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1 Introduction

Extreme value theory for financial models mostly concerns the martingale
part of the logarithm of a price process, since random volatility determines
the extreme risk in price fluctuations. The increments (Yn)n∈Z and (Yt)t∈R of
length 1 of this martingale part often have the structure

Yn = σnεn , n ∈ Z , or Yt =
∫

(t−1,t]

σs−dLs , t ∈ R ,

for a discrete time or continuous time model, respectively. Here, the volatility
is modelled by σ, and (εn)n∈Z or (Lt)t∈R are typically i.i.d. sequences or a
Lévy process, respectively. The usual prerequisite of extreme value theory for
a stochastic process is its strict stationarity. Note that in most cases strict
stationarity of the log price increment process Y is inherited from station-
arity of the volatility process σ. Consequently, we will present conditions for
strict stationarity of the models below, followed by the extremal analysis of a
stationary version.

The importance of extreme value theory for such pricing models is two-fold.
Firstly, the tail behavior for large absolute arguments describes the fluctua-
tions of the prices. We distinguish between light- and heavy-tailed models.
Whereas light-tailed means normal or exponential models, heavy-tailed mod-
els are defined via regular variation. We say a random variable X has regularly
varying tail, if there are α > 0 and slowly varying ` : (0,∞) → (0,∞), i.e.,
limx→∞ `(tx)/`(x) = 1 for all t > 0, such that

P (X > x) = `(x)x−α , x > 0 .

We write X ∈ R(−α). If the volatility σ has regularly varying tail and the
noise ε or L is light tailed and independent of the volatility, then the log price
increments are again regularly varying by Breiman’s classical result. The same
holds for a light-tailed volatility and independent regularly varying noise. If
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both, volatility and noise, are light-tailed, the distribution of the product
depends even asymptotically on both factors and may be more difficult to
estimate. Symmetry or tail balance of the right and left tail of the noise often
simplifies the calculations.

Secondly, volatility clusters on high levels induce extreme price clusters,
which can cause a particularly risky situation. For discrete time models such
clusters are described by a limit of point processes of exceedances over high
thresholds. For certain models this limit is simply a Poisson process, indicating
that exceedances happen as single points and at completely random times.
However, more realistic models capture the fact that not a Poisson process,
but a compound Poisson turns up in the limit, which describes the cluster
size distribution. A crude, but simple measure of the cluster size of extremes
is the extremal index θ ∈ (0, 1], where 1/θ can be interpreted as the mean size
of a cluster. It also appears in the distributional limit of the running maxima

MZ
n = max{Z1, . . . , Zn} , n ∈ N ,

of a stationary sequence (Zn)n∈Z. More precisely, under weak conditions on
Z1, there exist an > 0 and bn ∈ R such that the Poisson condition

nP (Z1 > anx + bn) = − log G(x) , x ∈ R , (1)

holds, and if the process satisfies further mixing conditions, then the extremal
index of (Zn)n∈Z is the unique number θ ∈ (0, 1] such that

lim
n→∞

P (a−1
n (MZ

n − bn) ≤ x) = Gθ(x) , x ∈ R . (2)

Here, G is an extreme value distribution, i.e. it is of the same type as either
a Fréchet distribution Φα(x) = 1(0,∞)(x) exp(−x−α) for some α > 0 (heavy-
tailed case), a Gumbel distribution Λ(x) = exp(−e−x) (light-tailed case), or
a Weibull distribution Ψα for some α > 0. We refer to the books [11, 24] for
this and further information about extreme value theory.

For θ = 1 we interpret the stochastic process as a process without clusters
in the extremes, whereas if θ < 1 we speak of a process with cluster pos-
sibilities in the extremes. Using a point process approach the whole cluster
size distribution can be derived giving much more insight into the extremal
behaviour of time series models. This, however, would go beyond this article
and we refer to the references given throughout for more details.

As for discrete time models, the extremal behaviour of continuous time
models can be described by the limit behaviour of point processes. A simple
measure is again given by an extension of the extremal index: if (Zt)t∈R is a
continuous time process, we define for fixed h > 0 the discrete time process

MZ
k (h) := sup

(k−1)h≤t≤kh

Zt , k ∈ Z .

Denoting θ(h) the extremal index of the sequence (MZ
k (h))k∈Z, we follow [13]

and call θ(h) for h ∈ (0,∞) the extremal index function of Z. The function θ is
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increasing, and we shall say that the continuous time process Z has extremal
clusters if limh→0 θ(h) < 1, i.e. if there is some h > 0 such that the discrete
skeleton (MZ

k (h))k∈Z has extremal index less than 1, i.e. clusters.
There exist various publications on extreme value theory for time depen-

dent data; we mention e.g. [7, 8, 11, 17, 18, 19, 20, 24] and references therein.

2 Discrete-time models

2.1 Stochastic volatility models

The simple stochastic volatility model is given by

Yn = σnεn , log σ2
n = α0 +

∞∑

j=0

cjηn−j , n ∈ Z , (3)

where (ηn)n∈Z is iid N(0, s2) with
∑∞

j=0 c2
j < ∞ and (εn)n∈Z is iid, indepen-

dent of (ηn)n∈Z. This covers the case when (log σ2
n)n∈Z is a causal ARMA

process with iid Gaussian noise (ηn)n∈Z, the most prominent case being the
volatility model of Taylor [28]:

Yn = σnεn, log σ2
n = α0 + ψ log σ2

n−1 + ηn, n ∈ Z, |ψ| < 1, (4)

when the log volatility is a causal Gaussian AR(1) process.
Extreme value analysis for (3) is based on the transformation

Xn = log Y 2
n = α0 +

∞∑

j=0

cjηn−j + log ε2
n , n ∈ Z , (5)

which is a Gaussian linear process plus an iid noise. From [5, 7] we have:

Theorem 1 (Tail behaviour and extremes of the SV model).
Assume the stochastic volatility model (3) as above with Xn defined by (5).
(a) If ε1 is N(0, 1) denote s̃2 = s2

∑∞
j=0 c2

j and k = log(2/s̃2).
Then the tail of the stationary process (Xn)n∈Z satisfies as x →∞

P (X1 > x + α0) =
s̃2

√
π

exp{− x2

2s̃2
+

x log x

s̃2
+

(k − 1)x
s̃2

+
(k + s̃2) log x

s̃2

− (log x)2

2s̃2
− k2

2s̃2
+ O(

(log x)2

x
)} .

The tail of the stationary log price increments is given by

P (Y1 >
√

y) =
1
2
P (|Y1| > √

y) =
1
2
P (X1 > log y) , n ∈ Z . (6)

If furthermore the autocorrelation function ρ of (log σ2
n)n∈Z satisfies
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ρ(h) = corr(log σ2
n, log σ2

n+h) = o((log h)−1), h →∞, (7)

then each of the sequences (Xn)n∈Z and (Yn)n∈Z has extremal index 1, and
the extreme value distribution G appearing in (1) and (2) is the Gumbel dis-
tribution Λ for both X and Y.
(b) Assume that ε1 ∈ R(−α) for some α > 0. Then as x →∞ we have

P (Y1 > x) ∼ E(σα
1 ) P (ε1 > x) .

If moreover for p ∈ (0, 1] the tail balance condition for x → ∞ P (ε1 > x) ∼
pP (|ε1| > x) holds, then (Yn)n∈Z has extremal index 1 and the extreme value
distribution G appearing in (1) and (2) is the Fréchet distribution Φα.

Here, f(x) ∼ g(x) as x → ∞ for two strictly positive functions f and
g means that limx→∞ f(x)/g(x) = 1. Berman’s condition (7) is very weak
and for example satisfied, whenever log σ2

n follows a causal ARMA equation
(in particular for the volatility model (4) of Taylor). This means that for
most stochastic volatility models (3) with Gaussian η and either light- or
heavy-tailed noise ε, the extremal index is 1, so that the point processes of
exceedances over high thresholds converge to a Poisson process. The model
cannot model clusters of extremes.

Extensions of the ηn to non-Gaussian random variables in (3) have been
considered. In most cases the qualitative behaviour remains the same provided
that the processes σ and ε are independent and η1 is light-tailed; see [9, 10, 22].

2.2 The EGARCH model

A model related to stochastic volatility models is the EGARCH model of
Nelson [26] given by

Yn = σnεn, log σ2
n = α0 +

∞∑

j=1

cjg(εn−j), n ∈ Z, (8)

where (εn)n∈Z is iid normal (or more generally follows a generalised error dis-
tribution GED(ν)), the real coefficients α0 and (cj)j∈N decay sufficiently fast,
and g is a deterministic function. The infinite moving average representation
for log σ2 typically arises from EGARCH(p, q) equations of the form

log σ2
n = α0 +

p∑

j=1

αjg(εn−j) +
q∑

j=1

βj log(σ2
n−j) (9)

with real coefficients αj and βj . The standard choice for g is g(x) = ϕx +
γ(|x| − E|ε0|), where ϕ and γ are real constants, so that g is an affine linear
function and g(εn) allows the volatility to respond asymmetrically to negative
and positive innovations. Depending on the size of ϕ and γ, different cases
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arise, but the most important one for γ − ϕ > γ + ϕ > 0, in which case a
negative innovation increases the volatility more than a positive innovation of
the same modulus (i.e. it models the leverage effect).

As for stochastic volatility models, extreme value analysis for (8) is based
on the transformed process (which is stationary by (8))

Xn = log Y 2
n = α0 +

∞∑

j=1

cjg(εn−j) + log ε2
n, n ∈ Z.

It then follows from [9, 10, 22]:

Theorem 2 (Tail behaviour and extremes of EGARCH).
Assume the EGARCH model as above with (εn)n∈N iid N(0, 1) and γ − ϕ >
γ + ϕ > 0. Suppose further that the coefficients (cj)j∈N are non-negative and
that cj = O(j−δ) as j →∞ for some δ > 1. Denote

A := (γ − ϕ)2
∞∑

j=1

c2
j and B := −γE|ε0|

∞∑

j=1

cj .

Then the stationary processes (Xn)n∈Z and (Yn)n∈Z satisfy as x →∞
P (X1 > α0 + x) = exp

(−[x2 − x log x− (B + log(2/A)− 1)x]/A + o(x)
)
,

and (6), respectively. Both processes (Xn)n∈Z and (Yn)n∈Z have extremal in-
dex 1, and the extreme value distribution G appearing in (1) and (2) is the
Gumbel distribution.

Observe that for an EGARCH(p, q) process as in (9) with α1, . . . , αp,
β1, . . . , βq ≥ 0 and such that

∑q
j=1 βj < 1, the coefficients (cj)j∈N in (8)

are automatically non-negative and decay exponentially, so that Theorem 2
applies. In particular, the EGARCH process with normal innovations can-
not cluster. Extensions to other light-tailed innovations ε such as GED(ν)
distributions with ν > 1 are possible, cf. [10].

2.3 The GARCH(1,1) model

In the GARCH(1,1) model of Engle [12] and Bollerslev [4] the log price incre-
ments (Yn)n∈Z and the volatilities (σn)n∈Z are given by

Yn = σnεn , σ2
n = γ + αY 2

n−1 + βσ2
n−1 , n ∈ Z ,

where (εn)n∈Z are iid and α, β, γ > 0. Rewriting

σ2
n+1 = γ + (αε2

n + β)σ2
n , n ∈ Z ,

it becomes clear that a stationary and causal solution exists if and only if
E log(αε2

1 + β) < 0. The following result on the tail behaviour is included in
Kesten’s seminal work; see [8] for further results and references. The calcula-
tion of the extremal index can be found in [25, 18].
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Theorem 3 (Tail behaviour and extremes of GARCH(1,1)).
Assume the GARCH(1,1) model such that ε1 is symmetric and has a positive
density on R such that E(|ε1|h) < ∞ for h < h0 and E(|ε1|h0) = ∞ for
h ≥ h0 for some h0 ∈ (0,∞]. Then there exist unique κ > 0 and c > 0 such
that

E(αε2
1 + β)κ/2 = 1

and the stationary distributions have tails for x →∞

P (σ1 > x) ∼ cx−κ and P (Y1 > x) ∼ 1
2
cE(|ε1|κ)x−κ .

The extremal indices of (σn)n∈Z and (|Yn|)n∈Z are given by

θσ =
∫ ∞

1

P
(

sup
n≥1

n∏

j=1

(αε2
j + β) ≤ y−1

)κ

2
y−(κ/2)−1dy ∈ (0, 1) and

θ|Y | =
E(|ε1|κ − supm≥1 |εm+1|κ

∏m
j=1(αε2

j + β)κ/2)+

E|ε1|κ ∈ (0, 1),

respectively. Also the extremal index θY ∈ (0, 1), and for all three sequences
σ, |Y | and Y , the extreme value distribution G appearing in (1) and (2) is
the Fréchet distribution Φκ.

We conclude that the GARCH(1,1) process is able to model clusters in the
extremes. Extensions to higher order GARCH processes are given in [3, 8].

3 Continuous-time models

While for discrete time volatility models many results on the extremal be-
haviour are formulated for both the volatility process and the log price in-
crements process, with few exceptions, most of the literature on extremes for
continuous time models concentrates on the volatility process. Hence in the
following we will often state results concerning the volatility process only.

3.1 The volatility model of Wiggins

In the volatility model of Wiggins [30], see also [27], the log volatility is mod-
elled as a Gaussian Ornstein-Uhlenbeck process. More precisely, the log price
increments Yt and the volatility σt are given by

Yt =
∫

(t−1,t]

σs− dBs, d log σ2
t = (b1 − b2 log σ2

t ) dt + δ dWt, t ∈ R, (10)

with two independent standard Brownian motions B and W , and real con-
stants b1, b2 and δ 6= 0. The volatility has a stationary solution if and only if
b2 > 0, in which case it is given by
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log σ2
t =

∫ t

−∞
e−b2(t−s)(b1 ds + δ dWs), t ∈ R.

Sampling the log volatility at integer points results in a causal Gaussian AR(1)
process, so that the Euler type approximation Y n := σn−1(Bn−Bn−1) to (10)
is the discrete time volatility model (4) of Taylor.

From the above representation it is clear that log σ2
t is N(b1/b2, δ

2/(2b2))
distributed. The extremal index function of log σ2 and hence σ2 follows from
results in [24] as shown in [13].

Theorem 4 (Extremal index function of the volatility).
Under the assumptions above, the extremal index function θσ(h) for h ∈ (0,∞)
of the stationary volatility process σ2 in (10) is identical 1.

We conclude that the volatility in the model (10) does not allow for ex-
tremal clusters. This continues to hold if the Gaussian Ornstein-Uhlenbeck
process for the log volatility in (10) is replaced by any Gaussian process with
continuous sample paths satisfying (7). While it is easy to show that the sta-
tionary log price increment Y1 in (10) is distributed as

( ∫ 1

0
σ2

t dt
)1/2

ε1 with ε1

standard normally distributed and independent of (σt)t∈R, we are not aware of
any explicit expressions for the tail behaviour and the extremal index function
of Y1 or log Y 2

1 as in Theorem 1(a).

3.2 The Barndorff-Nielsen and Shephard (BNS) model

In [1, 2] Barndorff-Nielsen and Shephard model the volatility process as a
Lévy driven Ornstein-Uhlenbeck (OU) process, which results in the model

Yt =
∫

(t−1,t]

σs−dBs , σ2
t =

∫ t

−∞
e−λ(t−s)dLλs , t ∈ R , (11)

where B is Brownian motion, λ > 0 and L is a Lévy process with increasing
sample paths (i.e. a subordinator), independent of B. The volatility process
is stationary and satisfies the SDE dσ2

t = −λσ2
t dt + dLλt.

The extremal behaviour of this model depends on the driving Lévy process
and has been analysed in [13, 14, 15]. For regularly varying noise, as shown
in [14] one obtains the following.

Theorem 5 (Tail and extremes for noise in R(−α)).
Consider the stationary BNS-model (11) and assume that L1 ∈ R(−α) with
α > 0. Then σ1 ∈ R(−2α), Y1 ∈ R(−2α) and we have for x →∞

P (σ2
1 > x) ∼ α−1P (L1 > x) ,

P (Y 2
1 > x) ∼ E(|ε1|2α)

(
(1− e−λ)α

αλα
+

1
λα

∫ 1

0

(1− es−λ)α ds

)
P (L1 > x) ,

P (Y1 > x) =
1
2
P (Y 2

1 > x2),
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respectively, where ε1 is a standard normal random variable. The extremal
index function θσ of the volatility process is furthermore given by

θσ(h) = (hαλ)(hαλ + 1)−1 , h > 0 .

Observe that for a regularly varying noise process, the tail of σ2 is of the
same order as that of the driving noise process. Also, since θσ(h) < 1, the
process exhibits cluster possiblities. This is in contrast to the case when L has
exponential tail as in the next theorem, see [13, 19]:

Theorem 6 (Tail and extremes for exponential type noise).
Consider the stationary BNS-model (11) as above and assume that L1 has an
exponential type distribution tail:

P (L1 > x) = c(x) exp
{− ∫ x

0
(a(y))−1 dy

}
, x > 0 ,

where limx→∞ c(x) = c > 0 and a > 0 is absolutely continuous with
limx→∞ a(x) = γ−1 and limx→∞ a′(x) = 0, where γ ∈ [0,∞). Assume also
that L1 ∈ S(γ), i.e. P (L2 > x) ∼ E(eγL1)P (L1 > x) as x → ∞ with
E(eγL1) < ∞. Then

P (σ2
1 > x) ∼ a(x)

x

Eeγσ2
1

EeγL1
P (L1 > x) , x →∞ .

In particular, P (σ2
1 > x) = o(P (L1 > x)) for x → ∞. The extremal index

function θσ is equal to 1, i.e. θσ(h) = 1 for all h > 0.

Brockwell [6] suggests to model the volatility in (11) by Lévy driven con-
tinuous time ARMA (CARMA) processes, with the CAR(1) process being
the OU process. As shown in [13, 14, 15], for CARMA processes driven by
regularly varying noise processes, clusters occur as in Theorem 5, while for
driving Lévy processes as described in Theorem 6, CARMA processes may
model clusters or may not, depending on the corresponding kernel function.
Todorov and Tauchen [29] suggest to model the volatility by a CARMA(2,1)
process with a mixture of gamma distributions as driving noise process. For
this model the results presented here do not apply.

3.3 Continuous-time GARCH(1,1) models

As a diffusion limit of GARCH(1,1) processes, Nelson [26] obtained

Yt =
∫

(max(0,t−1),t]

σs− dBs, dσ2
t = (β − ϕσ2

t ) dt + λσ2
t dWt, t ≥ 0, (12)

where B and W are independent standard Brownian motions and β ≥ 0, λ > 0
and ϕ ∈ R are parameters. It has a strictly stationary solution if and only
if 2ϕ/λ2 > −1 and β > 0, in which case the marginal distribution is inverse
gamma. The two independent driving processes in (12) is in contrast to the
situation for discrete time GARCH processes, where price and volatility are
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both driven by the same noise sequence (εn)n∈Z. Inspired by this, Klüppelberg,
Lindner and Maller [23] constructed another continuous time GARCH model,
termed COGARCH(1,1), which meets the features of discrete time GARCH
better and for which the volatility jumps, unlike for the diffusion limit (12).
Let (Lt)t≥0 be a Lévy process with non-zero Lévy measure and η, ϕ, β > 0 be
parameters. Defining the auxiliary Lévy process

Rt = ηt−
∑

0<s≤t

log(1 + ϕ(∆Ls)2) , t ≥ 0 ,

the log price increments Y and the volatility σ are given by

Yt =
∫

(max(0,t−1),t]

σs− dLs , σ2
t =

(
β

∫ t

0

eRs−ds + σ2
0

)
e−Rt , t ≥ 0 , (13)

where σ2
0 is independent of L. A sufficient condition for strict stationarity of

(13) is the existence of some κ > 0 such that

|L1|κ log+ |L1| < ∞ and E(e−R1κ/2) = 1 . (14)

Observe that the volatility in Nelson’s diffusion limit (12) has also a solution
(13), with Rt defined by

Rt := (ϕ + λ2/2)t− λWt, t ≥ 0.

For the stationary choice, we have

E(e−R1κ/2) = 1 with κ := 2 + 4ϕ/λ2 > 0. (15)

The following result is from [16, 19]:

Theorem 7 (Tail and extremes of continuous time GARCH).
Consider the stationary diffusion limit (12) or COGARCH(1,1) process as
above with κ > 0 as given by (15) or (14), respectively. Then there exists a
constant c > 0 such that

P (σ1 > x) ∼ cx−κ , x →∞ .

In the case of the GARCH(1,1) process, assume further that there is d >
max{1, κ} such that E|L1|2d < ∞ with κ > 0 as defined in (14) and that L
is not the negative of a subordinator. Denote Mt := Bt for the diffusion limit
(12) and Mt := Lt for the COGARCH(1,1) process. Then

P (Y1 > x) ∼ E

[(∫ 1

0

e−Rt−/2 dMt

)+
]κ

P (σ1 > x), x →∞,

and σ has extremal index function
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θσ(h) =
E(sup0≤t≤h e−Rtκ/2 − supt≥h e−Rtκ/2)+

E(sup0≤t≤h e−Rtκ/2)
< 1 , h > 0.

The extremal index of the discrete time process (Yn)n∈N of the log price incre-
ments at integer times is given by

θ =
E

([(∫ 1

0
e−Rt−/2dMt

)+
]κ

−maxk≥2

[(∫ k

k−1
e−Rt−/2dMt

)+
]κ)+

E

([(∫ 1

0
e−Rt−/2dMt

)+
]κ) < 1 .

It follows that both the diffusion limit and the COGARCH(1,1) can model ex-
tremal clusters. Since the diffusion limit (12) has continuous sample paths, one
can also consider its clustering behaviour via epsilon-upcrossings. Choosing
such an approach, the diffusion limit of Nelson does not cluster, as reported
in [19]. In particular, both notions of extremal clustering for processes with
continuous sample paths do not lead to the same interpretation.

Similar to the definition of COGARCH, a continuous time analogue to the
EGARCH process has been proposed in [21]. So far, no analogue to Theorem 2
for the continuous time EGARCH process seems to be available.
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