)
> 0, respectively.

We shall verify the required moment condition with d′ := d/2. Note that∣∣∣∣∫ t

0

√
As dLs

∣∣∣∣ ≤ sup
0≤s≤t

e−Xs/2 ‖Lt‖TV,

where ‖Lt‖TV denotes the total variation of (Ls)0≤s≤t on [0, t], and we also
have that E sup0≤s≤t e−d

′Xs < ∞ since Ee−d
′X1 < ∞ (as in the proof of

Theorem 6), and that E‖Lt‖2d
′

TV is finite since E|L1|2d
′

is finite by assumption
(see Sato [24], Theorem 21.9); also, it follows from Hölder’s inequality that

E

(
sup

0≤s≤t
e−Xs/2‖Lt‖TV

)d′
≤
(
E sup

0≤s≤t
e−d

′Xs

)1/2 (
E‖Lt‖2d

′

TV

)1/2

<∞.

So the moment condition is established, with d′ = d/2 > 2κ.
To get an estimate for Zt, note that Xu ≤ −u log δ by (6), so that for

0 ≤ s ≤ t,

ζs ≤
√
Bs =

√
β
√
As

√∫ s

0

eXu du ≤
√
β
√
tδ−t

√
As.

This implies, with d′ as above,

E|Zt|d
′
≤ βd

′/2td
′/2δ−d

′t/2E

∣∣∣∣ sup
0≤s≤t

e−Xs/2‖Lt‖TV

∣∣∣∣d′ <∞,
as already shown. Now if P

(∫ t
0

√
As dLs > 0

)
> 0, i.e. (−Lt)t≥0 is not a sub-

ordinator by Lemma 3, an application of Lemma 2 to (27) gives the result. On
the other hand, if P

(∫ t
0

√
As dLs > 0

)
= 0, i.e. if (−Lt)t≥0 is a subordinator,

then also Gt =
∫ t

0
σs dLs ≤ 0 a.s. The assertion for the left tail behaviour of

Gt follows similarly.
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Examples for the application of Theorem 7, similar to Example 1(a) in
the case when all moments of L1 exist, or Example 1(b) can be easily stated.
We conclude this section with the observation that with the same methods of
proof the tail behaviour of the integrated squared volatility can be determined.
Here, a weaker moment condition is sufficient:

Proposition 6. [Tail behaviour of the integrated squared volatility]
Let the conditions of Theorem 6 be satisfied. In addition assume that there is
d > 2κ such that E|L1|d < ∞. Let (σ2

t )t≥0 be the stationary version. Then,
for any t > 0 there is a constant Ct > 0 such that

lim
x→∞

xκP

(∫ t

0

σ2
sds > x

)
= Ct.

6 Conclusion

We have compared the probabilistic properties of both the stochastic volatil-
ity model of Barndorff-Nielsen and Shephard and the COGARCH process.
Both volatility models are positive Markov processes, which exhibit jumps
and decrease exponentially between jumps. Although the log price process is
defined in terms of an independent Brownian motion for the OU model and
in terms of the same driving Lévy process for the COGARCH process, the
autocorrelation structure of the returns is similar for both processes. Further-
more, we have seen that the tail behaviour in the OU model depends heavily
on the driving Lévy process, while for the COGARCH model Pareto like tails
occur in most cases under weak regularity conditions.
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