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Abstract This paper collects some of the well known probabilistic properties
of GARCH(p, q) processes. In particular, we address the question of strictly
and of weakly stationary solutions. We further investigate moment conditions
as well as the strong mixing property of GARCH processes. Some distribu-
tional properties such as the tail behaviour and continuity properties of the
stationary distribution are also included.

1 Introduction

Since their introduction by Engle (1982), autoregressive conditional het-
eroskedastic (ARCH) models and their extension by Bollerslev (1986) to gen-
eralised ARCH (GARCH) processes, GARCH models have been used widely
by practitioners. At a first glance, their structure may seem simple, but their
mathematical treatment has turned out to be quite complex. The aim of this
article is to collect some probabilistic properties of GARCH processes.

Let (εt)t∈Z be a sequence of independent and identically distributed (i.i.d.)
random variables, and let p ∈ N = {1, 2, . . .} and q ∈ N0 = N ∪ {0}. Further,
let α0 > 0, α1, . . . , αp−1 ≥ 0, αp > 0, β1, . . . , βq−1 ≥ 0 and βq > 0 be non-
negative parameters. A GARCH(p, q) process (Xt)t∈Z with volatility process
(σt)t∈Z is then a solution to the equations

Xt = σtεt, t ∈ Z, (1)

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j , t ∈ Z, (2)
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where the process (σt)t∈Z is non-negative. The sequence (εt)t∈Z is referred to
as the driving noise sequence. GARCH(p, 0) processes are called ARCH(p)
processes. The case of a GARCH(0, q) process is excluded since in that case,
the volatility equation (2) decouples from the observed process Xt and the
driving noise sequence. Note that in some articles (including the original
paper by Bollerslev (1986)) the definition of p and q for GARCH processes
is interchanged and the process defined in (1) with volatility given by (2) is
referred to as GARCH(q, p) rather than GARCH(p, q).

It is a desirable property that σt should depend only on the past innova-
tions (εt−h)h∈N, i.e. be measurable with respect to the σ-algebra generated
by (εt−h)h∈N. If this condition holds, we shall call the GARCH(p, q) process
causal. Then Xt is measurable with respect to the σ-algebra σ(εt−h : h ∈ N0)
generated by (εt−h)h∈N0 . Also, σt is independent of (εt+h)h∈N0 , and Xt is in-
dependent of σ(εt+h : h ∈ N), for fixed t. Often the requirement of causality
is added to the definition of GARCH processes. However, since we shall be
mainly interested in strictly stationary solutions which turn out to be auto-
matically causal for GARCH processes, we have dropped the requirement at
this point.

The requirement that all the coefficients α1, . . . , αp and β1, . . . , βq are non-
negative ensures that σ2

t is non-negative, so that σt can indeed be defined
as the square root of σ2

t . The parameter constraints can be slightly relaxed
to allow for some negative parameters, but such that σ2

t will still be non-
negative, see Nelson and Cao (1992). In the present paper, we shall however
always assume non-negative coefficients.

The paper is organized as follows: in Section 2 we collect the criteria un-
der which strictly stationary and weakly stationary solutions to the GARCH
equations exist. The ARCH(∞) representation for GARCH processes is given
in Section 3. In Section 4, we focus on conditions ensuring finiteness of mo-
ments, and give the autocorrelation function of the squared observations.
Section 5 is concerned with the strong mixing property and an application to
the limit behaviour of the sample autocorrelation function when sufficiently
high moments exist. In Section 6 we shortly mention the tail behaviour of
stationary solutions and their continuity properties. GARCH processes in-
dexed by the integers are addressed in Section 7. Finally, some concluding
remarks are made in Section 8.

For many of the results presented in this paper, it was tried to give at
least a short sketch of the proof, following often the original articles, or the
exposition given by Straumann (2005).

2 Stationary solutions

Recall that a sequence (Yt)t∈Z of random vectors in Rd is called strictly
stationary, if for every t1, . . . , tk ∈ Z, the distribution of (Yt1+h, . . . , Ytk+h)
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does not depend on h for h ∈ N0. When speaking of a strictly stationary
GARCH(p, q) process, we shall mean that the bivariate process (Xt, σt)t∈N0

is strictly stationary.

2.1 Strict stationarity of ARCH(1) and GARCH(1, 1)

Now suppose that (p, q) = (1, 1) or that (p, q) = (1, 0), that (εt)t∈Z is i.i.d.,
and that (Xt, σt)t∈Z satisfy (1), (2). Hence we have a GARCH(1, 1)/ARCH(1)
process, whose volatility process satisfies

σ2
t = α0 + β1σ

2
t−1 + α1σ

2
t−1ε

2
t−1 = α0 + (β1 + α1ε

2
t−1)σ

2
t−1, (3)

where β1 := 0 if q = 0. Denoting

At = β1 + α1ε
2
t , Bt = α0, and Yt = σ2

t+1, (4)

it follows that (Yt)t∈Z = (σ2
t+1)t∈Z is the solution of the random recurrence

equation Yt = AtYt−1 + Bt, where (At, Bt)t∈Z is i.i.d. As we shall see, every
strictly stationary solution (σ2

t )t∈Z of (3) can be expressed as an appropriate
function of the driving noise sequence (εt)t∈Z, so that stationarity of (σ2

t )t∈Z
implies stationarity of (σ2

t , εt)t∈Z and hence of (Xt, σt). Thus, the question
of existence of strictly stationary solutions of the GARCH(1, 1) process can
be reduced to the study of strictly stationary solutions of (3). Since we will
need multivariate random reccurence equations for the treatment of higher
order GARCH processes, we give their definition already in Rd. So let d ∈ N,
and suppose (At, Bt)t∈Z is an i.i.d. sequence, where At is a (d× d)-random
matrix and Bt is a d-dimensional random vector. The difference equation

Yt = AtYt−1 + Bt, t ∈ Z, (5)

is then called a random recurrence equation (with i.i.d. coefficients), where
the solution (Yt)t∈Z is a sequence of d-dimensional random vectors. Every
such solution then satisfies

Yt = AtYt−1 + Bt

= AtAt−1Yt−2 + AtBt−1 + Bt = · · ·

=

(
k∏

i=0

At−i

)
Yt−k−1 +

k∑

i=0




i−1∏

j=0

At−j


 Bt−i (6)

for all k ∈ N0, with the usual convention that
∏−1

j=0 At−j = 1 for the prod-
uct over an empty index set. Letting k → ∞, it is reasonable to hope
that for a stationary solution, limk→∞

(∏k
i=0 At−i

)
Yt−k−1 = 0 a.s. and
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that
∑k

i=0

(∏i−1
j=0 At−j

)
Bt−i converges almost surely as k → ∞. In the

GARCH(1, 1) and ARCH(1) case, this is indeed the case: let At, Bt and
Yt as in (4). By (6), we have

σ2
t+1 = Yt =

(
k∏

i=0

At−i

)
σ2

t−k + α0

k∑

i=0

i−1∏

j=0

At−j .

Since this is a sum of non-negative components, it follows that
∑∞

i=0

∏i−1
j=0 At−j

converges almost surely for each t, and hence that
∏k

i=0 At−i converges al-
most surely to 0 as k → ∞. Hence if (σ2

t )t∈Z is strictly stationary, then(∏k
i=0 At−i

)
σ2

t−k converges in distribution and hence in probability to 0 as
k → ∞. So in the ARCH(1) and GARCH(1, 1) case, there is at most one
strictly stationary solution (σ2

t )t∈Z = (Yt−1)t∈Z, given by

Yt :=
∞∑

i=0




i−1∏

j=0

At−j


Bt−i, t ∈ Z. (7)

On the other hand, it is clear that if (7) converges a.s. for some and hence
all t ∈ Z, where (At, Bt)t∈Z are the i.i.d. coefficients of the random recur-
rence equation (5) in Rd, then Yt, defined by (7), defines a strictly stationary
solution of (5).

We have seen that existence of a strictly stationary GARCH(1, 1)/ARCH(1)
process implies almost sure convergence of

∏k
i=0 A−i to 0 as k →∞. For the

converse, we cite the following result:

Proposition 1 (Goldie and Maller (2000), Theorem 2.1)
Let d = 1 and (At, Bt)t∈Z be i.i.d. in R × R. Suppose that P (B0 = 0) < 1,
P (A0 = 0) = 0, that

∏n
i=0 A−i converges almost surely to zero as n → ∞,

and that ∫

(1,∞)

log q

TA(log q)
P|B0|(dq) < ∞, (8)

where P|B0| denotes the distribution of |B0| and TA(y) :=
∫ y

0
P (|A0| <

e−x) dx for y ≥ 0. Then
∑∞

i=0

(∏i−1
j=0 At−j

)
Bt−i converges almost surely

absolutely for every t ∈ Z.

In the GARCH(1, 1) / ARCH(1) case, we have B0 = α0 > 0 and (8) clearly
holds. Observe that

∑∞
i=0

(∏i−1
j=0 At−j

)
Bt−i converges trivially almost surely

if P (A0 = 0) > 0, in which case also
∏∞

i=0 At−i = 0 a.s. Hence we see that
a strictly stationary solution of GARCH(1, 1) / ARCH(1) exists if and only
if

∏k
i=0 A−i converges almost surely to 0 as k → ∞. If P (A0 = 0) > 0

this is clearly the case, so suppose that β1 > 0 or that P (ε2
0 > 0) = 1.

Denoting Wt := log At,
∏∞

i=0 A−i = 0 a.s. is then equivalent to the almost
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sure divergence to −∞ of the random walk Sn :=
∑n

i=0 W−n. If EW+
0 < ∞,

then it is well known that Sn → −∞ if and only if EW+
0 < EW−

0 ≤ ∞, i.e.
either EW−

0 = ∞ or E|W0| < ∞ with EW0 < 0. Furthermore, Sn cannot
diverge almost surely to −∞ as n →∞ if EW−

0 < EW+
0 = ∞. Observe that

in the GARCH(1, 1) case we have β1 > 0, so that W0 ≥ log β1 > −∞, hence
EW−

0 < ∞, and it follows that there exists a strictly stationary solution of
the GARCH(1, 1) process if and only if E log(β1+α1ε

2
0) < 0. In the ARCH(1)

case, however, EW−
0 = ∞ can happen. If EW−

0 = ∞, it is known from Kesten
and Maller (1996) and Erickson (1973), that Sn → −∞ a.s. if and only if

∫

(0,∞)

x

E(W−
0 ∧ x)

dP (W+
0 ≤ x) < ∞.

With W0 = log α1 + log ε2
0, the latter condition can be easily seen to be

independent of α1 > 0. Summing up, we have the following characterisation
of stationary solutions of the GARCH(1, 1) and ARCH(1) equations. For the
GARCH(1, 1) case, and for the ARCH(1) case with E log+(ε2

0) < ∞ this is
due to Nelsen (1990). The ARCH(1) case with E log+(ε2

0) = ∞ was added
by Klüppelberg et al. (2004). Here, as usual, for a real number x we set
log+(x) = log(max(1, x)), so that log+(ε2

0) = (log ε2
0)

+.

Theorem 1 (Nelsen (1990), Theorem 2, Klüppelberg et al. (2004),
Theorem 2.1)
(a) The GARCH(1, 1) process with α0, α1, β1 > 0 has a strictly stationary
solution if and only if

−∞ < E log(β1 + α1ε
2
0) < 0. (9)

This solution is unique, and its squared volatility is given by

σ2
t = α0

∞∑

i=0

i−1∏

j=0

(β1 + α1ε
2
t−1−j). (10)

(b) The ARCH(1) process with β1 = 0 and α1, α0 > 0 has a strictly stationary
solution if and only if one of the following cases occurs:

(i) P (ε0 = 0) > 0.
(ii) E| log ε2

0| < ∞ and E log ε2
0 < − log α1, i.e. (9) holds.

(iii) E(log ε2
0)

+ < ∞ and E(log ε2
0)
− = ∞.

(iv) E(log ε2
0)

+ = E(log ε2
0)
− = ∞ and

∫ ∞

0

x

(∫ x

0

P (log ε2
0 < −y) dy

)−1

dP (log ε2
0 ≤ x) < ∞. (11)

In each case, the strictly stationary solution is unique, and its squared volatil-
ity is given by (10).
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Observe that condition (9) depends on ε2
0, α1 and β1, while conditions (i),

(iii) and (iv) in the ARCH case depend on ε2
0 only.

Example 1 (a) Suppose that (εt)t∈Z is i.i.d. with Eε2
0 ∈ (0,∞), and suppose

that either β1 > 0 (GARCH(1, 1)) or that E| log ε2
0| < ∞. Since

E log(β1 + α1ε
2
0) ≤ log E(β1 + α1ε

2
0) = log(β1 + E(ε2

0) α1)

by Jensen’s inequality, a sufficient condition for a strictly stationary solution
to exist is that E(ε2

0) α1 + β1 < 0. Now suppose that ε0 is standard normally
distributed. If β1 = 0, then

E log(α1ε
2
0) = log α1 +

4√
2π

∫ ∞

0

log(x)e−x2/2 dx = log(α1)−(CEM +log(2)),

where CEM := limN→∞
∑N

n=1
1
n − log(N) ≈ 0.57721566 is the Euler-

Mascheroni constant. Hence, the ARCH(1) process with standard normal
noise has a strictly stationary solution if and only

α1 < 2 exp(CEM ) ≈ 3.562.

Since limβ1↓0 E log(β1 + α1ε
2
0) = E log(α1ε

2
0), it follows that for every

α1 < 2 exp(CEM ) there exists some β(α1) > 0 such that the GARCH(1, 1)
process with parameters α0, α1 and β1 ∈ (0, β(α1)) and standard normal in-
novations has a strictly stationary solution. In particular, strictly stationary
solutions of the GARCH(1, 1) process with α1 + β1 > 1 do exist. However,
observe that while α1 may be bigger than 1, β1 < 1 is a necessary condition
for a strictly stationary solution to exist.
For normal noise, E(log(β1 + α1ε

2
0)) can be expressed in terms of confluent

and generalised hypergeometric functions, which in turn can be calculated
numerically. See Nelsen (1990), Theorem 6, for details.
(b) Consider the ARCH(1) process with α1 > 0, and let (εt)t∈Z be i.i.d.
such that the distribution of ε0 has atoms at ±

√
2− E2(2) with mass

1/4 each, and an absolutely continuous component with density fε(x) =
(4|x|(log |x|)2)−11(−1/e,1/e)(x). Here, En(x) =

∫∞
1

e−xt/tn dt denotes the

exponential integral, and it holds E2(2) ≈ 0.0375. Since
∫ 1/e

−1/e
fε(x) dx =∫ −1

−∞(2y2)−1 dy = 1/2, fε indeed defines a probability distribution. Moreover,
since ε0 is symmetric, we have Eε0 = 0 and

Eε2
0 =

1
2

∫ 1/e

0

x

(log x)2
dx+

1
2
(2−E2(2)) =

1
2

∫ −1

−∞

e2y

y2
dy+

1
2
(2−E2(2)) = 1.

The absolutely continuous component of log ε2
0 can be easily seen to have den-

sity x 7→ (2x2)−11(−∞,−1)(x), so that E(log ε2
0)
− = ∞. Since E(log ε2

0)
+ <

∞, the ARCH(1) process with α1 > 0 and the given distribution of the
(εt)t∈Z has a unique strictly stationary solution by Case (iii) of the previous
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Theorem.
(c) Let (εt)t∈Z be i.i.d. with marginal density

fε(x) =





(2|x|(log |x|)3/2)−1, |x| > e,
(4|x|(log |x|)2)−1, 0 < |x| < 1/e,
0, else.

Then the density of log ε2
0 is given by

flog ε2(x) =





x−3/2, x > 1,
(2x2)−1, x < −1,
0, x ∈ [−1, 1].

We conclude that E(log ε2
0)

+ = E(log ε2
0)
− = ∞, and it is easily checked that

(11) is satisfied. Hence, a unique strictly stationary solution of the ARCH(1)
process with driving noise (εt)t∈Z exists.

2.2 Strict stationarity of GARCH(p, q)

For higher order GARCH processes, one has to work with multidimensional
random recurrence equations. Consider a GARCH(p, q) process (Xt)t∈Z with
volatility (σt)t∈Z and driving noise sequence (εt)t∈Z. Let p̃ := max(p, 2),
q̃ := max(q, 2) and define the random (p̃ + q̃ − 1)–vectors Yt and Bt by

Yt = (σ2
t+1, . . . , σ

2
t−p̃+2, X

2
t , . . . , X2

t−q̃+2)
′ (12)

and Bt = (α0, 0, . . . , 0)′ ∈ Rp̃+q̃−1 ,

respectively. Further, let βq+1 = β2 = 0 if q ≤ 1, and α2 = 0 if p = 1, and
define the random (p̃ + q̃ − 1)× (p̃ + q̃ − 1)-matrix At by

At =




β1 + α1ε
2
t β2 · · · βq̃−1 βq̃ α2 · · · αp̃−1 αp̃

1 0 · · · 0 0 0 0 0 0
0 1 · · · 0 0 0 0 0 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 0
ε2t 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0




. (13)

These matrices where introduced by Bougerol and Picard (1992a). It is then
easy to see that each strictly stationary solution of the GARCH equations
(1), (2) gives rise to a strictly stationary solution of the random recurrence



8 Alexander M. Lindner

equation (5) with Yt, Bt and At as defined in (12) and (13), and vice versa.
Observe that for p = q = 1 and for (p, q) = (1, 0), the random recurrence
equation with At and Bt as in (12) and (13) differs from the one with At and
Bt as in (4). In fact, the former is a random recurrence equation in R3, while
the latter is one-dimensional.

Strict stationarity of multivariate random recurrence equations is studied
in terms of the top Lyapunov exponent. Let ‖ · ‖ be any vector norm in Rd.
For a matrix M ∈ Rd×d, the corresponding matrix norm ‖M‖ is defined by

‖M‖ := sup
x∈R,x6=0

‖Mx‖
‖x‖ .

Definition 1 Let (An)n∈Z be an i.i.d. sequence of d × d random matrices,
such that E log+ ‖A0‖ < ∞. Then the top Lyapunov exponent associated
with (An)n∈Z is defined by

γ := inf
n∈N0

E

(
1

n + 1
‖A0A−1 · · ·A−n‖

)
.

Furstenberg and Kesten (1960) showed that

γ = lim
n→∞

1
n + 1

log ‖A0A−1 · · ·A−n‖ (14)

almost surely, and an inspection of their proof shows that γ is independent
of the chosen vector norm (hence matrix norm).

The existence of stationary solutions of random recurrence equations can
be described neatly in terms of strict negativity of the associated top Lya-
punov exponent. Namely, Bougerol and Picard (1992b) have shown that
so called irreducible random recurrence equations with i.i.d. coefficients
(At, Bt)t∈Z, such that E log+ ‖A0‖ < ∞ and E log+ ‖B0‖ < ∞, admit a
nonanticipative strictly stationary solution if and only if the top Lyapunov
exponent associated with (At)t∈Z is strictly negative. Here, nonanticipative
means that Yt is independent of (At+h, Bt+h)h∈N for each t. For GARCH(p, q)
cases, it is easier to exploit the positivity of the coefficients in the matrix At

rather than to check that the model is irreducible. The result is again due to
Bougerol and Picard:

Theorem 2 (Bougerol and Picard (1992a), Theorem 1.3)
Let (εt)t∈Z be an i.i.d. sequence of random variables such that E(log ε2

0)
+ <

∞. Let α0, . . . , αp, β1, . . . , βq be GARCH(p, q) parameters, and let the (p̃+ q̃−
1)×(p̃+ q̃−1) random matrices At as well as the (p̃+ q̃−1)–vectors Bt be de-
fined as in (13) and (12), respectively. Then the corresponding GARCH(p, q)
process admits a strictly stationary solution if and only if the top Lyapunov
exponent γ associated with the sequence (At)t∈Z is strictly negative. This so-
lution is unique, and the random vector Yt defined in (12) satisfies (7).
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The fact that every strictly stationary solution must be unique and of
the form (7) follows with a refined argument similar to the GARCH(1, 1)
case, using that every element in the vectors Yt and in the matrices At

must be non-negative. In particular this shows that every strictly station-
ary solution must be causal (the argument here does not require the as-
sumption of finite log-moments). Further, existence of a strictly stationary
solution implies limk→∞ ‖A0A−1 · · ·A−k‖ = 0 a.s. Since (An)n∈Z is i.i.d. and
E log+ ‖A0‖ < ∞, this in turn implies strict negativity of the top Lyapunov
exponent γ (see Bougerol and Picard (1992b), Lemma 3.4). That γ < 0 im-
plies convergence of (7) can be seen from the almost sure convergence in (14),
which implies ∥∥∥∥∥∥




k−1∏

j=0

At−j


Bt−k

∥∥∥∥∥∥
≤ Cte

γk/2

for some random variable Ct. Hence, the series (7) converges almost surely
and must be strictly stationary. That strict negativity of the top Lyapunov
exponent implies convergence of (7) and hence the existence of strictly sta-
tionary solutions is true for a much wider class of random recurrence equa-
tions, see e.g. Kesten (1973), Vervaat (1979), Brandt (1986) or Bougerol and
Picard (1992b).

Due to its importance, we state the observation made after Theorem 2
again explicitly:

Remark 1 A strictly stationary solution to the GARCH equations (1) and
(2) is necessarily unique and the corresponding vector Yt defined in (12)
satisfies (7). In particular, every strictly stationary GARCH process is causal.

For matrices, it may be intractable to obtain explicit expressions for the
top Lyapunov exponent and hence to check whether it is strictly negative
or not. Often, one has to use simulations based on (14) to do that. If the
noise sequence has finite variance, however, Bollerslev gave a handy sufficient
condition for the GARCH process to have a strictly stationary solution, which
is easy to check (part (a) of the following theorem). Bougerol and Picard
showed that the boundary values in this condition can still be attained under
certain conditions, and they have also given a necessary condition for strictly
stationary solutions to exist:

Corollary 1 (Bollerslev (1986), Theorem 1, Bougerol and Picard
(1992a), Corollaries 2.2, 2.3)
Let (εt)t∈Z be the driving noise sequence of a GARCH(p, q) process, and sup-
pose that 0 < Eε2

0 < ∞. Then the following hold:
(a) If E(ε2

0)
∑p

i=1 αi +
∑q

j=1 βj < 1, then the GARCH(p, q) process admits a
unique strictly stationary solution.
(b) If P (ε0 = 0) = 0, ε0 has unbounded support, p, q ≥ 2 and α1, . . . , αp > 0,
β1, . . . , βq > 0, and E(ε2

0)
∑p

i=1 αi +
∑q

j=1 βj = 1, then the GARCH(p, q)
process admits a unique strictly stationary solution.
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(c) If
∑q

j=1 βj ≥ 1, then no strictly stationary solution of the GARCH(p, q)
process exists.

For the proof of Corollary 1, one may assume that Eε2
0 = 1. The general

result then follows by an easy transformation. If Eε2
0 = 1, Bougerol and

Picard (1992a) prove (b) by showing that the spectral radius ρ(E(A0)) of the
matrix E(A0) is equal to 1. Recall that the spectral radius ρ(C) of a square
matrix C is defined by

ρ(C) = sup {|λ| : λ eigenvalue of C}.

Since A0 is almost surely not bounded, neither has zero columns nor zero
rows, and has non-negative entries, it follows from Theorem 2 of Kesten and
Spitzer (1984) that γ < log ρ(E(A0)) = 0. The proofs of (a) and (c) are
achieved by similar reasoning, using estimates between the top Lyapunov
exponent and the spectral radius. In particular, in case (a) one has γ ≤
log ρ(E(A0)) < 0.

For real data one often estimates parameters αi and βj such that
∑p

i=1 αi+∑q
j=1 βj is close to one, when assuming noise with variance 1. In analogy to

the integrated ARMA (ARIMA) process, Engle and Bollerslev (1986) call
GARCH processes for which

∑p
i=1 αi +

∑q
j=1 βj = 1 integrated GARCH(p, q)

processes, or IGARCH(p, q) processes, for short. Observe that Corollary 1(b)
shows that IGARCH processes may have a strictly stationary solution, unlike
ARIMA processes where a unit root problem occurs.

Remark 2 Let ε0, p, q and α1, . . . , αp, β1, . . . , βq be as in Corollary 1(b).
Then there exists δ > 0 such that for all α̃i ≥ 0, β̃j ≥ 0 with |α̃i − αi| < δ

(i = 1, . . . , p) and |β̃j −βj | < δ (j = 1, . . . , q), the GARCH(p, q) process with
parameters α0, α̃1, . . . , α̃p, β̃1, . . . , β̃q and noise sequence (εt)t∈Z admits a
unique strictly stationary solution. In particular, there exist strictly station-
ary GARCH(p, q) processes for which E(ε2

0)
∑p

i=1 α̃i +
∑q

j=1 β̃j > 1. This
follows immediately from Definition 1 and Theorem 2, since for the parame-
ters of Corollary 1(b), the top Lyapunov exponent γ is strictly negative.

2.3 Ergodicity

Let Y = (Yt)t∈Z be a strictly stationary time series of random vectors in Rk.
Then Y can be seen as a random element in (Rk)Z, equipped with its Borel-σ-
algebra B((Rk)Z). Let the backshift operator ΦBS : (Rk)Z → (Rk)Z be given
by ΦBS((zi)i∈Z) = (zi−1)i∈Z. Then the time series (Yt)t∈Z is called ergodic
if ΦBS(Λ) = Λ for Λ ∈ B((Rk)Z) implies P (Y ∈ Λ) ∈ {0, 1}. See e.g. Ash
and Gardner (1975) for this and further properties of ergodic time series. In
particular, it is known that if (gn)n∈Z is a sequence of measurable functions
gn : (Rk)Z → Rd such that gn−1 = gn ◦ ΦBS and Y = (Yt)t∈Z is strictly
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stationary and ergodic with values in Rk, then (gn(Y ))n∈Z is also strictly
stationary and ergodic (see e.g. Brandt et al. (1990), Lemma A 1.2.7). Since
the sequence (At, Bt)t∈Z is i.i.d. and hence strictly stationary and ergodic for
a GARCH process, it follows that every strictly stationary GARCH process is
ergodic, since it can be expressed via (7). This is due to Bougerol and Picard
(1992a), Theorem 1.3.

2.4 Weak stationarity

Recall that a time series (Zt)t∈Z of random vectors in Rd is called weakly
stationary or wide-sense stationary, if E‖Zt‖2 < ∞ for all t ∈ Z, E(Zt) ∈ Rd

is independent of t ∈ Z, and the covariance matrices satisfy

Cov(Zt1+h, Zt2+h) = Cov(Zt1 , Zt2)

for all t1, t2, h ∈ Z. Clearly, every strictly stationary sequence which satisfies
E‖Z0‖2 < ∞ is also weakly stationary. For causal GARCH processes, we
shall see that the converse is true also, i.e. that every causal weakly stationary
GARCH process is also strictly stationary.

Let (Xt, σt) be a GARCH process such that σt is independent of εt, which
is in particular satisfied for causal solutions. Then if P (ε0 = 0) < 1, it
follows from (1) and the independence of σt and εt that for given r ∈ (0,∞),
E|Xt|r < ∞ if and only if E|εt|r < ∞ and Eσr

t < ∞. Suppose Eε2
0 ∈ (0,∞),

and that (Xt, σt) is a GARCH(p, q) process such that Eσ2
t = Eσ2

t′ < ∞ for
all t, t′ ∈ Z. Then (2) shows that

E(σ2
0) = α0 +

p∑

i=1

αiE(σ2
0)E(ε2

0) +
q∑

j=1

βjE(σ2
0).

Hence we see that a necessary condition for a causal weakly stationary solu-
tion to exist is that E(ε2

0)
∑p

i=1 αi+
∑q

j=1 βj < 1. Now suppose that (σt)t∈Z is
a causal weakly stationary solution, and for simplicity assume that Eε2

0 = 1.
With Yt, Bt and At as in (12) and (13), Yt must satisfy (6). Note that
then

∑∞
i=0

(∏i−1
j=0 At−j

)
Bt−i converges a.s. to the strictly stationary solu-

tion by Corollary 1. By (6), this implies that
(∏k

i=0 At−i

)
Yt−k−1 converges

almost surely to some finite random variable as k → ∞. If this limit can
be seen to be 0, then it follows that the weakly stationary solution must
coincide with the strictly stationary. As remarked after Corollary 1, the spec-
tral radius of E(A0) is less than 1. Hence there is some N ∈ N such that
‖(EA0)N‖ = ‖E(A0 · · ·A−N+1)‖ < 1. By causality and weak stationarity,
this implies that E

((∏k
i=0 At−i

)
Yt−k−1

)
converges to 0 as k →∞, and since
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each of the components of
(∏k

i=0 At−i

)
Yt−k−1 is positive, Fatou’s lemma

shows that its almost sure limit must be 0, so that every causal weakly station-
ary solution is also strictly stationary. Conversely, if (Yt)t∈Z is a strictly sta-
tionary solution and E(ε2

0)
∑p

i=1 αi +
∑q

j=1 βq < 1 with Eε2
0 = 1 for simplic-

ity, it follows from ‖(EA0)N‖ < 1 that
∑∞

i=0 E
((∏i−1

j=0 At−j

)
Bt−i

)
is finite,

and since each of its components is positive, this implies that E‖Yt‖ < ∞ for
the strictly stationary solution. Summing up, we have the following character-
isation of causal weakly stationary solutions, which was derived by Bollerslev
(1986).

Theorem 3 (Bollerslev (1986), Theorem 1)
Let (εt)t∈Z be such that Eε2

0 < ∞. Then the GARCH(p, q) process (Xt, σt)t∈Z
admits a causal weakly stationary solution if and only E(ε2

0)
∑p

i=1 αi +∑q
j=1 βj < 1. In that case, the causal weakly stationary solution is unique

and coincides with the unique strictly stationary solution. It holds

E(σ2
t ) =

α0

1− E(ε2
0)

∑p
i=1 αi −

∑q
j=1 βj

, E(X2
t ) = E(σ2

t )E(ε2
0). (15)

3 The ARCH(∞) representation and the conditional
variance

Often it can be helpful to view a GARCH(p, q) process as an ARCH process of
infinite order. In particular, from the ARCH(∞) representation one can easily
read off the conditional variance of Xt given its infinite past (Xs : s < t).
Originally, Engle (1982) and Bollerslev (1986) defined ARCH and GARCH
processes in terms of the conditional variance. Equation (18) below then
shows that this property does hold indeed, so that the definition of GARCH
processes given here is consistent with the original one of Engle and Bollerslev.

Theorem 4 (Bollerslev (1986), pp. 309–310)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process driven by (εt)t∈Z,
such that Eε2

0 < ∞ and E(ε2
0)

∑p
i=1 αi +

∑q
j=1 βj < 1. Then there is a

sequence (ψj)j∈N0 of real constants such that ψ0 > 0, ψj ≥ 0 for all j,∑∞
j=0 ψj < ∞, and

σ2
t = ψ0 +

∞∑

i=1

ψiX
2
t−i. (16)

The constants are determined by

ψ0 =
α0

1−∑q
j=1 βj

,
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∞∑

j=1

ψjz
j =

∑p
i=1 αiz

i

1−∑q
j=1 βjzj

, z ∈ C, |z| ≤ 1. (17)

In particular, σ2
t is measurable with respect to the infinite past (Xs : s ≤

t− 1), and the conditional expectation and variance of Xt given (Xs : s < t)
are given by

E(Xt|Xs : s < t) = E(ε0) σt and V (Xt|Xs : s < t) = V (ε0) σ2
t , (18)

respectively.

For example, if (εt)t∈Z is i.i.d. standard normal, then conditionally on
(Xs : s < t), Xt is N(0, σ2

t ) distributed, since σ2
t is a Borel function of (Xs :

s < t). ARCH(∞) models were introduced in more generality by Robinson
(1991). The explicit expression in (16) can be found in Bollerslev (1986) or
Nelson and Cao (1992). It can be derived defining

St := σ2
t − E(σ2

t ), Zt := X2
t − E(X2

t ), t ∈ Z. (19)

Then (2) is equivalent to

St −
q∑

j=1

βjSt−j =
p∑

i=1

αiZt−i. (20)

This is an ARMA equation for (St)t∈Z such that supt∈ZE|Zt| < ∞ and
E(St) = E(Zt) = 0. Since

∑q
j=1 βj < 1, this ARMA equation is causal,

and it follows that St =
∑∞

j=1 ψjZt−j where (ψj)j∈N are given by (17). An
easy calculation prevails that ψj ≥ 0, and resubstituting σ2

t and X2
t in this

ARMA equation shows (16). Hence σt is measurable with respect to the σ-
algebra generated by (Xs : s < t), while εt is independent of this σ-algebra
by causality. This then implies (18).

In the literature there exist many other examples of ARCH(∞) models
apart from GARCH(p, q). For more information and references regarding
ARCH(∞) models, see Giraitis et al. (2006) and (2008).

4 Existence of moments and the autocovariance
function of the squared process

It is important to know whether the stationary solution has moments of
higher order. For example, in Theorem 3, we have seen that the strictly
stationary solution has finite second moments if and only if E(ε2

0)
∑p

i=1 αi +∑q
j=1 βj < 1, and we have given an explicit expression for Eσ2

t and EX2
t .

However, one is also interested in conditions ensuring finiteness of moments of
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higher order, the most important case being finiteness of Eσ4
t and EX4

t . For
the GARCH(1, 1) process with normal innovations, a necessary and sufficient
condition for such moments to exist has been given by Bollerslev (1986),
and extended by He and Teräsvirta (1999b) to general noise sequences. Ling
(1999) and Ling and McAleer (2002) give a necessary and sufficient condition
for moments of higher order to exist. For ARCH(p) processes, a necessary and
sufficient condition for higher order moments to exist was already obtained
earlier by Milhøj (1985).

Observe that if P (ε0 = 0) < 1, then by independence of Xt and σt for
strictly stationary and hence causal solutions, the m’th moment of Xt =
σtεt exists if and only Eσm

t < ∞ and E|εt|m < ∞. Hence we shall only
be concerned with moment conditions for σ2

t . In most cases, εt will be a
symmetric distribution, so that the odd moments of εt and hence Xt will be
zero. The main concern is hence on even moments of GARCH processes.

4.1 Moments of ARCH(1) and GARCH(1, 1)

The following theorem gives a complete characterisation when the (possible
fractional) moment of a GARCH(1, 1) or ARCH(1) process exists:

Theorem 5 (Bollerslev (1986), Theorem 2, He and Teräsvirta (1999b),
Theorem 1)
Let (Xt, σt) be a strictly stationary GARCH(1, 1) or ARCH(1) process as in
(1), (2). Let m > 0. Then the (fractional) m’th moment E(σ2m

t ) of σ2
t exists

if and only if
E(β1 + α1ε

2
0)

m < 1. (21)

If m is a positive integer and this condition is satisfied, and µj := E(σ2j
t )

denotes the j’th moment of σ2
t , then µm can be calculated recursively by

µm = (1− E(β1 + α1ε
2
0)

m)−1
m−1∑

j=0

(
m

j

)
αm−j

0 E(β1 + α1ε
2
0)

jµj . (22)

The (2m)’th moment of Xt is given by

E(X2m
t ) = µmE(ε2m

0 ).

That condition (21) is necessary and sufficient for finiteness of E(σ2m
t )

(m ∈ (0,∞)) can be easily seen from representation (10): for if E(β1 +
α1ε

2
0)

m < 1 and m ∈ [1,∞), then Minkowski’s inequality shows that

(E(σ2m
t ))1/m ≤ α0

∞∑

i=0

(E(β1 + α1ε
2
0)

m)i/m < ∞,
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and for m < 1 one uses similarly E(U + V )m ≤ EUm + EV m for posi-
tive random variables U, V . Conversely, if E(σ2m

t ) < ∞, then E
∏i−1

j=0(β1 +
α1ε

2
t−1−j)

m must converge to 0 as i → ∞, which can only happen if (21)
holds. Finally, if m is an integer and (21) holds, then (22) follows easily by
raising (2) to the m’th power and taking expectations.

Example 2 For an integer m, E(σ2m
t ) is finite if and only if

∑m
j=0

(
m
j

)
βm−j

1 αj
1

Eε2j
t < 1. If εt is standard normally distributed, this means that

∞∑

j=0

(
m

j

)
βm−j

1 αj
1

j∏

i=1

(2i− 1) < 1.

For example, the fourth moment of σt exists if and only if β2
1 +2β1α1 +3α2

1 <
1.

As an immediate consequence of Theorem 5, one sees that GARCH pro-
cesses do not have finite moments of all orders if ε0 has unbounded support,
which is a first indication that GARCH processes will generally have heavy
tails:

Corollary 2 Let (Xt, σt)t∈Z be a strictly stationary GARCH(1, 1) or ARCH(1)
process and assume that P (α1ε

2
0 + β1 > 1) > 0. Then there is r ≥ 1, such

that Eσ2r
0 = E|X0|2r = ∞.

4.2 Moments of GARCH(p, q)

For GARCH processes of higher order, Ling (1999) and Ling and McAleer
(2002) give necessary and sufficient conditions for even moments of σt to be
finite. In order to state their result, we need the notion of the Kronecker
product of two matrices. For an (m×n)-matrix C = (cij)i=1,...,m,j=1,...,n and
a (p × r)-matrix D, the Kronecker product C ⊗ D is the (mp × nr)-matrix
given by

C ⊗D =




c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD


 .

See e.g. Lütkepohl (1996) for elementary properties of the Kronecker product.
We then have:

Theorem 6 (Ling and McAleer (2002), Theorem 2.1)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process as in (1), (2),
and assume that α1 + β1 > 0. Let At be the (p̃ + q̃ − 1)× (p̃ + q̃ − 1) matrix
of (13). Let m ∈ N. Then the m’th moment of σ2

t is finite if and only if the
spectral radius of the matrix E(A⊗m

t ) is strictly less than 1.
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Originally, Ling and McAleer (2002) formulated their result in terms of the
spectral radius of a matrix corresponding to another state space representa-
tion of GARCH processes than the At-matrix defined in (13). The proof,
however, is quite similar. We shortly sketch the argument: suppose that
ρ(E(A⊗m

t )) = lim supn→∞ ‖(E(A⊗m
t ))n‖1/n < 1. Then there is λ ∈ (0, 1)

such that ‖(E(A⊗m
t ))n‖ ≤ λn for large enough n, so that the supremum of

all elements of (E(A⊗m
t ))n decreases exponentially as n → ∞. The same is

then true for all elements of (E(A⊗m′
t ))n for every m′ ∈ {1, . . . , n}. Now take

the m’th Kronecker power of the representation (7) for the vector Yt defined
in (12). For example, for m = 2, one has (since Bt = Bt−i in (12))

Y ⊗2
t =

∞∑

i1=0

∞∑

i2=0







i1−1∏

j1=0

At−j1


Bt


⊗







i2−1∏

j2=0

At−j2


 Bt




=
∞∑

i1=0

∞∑

i2=i1




i1−1∏

j1=0

A⊗2
t−j1







i2−1∏

j2=i1

(Id⊗At−j2)


 B⊗2

t

+
∞∑

i1=1

i1−1∑

i2=0




i2−1∏

j2=0

A⊗2
t−j2







i1−1∏

j1=i2

(At−j1 ⊗ Id)


 B⊗2

t ,

where Id denotes the (p̃ + q̃ − 1) × (p̃ + q̃ − 1) identity matrix. Taking
expectations and using the exponential decay of the elements, which are
all non-negative, this then shows that E(Y ⊗m

t ) is finite, and hence that
E(σ2m

t ) < ∞. The converse is established along similar lines: finiteness of
E(σ2m

t ) implies finiteness of E(Y ⊗m
t ). Using the fact that all appearing ma-

trices and vectors have non-negative entries, this then implies finiteness of∑∞
i=0(E(A⊗m

t ))iB⊗m
0 as argued by Ling and McAleer (2002), and making

use of the assumption α1 + β1 > 0, this can be shown to imply finiteness of∑∞
i=0 ‖(E(A⊗m

t ))i‖, showing that ρ(E(A⊗m
t )) < 1.

To check whether the spectral radius of the matrix E(A⊗m
t ) is less than

1 or not may be tedious or only numerically achievable. A simple sufficient
condition for the existence of moments can however be obtained by devel-
oping the ARCH(∞) representation (16) into a Volterra series expansion, as
described by Giraitis et al. (2006) and (2008). Accordingly, a sufficient con-
dition for the m’th moment of σ2

t in an ARCH(∞) process to exist is that∑∞
j=1 ψj(E(|ε0|2m))1/m < 1. This was shown by Giraitis et al. (2000) for

m = 2 and observed to extend to hold for general m ≥ 1 by Giraitis et al.
(2006). With (17), this gives for the GARCH(p, q) process:

Proposition 2 (Giraitis et al. (2006), Giraitis et al. (2000), Theo-
rem 2.1)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process as in (1), (2),
let m ∈ [1,∞), and suppose that 0 < E|ε0|2m < ∞. Then
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( ∑p
i=1 αi

1−∑q
j=1 βj

)m

E|ε0|2m < 1

is a sufficient condition for E(σ2m
0 ) < ∞.

Observe that 0 < E|ε0|2m < ∞ implies
∑q

j=1 βj < 1 by Corollary 1(c), so
that the expressions in the condition above are well-defined.

In econometrics, the kurtosis is often seen as an indicator for tail heaviness.
Recall that the kurtosis KR of a random variable R with ER4 < ∞ is defined
by KR = ER4

(ER2)2 . If (Xt, σt) is a stationary GARCH process which admits
finite fourth moment, then if follows from Jensen’s inequality that

EX4
t = E(ε4

t )E(σ4
t ) ≥ E(ε4

t )(E(σ2
t ))2 = Kε0(E(X2

t ))2,

so that KX0 ≥ Kε0 . This shows that the kurtosis of the stationary solution is
always greater or equal than the kurtosis of the driving noise sequence, giving
another indication that GARCH processes lead to comparatively heavy tails.

While Theorem 6 gives a necessary and sufficient condition for even mo-
ments to exist, it does not give any information about the form of the moment.
The most important higher order moment is the fourth moment of σt, and
an elegant method to determine Eσ4

t was developed by Karanasos (1999). To
illustrate it, suppose that (Xt, σt)t∈Z is a strictly stationary GARCH(p, q)
process as in (1), (2), such that E(σ4

t ) < ∞, and denote

w := Eε2
0, v := Eε4

0, f := Eσ4
0 and g := Eσ2

0 =
α0

1− w
∑p

i=1 αi −
∑q

j=1 βj
,

where we used (15). Then w, v, and g are known and we want to determine
f . For i ∈ N, denote further

λi := E(σ2
t X2

t−i) and ci := E(σ2
t σ2

t−i).

Since E(X2
t |εt−h : h ∈ N) = wσ2

t , it further holds for i ∈ N,

wλi = E(X2
t X2

t−i), wci = E(X2
t σ2

t−i), and f = E(X2
t σ2

t )/w = E(X4
t )/v.

Then, taking expectations in each of the equations

X2
t σ2

t = X2
t

(
α0 +

p∑

i=1

αiX
2
t−i +

q∑

i=1

βiσ
2
t−i

)
,

σ2
t σ2

t−j = σ2
t−j

(
α0 +

p∑

i=1

αiX
2
t−i +

q∑

i=1

βiσ
2
t−i

)
, j = 1, . . . , q,

σ2
t X2

t−j = X2
t−j

(
α0 +

p∑

i=1

αiX
2
t−i +

q∑

i=1

βiσ
2
t−i

)
, j = 1, . . . , p,
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one obtains

wf = α0wg +
p∑

i=1

wαiλi +
q∑

i=1

wβici, (23)

cj = α0g + (wαj + βj)f +
j−1∑

i=1

(wαj−i + βj−i)ci

+
p−j∑

i=1

αj+iλi +
q−j∑

i=1

βj+ici, j = 1, . . . , q, (24)

λj = α0wg + (vαj + wβj)f +
j−1∑

i=1

(wαj−i + βj−i)λi

+
p−j∑

i=1

wαj+iλi +
q−j∑

i=1

wβj+ici, j = 1, . . . , p, (25)

where αi = 0 for i > p and βi = 0 for i > q. Substituting cq from (24) and
λp from (25) into (23), one obtains a system of (p + q − 1) equations for
the unknown variables (f, c1, . . . , cq−1, λ1, . . . , λp−1). See Karanasos (1999),
Theorem 3.1, for more information. For another approach to obtain necessary
conditions for the fourth moment to exist and to obtain its structure, we refer
to He and Teräsvirta (1999a), Theorem 1.

4.3 The autocorrelation function of the squares

If the driving noise process of a strictly and weakly stationary GARCH pro-
cess has expectation Eε0 = 0, then EXt = E(ε0)E(σt) = 0, and for h ∈ N it
follows from (18) that

E(XtXt−h) = E E(XtXt−h|Xs : s < t) = E(Xt−hE(ε0)σt) = 0,

so that (Xt)t∈Z is (weak) White Noise (provided Eε2
0 6= 0), i.e. a weakly

stationary sequence whose elements are uncorrelated. This uncorrelatedness
is however not preserved in the squares of the GARCH process. Rather do
the squares (X2

t )t∈Z satisfy an ARMA equation. This was already observed
by Bollerslev (1986), (1988). More precisely, we have:

Theorem 7 (Bollerslev (1986), Section 4)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process such that Eσ4

0 <
∞, Eε4

0 < ∞ and Var(ε2
0) > 0. Define

ut := X2
t − (Eε2

t )σ
2
t = (ε2

t − E(ε2
t ))σ

2
t , t ∈ Z. (26)
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Then (ut)t∈Z is a White Noise sequence with mean zero and variance E(σ4
0)

Var(ε2
0), and

St := σ2
t −

α0

1− (Eε2
0)

∑p
i=1 αi −

∑q
j=1 βj

, t ∈ Z,

and

Wt := X2
t −

α0Eε2
0

1− (Eε2
0)

∑p
i=1 αi −

∑q
j=1 βj

, t ∈ Z,

satisfy the causal ARMA(max(p, q), p − 1) and causal ARMA(max(p, q), q)
equations

St −
max(p,q)∑

i=1

((Eε2
0)αi + βi)St−i =

p∑

i=1

αiut−i, t ∈ Z,

and

Wt −
max(p,q)∑

i=1

((Eε2
0)αi + βi)Wt−i = ut −

q∑

j=1

βjut−j , t ∈ Z,

respectively. Here, αi = 0 for i > p and βj = 0 for j > q. In particular, the
autocovariance and autocorrelation functions of (σ2

t )t∈Z and that of (X2
t )t∈Z

are those of the corresponding ARMA processes.

The fact that (ut)t∈Z is White Noise follows in complete analogy to
the White Noise property of (Xt)t∈Z by using (18). The ARMA repre-
sentations then follow by inserting (26) into (2), and they are causal by
Theorem 3. Observe that the ARMA equation for (St)t∈Z is actually an
ARMA(max(p, q), p′−1)-equation driven by (ut−p′)t∈Z, where p′ := min{j ∈
{1, . . . , p} : αj 6= 0}. For general expressions for the autocoviarance functions
of ARMA processes, see Brockwell and Davis (1991), Section 3.3.

5 Strong mixing

Mixing conditions describe some type of asymptotic independence, which
may be helpful in proving limit theorems, e.g. for the sample autocorrela-
tion function or in extreme value theory. There exist many types of mixing
conditions, see e.g. Doukhan (1994) for an extensive treatment. For GARCH
processes, under weak assumptions one has a very strong notion of mixing,
namely β-mixing, which in particular implies strong mixing: let Y = (Yt)t∈Z
be a strictly stationary time series in Rd, defined on a probability space
(Ω,F , P ). Denote by F0

−∞ the σ-algebra generated by (Ys : s ≤ 0) and by
F∞t the σ-algebra generated by (Ys : s ≥ t), and for k ∈ N let
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α
(SM)
k := sup

C∈F0
−∞,D∈F∞k

|P (C ∩D)− P (C)P (D)|,

β
(SM)
k :=

1
2

sup
I∑

i=1

J∑

j=1

|P (Ci ∩Dj)− P (Ci)P (Dj)|,

where in the definition of β
(SM)
k the supremum is taken over all pairs of

finite partitions {C1, . . . , CI} and {D1, . . . , DJ} of Ω such that Ci ∈ F0
−∞

for each i and Dj ∈ F∞k for each j. The constants α
(SM)
k and β

(SM)
k are the

α-mixing coefficients and β-mixing coefficients, respectively, and (Yt)t∈Z is
called strongly mixing (or α-mixing) if limk→∞ α

(SM)
k = 0, and β-mixing (or

absolutely regular) if limk→∞ β
(SM)
k = 0. It is strongly mixing with geometric

rate if there are constants λ ∈ (0, 1) and c such that α
(SM)
k ≤ cλk for every

k, i.e. if αk decays at an exponential rate, and β-mixing with geometric rate
is defined similarly. Since

α
(SM)
k ≤ 1

2
β

(SM)
k ,

β-mixing implies strong mixing.
Based on results of Mokkadem (1990), Boussama (1998) showed that

GARCH processes are beta mixing with geometric rate under weak assump-
tions, see also Boussama (2006). The proof hereby relies on mixing criteria
for Markov chains as developed by Feigin and Tweedie (1985), see also Meyn
and Tweedie (1996). Observe that the sequence Y = (Yt)t∈N0 of random vec-
tors defined by (12) defines a discrete time Markov chain with state space
Rp̃+q̃−1

+ . Boussama (1998) then shows that under suitable assumptions on
the noise sequence this Markov chain is geometrically ergodic, i.e. there is a
constant λ ∈ (0, 1) such that

lim
n→∞

λ−n‖pn(y, ·)− π(·)‖TV = 0.

Here, pn(y, E) for y ∈ Rp̃+q̃−1
+ and E ∈ B(Rp̃+q̃−1

+ ) denotes the n-step tran-
sition probability from y to E, i.e.

pn(y,E) = P (Yn ∈ E|Y0 = y),

π denotes the initial distribution of Y0 which is chosen to be the stationary
one, and ‖ · ‖TV denotes the total variation norm of measures. Since geo-
metric ergodicity implies β-mixing of (Yt)t∈Z with geometric rate, using the
causality it can be shown that this in turn implies β-mixing of (σt, εt)t∈Z
and hence of (Xt)t∈Z. Originally, the results in Boussama (1998) and (2006)
are stated under the additional assumption that the noise sequence has finite
second moment, but an inspection of the proof shows that it is sufficient to
suppose that E|ε0|s < ∞ for some s > 0. The next Theorem gives the precise
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statements. See also Basrak et al. (2002), Corollary 3.5, and Mikosch and
Straumann (2006), Theorem 4.5 and Proposition 4.10.

Theorem 8 (Boussama (1998), Théorème 3.4.2)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process as in (1), (2),
and suppose the noise sequence is such that ε0 is absolutely continuous with
Lebesgue density being strictly positive in a neighbourhood of zero, and such
that there exists some s ∈ (0,∞) such that E|ε0|s < ∞. Let Yt be defined as
in (12). Then (Yt)t∈Z is β-mixing with geometric rate. In particular, (σ2

t )t∈Z,
(X2

t )t∈Z and (Xt)t∈Z are β-mixing and hence strongly mixing with geometric
rate.

An important application of strong mixing is the asymptotic normality
of the sample autocovariance and autocorrelation function, under suitable
moment conditions. Recall that the sample autocovariance function of a time
series (Zt)t∈Z based on observations Z1, . . . , Zn is defined by

γZ,n(h) :=
1
n

n−h∑
t=1

(Zt − Zn)(Zt+h − Zn), h ∈ N0,

where Zn := 1
n

∑n
t=1 Zt denotes the sample mean. Similarly, the sample

autocorrelation function is given by

ρZ,n(h) :=
γZ,n(h)
γZ,n(0)

, h ∈ N0.

If now (Zt)t∈Z is a strictly stationary strongly mixing time series with ge-
ometric rate such that E|Zt|4+δ < ∞ for some δ > 0, then for each
h ∈ N0, also (ZtZt+h)t∈Z is strongly mixing with geometric rate and
E|ZtZt+h|2+δ/2 < ∞. Then a central limit theorem applies, showing that√

n
∑n

j=1(ZtZt+h − E(ZtZt+h)) converges in distribution to a mean zero
normal random variable as n → ∞, see e.g. Ibragimov and Linnik (1971),
Theorem 18.5.3. More generally, using the Cramér-Wold device, one can show
that the vector (

√
n

∑n
j=1(ZtZt+h − E(ZtZt+h)))h=0,...,m converges for ev-

ery m ∈ N to a multivariate normal distribution. Standard arguments as
presented in Brockwell and Davis (1991), Section 7.3, then give multivariate
asymptotic normality of the sample autocovariance function and hence of the
autocorrelation function via the delta method. Applying these results to the
GARCH process, we have:

Corollary 3 Suppose that (Xt, σt)t∈Z is a strictly stationary GARCH pro-
cess whose noise sequence (εt)t∈Z is such that ε0 is absolutely continuous with
Lebesgue density being strictly positive in a neighbourhood of zero.
(a) If there is δ > 0 such that E|Xt|4+δ < ∞, then the sample autoco-
variance and sample autocorrelation function of (Xt)t∈Z are asymptotically
normal with rate n1/2, i.e. for every m ∈ N there exists a multivariate nor-
mal random vector (V0, . . . , Vm) with mean zero such that (

√
n(γn,X(h) −
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γX(h)))h=0,...,m converges in distribution to (V0, . . . , Vm) as n → ∞, and
(
√

n(ρn,X(h)−ρX(h)))h=1,...,m converges to (γX(0))−1(Vh−ρX(h)V0)h=1,...,m

as n → ∞. Here, γX and ρX denote the true autocovariance and autocorre-
lation function of (Xt)t∈Z, respectively.
(b) If there is δ > 0 such that E|Xt|8+δ < ∞, then the sample autocovariance
and sample autocorrelation functions of (X2

t )t∈Z are asymptotically normal
with rate n1/2.

The above statement can for example be found in Basrak et al. (2002), The-
orems 2.13 and 3.6. In practice one often estimates GARCH processes with
parameters which are close to IGARCH. Hence the assumption on finiteness
of E|Xt|4+δ is questionable. Indeed, in cases when EX4

t = ∞, one often gets
convergence of the sample autocovariance and autocovariance functions to
stable distributions, and the rate of convergence is different from

√
n. For the

ARCH(1) case, this was proved by Davis and Mikosch (1998), extended by
Mikosch and Stărică (2000) to the GARCH(1, 1) case, and by Basrak et al.
(2002) to general GARCH(p, q). See also Davis and Mikosch (2008).

6 Some distributional properties

In this section we shortly comment on two other properties of the strictly
stationary solution, namely tail behaviour and continuity properties. We have
already seen that the kurtosis of a GARCH process is always greater than or
equal to the kurtosis of the driving noise sequence. Furthermore, Corollary 2
shows that under any reasonable assumption, a GARCH(1, 1) process will
never have moments of all orders. Much more is true. Based on Kesten’s
(Kesten (1973)) powerful results on the tail behaviour of random recurrence
equations (see also Goldie (1991) for a simpler proof in dimension 1), one can
deduce that GARCH processes have Pareto tails under weak assumptions.
For the ARCH(1) process this was proved by de Haan et al. (1989), for
GARCH(1, 1) by Mikosch and Stărică (2000), and for general GARCH(p, q)
processes by Basrak et al. (2002). For a precise statement of these results, we
refer to Corollary 1 in the article of Davis and Mikosch (2008) in this volume.
For example, for a GARCH(1, 1) process with standard normal noise, it holds
for the stationary solutions (Xt, σt)t∈Z,

lim
x→∞

x2κP (σ0 > x) = cσ,

lim
x→∞

x2κP (|X0| > x) = cσE(|ε0|2κ), lim
x→∞

x2κP (X0 > x) =
cσ

2
E(|ε0|2κ).

Here, κ is the unique solution in (0,∞) to the equation

E(α1ε
2
0 + β1)κ = 1,
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and cσ is a strictly positive constant.
Regarding continuity properties of stationary solutions of GARCH(p, q)

processes, we shall restrict us to the case of GARCH(1, 1) and ARCH(1).
Observe that in that case, the strictly stationary solution satisfies the random
recurrence equation

σ2
t = α0 + (β1 + α1ε

2
t−1)σ

2
t−1.

Hence if ε0 is absolutely continuous, so is log(β1 + α1ε
2
t−1) + log σ2

t−1 by in-
dependence of εt−1 and σt−1, and we conclude that σ2

t must be absolutely
continuous. It follows that absolute continuity of ε0 leads to absolute con-
tinuity of the stationary σt and hence of the stationary Xt. Excluding the
case when ε2

0 is constant, i.e. when the distribution of σ2
t is a Dirac mea-

sure, one might wonder whether the stationary distribution σt will always be
absolutely continuous, regardless whether ε0 is absolutely continuous or not.
For stationary distributions of the related continuous time GARCH processes
(COGARCH) introduced by Klüppelberg et al. (2004), this is indeed the case,
see Klüppelberg et al. (2006). For the discrete time GARCH(1, 1) process,
the author is however unaware of a solution to this question. At least there
is the following positive result which is an easy consequence of Theorem 1 of
Grincevicius (1980):

Theorem 9 (Grincevicius (1980), Theorem 1)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(1, 1) or ARCH(1) process.
Then σ0 is continuous with respect to Lebesgue measure, i.e. cannot have
atoms, unless σ0 is degenerate to a constant, i.e. unless ε2

0 is constant. Con-
sequently, X0 does not have atoms unless ε2

0 is constant or ε0 has an atom
at zero.

Actually, Grincevičius’ result applies to more general situations, but in the
GARCH case says that if σ2

0 = α0

∑∞
i=1

∏i−1
j=1(β1 +α1ε

2
−j) has an atom, then

there must exist a sequence (Sn)n∈N0 such that
∏∞

n=1 P (α0+(β1+α1ε
2
n)Sn =

Sn−1) > 0. By the i.i.d. assumption on (εn)n∈Z, this can be seen to happen
only if ε2

0 is constant.

7 Models defined on the non-negative integers

We defined a GARCH process as a time series indexed by the set Z of integers.
This implies that the process has been started in the infinite past. It may seem
more natural to work with models which are indexed by the non-negative
integers N0. Let (εt)t∈N0 be a sequence of i.i.d. random variables, and p ∈ N,
q ∈ N0. Further, let α0 > 0, α1, . . . , αp−1 ≥ 0, αp > 0, β1, . . . , βq−1 ≥ 0 and
βq > 0 be non-negative parameters. Then by a GARCH(p, q) process indexed
by N0, we shall mean a process (Xt)t∈N0 with volatility process (σt)t∈N0 which
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is a solution to the equations

Xt = σtεt, t ∈ N0, (27)

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j , t ≥ max(p, q). (28)

The process is called causal if additionally σ2
t is independent of (εt+h)h∈N0 for

t = 0, . . . , max(p, q). By (28), the latter independence property then easily
extends to hold for all t ∈ N0.

Recall that every strictly stationary GARCH(p, q) process indexed by Z
is causal by Remark 1. When restricting such a process to N0, it is clear
that we obtain a causal strictly stationary GARCH process indexed by N0.
Conversely, suppose that (Xt, σt)t∈N0 is a strictly stationary GARCH process
indexed by N0. Like any strictly stationary process indexed by N0, it can be
extended to a strictly stationary process (Xt, σt)t∈Z, see Kallenberg (2002),
Lemma 10.2. With εt = Xt/σt for t < 0 (observe that σ2

t ≥ α0), one sees that
also (Xt, σt, εt)t∈Z is strictly stationary. Hence (εt)t∈Z must be i.i.d., and (27)
and (28) continue to hold for t ∈ Z. Since (Xt, σt)t∈Z is strictly stationary, it
is causal, and hence so is (Xt, σt)t∈N0 .

We have seen that there is an easy correspondence between strictly sta-
tionary GARCH processes defined on the integers and strictly stationary
GARCH processes defined on N0. This justifies the restriction to GARCH
processes indexed by Z, which are mathematically more tractable. Further-
more, strictly stationary GARCH processes indexed by N0 are automatically
causal.

8 Conclusion

In the present paper we have collected some of the mathematical properties
of GARCH(p, q) processes (Xt, σt)t∈Z. The existence of strictly and weakly
stationary solutions was characterised, as well as the existence of moments.
The GARCH process shares many of the so called stylised features observed
in financial time series, like a time varying volatility or uncorrelatedness of
the observations, while the squared observations are not uncorrelated. The
autocorrelation of the squared sequence was in fact seen to be that of an
ARMA process. Stationary solutions of GARCH processes have heavy tails,
since they are Pareto under weak assumptions. On the other hand, there
are some features which are not met by the standard GARCH(p, q) process,
such as the leverage effect, to name just one. In order to include these and
similar effects, many different GARCH type models have been introduced,
such as the EGARCH model by Nelson (1991), or many other models. We
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refer to the article by Teräsvirta (2008) for further information regarding
various extensions of GARCH processes.
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He, C. and Teräsvirta, T. (1999b): Properties of moments of a family of GARCH processes
Journal of Econometrics 92, 173–192.

Ibragimov, I.A. and Linnik, Yu.V. (1971): Independent and Stationary Sequences of Ran-
dom Variables Wolters-Noordhoff, Groningen.

Kallenberg, O. (2002): Foundations of Modern Probability. 2nd edition Springer, Berlin
Heidelberg New York.

Karanasos, M. (1999): The second moment and the autovariance function of the squared
errors of the GARCH model Journal of Econometrics 90, 63–67.

Kesten, H. (1973): Random difference equations and renewal theory of products of random
matrices Acta Mathematica 131, 207–248.

Kesten, H. and Maller, R. (1996): Two renewal theorems for general random walk tending
to infinity Probability Theory and Related Fields 106, 1–38.

Kesten, H. and Spitzer, F. (1984): Convergence in distribution for products of random
matrices Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 67, 363–
386.
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