
The Annals of Applied Probability
2011, Vol. 21, No. 1, 140–182
DOI: 10.1214/10-AAP690
© Institute of Mathematical Statistics, 2011

MULTIVARIATE SUPOU PROCESSES

BY OLE EILER BARNDORFF-NIELSEN AND ROBERT STELZER

Århus University and Technische Universität München

Univariate superpositions of Ornstein–Uhlenbeck-type processes (OU),
called supOU processes, provide a class of continuous time processes capa-
ble of exhibiting long memory behavior. This paper introduces multivariate
supOU processes and gives conditions for their existence and finiteness of
moments. Moreover, the second-order moment structure is explicitly calcu-
lated, and examples exhibit the possibility of long-range dependence.

Our supOU processes are defined via homogeneous and factorizable Lévy
bases. We show that the behavior of supOU processes is particularly nice
when the mean reversion parameter is restricted to normal matrices and espe-
cially to strictly negative definite ones.

For finite variation Lévy bases we are able to give conditions for supOU
processes to have locally bounded càdlàg paths of finite variation and to show
an analogue of the stochastic differential equation of OU-type processes,
which has been suggested in [2] in the univariate case. Finally, as an impor-
tant special case, we introduce positive semi-definite supOU processes, and
we discuss the relevance of multivariate supOU processes in applications.

1. Introduction. Lévy-driven Ornstein–Uhlenbeck-type processes (OU) are
extensively used in applications as elements in continuous time models for ob-
served time series. One area where they are often applied is mathematical finance
(see, e.g., [15]), especially in the OU-type stochastic volatility model of [6]. An
OU-type process is given as the solution of a stochastic differential equation of the
form

dXt = −aXt dt + dLt(1.1)

with L being a Lévy process (see, e.g., [45] for a comprehensive introduction) and
a ∈ R. Typically, one is interested mainly in stationary solutions of (1.1). Provided
a > 0 and E(ln(|L| ∨ 1)) < ∞, the SDE (1.1) has a unique stationary solution
given by

Xt =
∫ t

−∞
e−a(t−s) dLs.

However, in many applications the dependence structure exhibited by empirical
data is found to be not in good accordance with that of OU-type processes which
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have autocorrelation functions of the form e−ah for positive lags h. In many data
sets a more complex and often a (quasi)long memory behavior of the autocorre-
lation function is encountered. OU-type processes could be replaced by fractional
OU-type processes (see [30] or [31], for instance) to have long memory effects in-
cluded in the model. However, in this case many desirable properties are lost, and,
in particular, fractional OU-type processes no longer have jumps. An alternative to
obtain long memory from OU-type processes and still to have jumps is to add up
countably many independent OU-type processes, that is,

Xt =
∞∑

k=1

wi

∫ t

−∞
e−ai(t−s) dLi,s

with independent identically distributed Lévy processes (Li)i∈N and appropriate
ai > 0, wi > 0 with

∑∞
i=1 wi = 1. Intuitively we can likewise “add” (i.e., integrate)

up independent OU-type processes with all parameter values a > 0 possible. The
resulting processes are called supOU processes and have been introduced in [2]
where it has also been established that they may exhibit long-range dependence.
For a comprehensive treatment regarding the theory and use of univariate supOU
processes in finance we refer to [7].

So far supOU processes have only been considered in the univariate case. How-
ever, in many applications it is crucial to model several time series with a joint
model, and so flexible multivariate models are important. Therefore, in this pa-
per we introduce and study multivariate supOU processes. Due to the appearance
of matrices and the related peculiarities our theory is not a straightforward ex-
tension of the univariate results. Multivariate (d-dimensional) OU-type processes
(see, e.g., [26] or [46]) are defined as the solutions of SDEs of the form

dXt = AXt dt + dLt(1.2)

with L a d-dimensional Lévy process and A a d × d matrix. Provided E(ln(‖L‖∨
1)) < ∞ and all eigenvalues of A have strictly negative real part, we have again a
unique stationary solution given by

Xt =
∫ t

−∞
eA(t−s) dLs.

Intuitively our multivariate supOU processes are obtained by “adding up” inde-
pendent OU-type processes with all possible parameters A; that is, we consider all
d × d matrices A with eigenvalues of strictly negative real parts. It turns out later
on that the behavior of supOU becomes more tractable when we restrict A to come
only from a nice subset, like the negative definite matrices.

The remainder of this paper is structured as follows. The next section starts
with a brief overview of important notation and conventions used in the paper and
is followed in Section 2.2 by a comprehensive introduction into Lévy bases and
the related integration theory, which will be needed to define supOU processes.
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In Section 3 we first define multivariate supOU processes and provide existence
conditions in Section 3.1. Thereafter, we discuss the existence of moments and
derive the second-order structure. For the finite variation case we show important
path properties in Section 3.3. Besides establishing that we have càdlàg paths of
bounded variation, we give an analogue of the stochastic differential equation (1.2)
for supOU processes and its proof. In particular, this proves a conjecture in [2],
which has not yet been shown in any nondegenerate set-up. We conclude that
section with several examples illustrating the behavior and properties of supOU
processes and showing that they may exhibit long memory. In Section 4 we use our
results to define positive semi-definite supOU processes and analyze their proper-
ties. These processes are important for applications like stochastic volatility mod-
eling, since they may be used to describe the stochastic dynamics of a latent co-
variance matrix. Finally, this and other possible applications of supOU processes
are discussed in Section 5.

2. Background and preliminaries.

2.1. Notation. We denote the set of real m×n matrices by Mm,n(R). If m = n,
we simply write Mn(R) and denote the group of invertible n × n matrices by
GLn(R), the linear subspace of symmetric matrices by Sn, the (closed) positive
semi-definite cone by S

+
n and the open positive definite cone by S

++
n (likewise

S
−−
n are the strictly negative definite matrices, etc.). In stands for the n × n iden-

tity matrix. The tensor (Kronecker) product of two matrices A,B is written as
A ⊗ B . vec denotes the well-known vectorisation operator that maps the n × n

matrices to R
n2

by stacking the columns of the matrices below one another. For
more information regarding the tensor product and vec operator we refer to [23],
Chapter 4. The spectrum of a matrix is denoted by σ(·). Finally, A∗ is the trans-
pose (adjoint) of a matrix A ∈ Mm,n(R), and Aij stands for the entry of A in the
ith row and j th column.

Norms of vectors or matrices are denoted by ‖ · ‖. If the norm is not further
specified, then it is understood that we take the Euclidean norm or its induced
operator norm, respectively. However, due to the equivalence of all norms none of
our results really depends on the choice of norms.

For a complex number z we denote by �(z) its real part. Moreover, the indicator
function of a set A is written 1A.

A mapping f :V → W is said to be V –W -measurable if it is measurable when
the σ -algebra V is used on the domain V , and the σ -algebra W is used on the
range W . The Borel σ -algebras are denoted by B(·) and λ typically stands for the
Lebesgue measure which in vector or matrix spaces is understood to be defined as
the product of the coordinatewise Lebesgue measures.

Throughout we assume that all random variables and processes are defined on
a given complete probability space (�,F ,P ) equipped with an appropriate filtra-
tion when relevant.
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Furthermore, we employ an intuitive notation with respect to the (stochas-
tic) integration with matrix-valued integrators referring to any of the standard
texts (e.g., [43]) for a comprehensive treatment of the theory of stochastic inte-
gration. Let (At )t∈R+ in Mm,n(R), (Bt )t∈R+ in Mr,s(R) be càdlàg and adapted
processes and (Lt )t∈R+ in Mn,r(R) be a semi-martingale. Then we denote
by

∫ t
0 As− dLsBs− the matrix Ct in Mm,s(R) which has ij th element Cij,t =∑n

k=1
∑r

l=1
∫ t

0 Aik,s−Blj,s− dLkl,s . Equivalently such an integral can be under-
stood in the sense of [34, 35] by identifying it with the integral

∫ t
0 As− dLs with

At being for each fixed t the linear operator Mn,r(R) → Mm,s(R),X 
→ AtXBt .
Analogous notation is used in the context of integrals with respect to random mea-
sures.

Finally, integrals of the form
∫
A

∫
B f (x, y)m(dx, dy) are understood to be over

the set A in x and over B in y.

2.2. Lévy bases. To lay the foundations for the definition of vector-valued
supOU processes, we give now a summary of Lévy bases and the related inte-
gration theory. In this context recall that a d-dimensional Lévy process can be
understood as an R

d -valued random measure on the real numbers. If L = (Lt )t∈R

is a d-dimensional Lévy process, this measure is simply determined by L((a, b]) =
L(b) − L(a) for all a, b ∈ R, a < b.

Define now M−
d := {X ∈ Md(R) :σ(X) ⊂ (−∞,0) + iR} and Bb(M

−
d × R) to

be the bounded Borel sets of M−
d × R. Note that M−

d is obviously a cone, but not

a convex one (cf. [22], for instance). Moreover, we obviously have M−
d = {X ∈

Md(R) :σ(X) ⊂ (−∞,0] + iR}.
DEFINITION 2.1. A family � = {�(B) : B ∈ Bb(M

−
d × R)} of R

d -valued
random variables is called an R

d -valued Lévy basis on M−
d × R if:

(a) the distribution of �(B) is infinitely divisible for all B ∈ Bb(M
−
d × R),

(b) for any n ∈ N and pairwise disjoint sets B1, . . . ,Bn ∈ Bb(M
−
d × R) the ran-

dom variables �(B1), . . . ,�(Bn) are independent and
(c) for any pairwise disjoint sets Bi ∈ Bb(M

−
d × R), i ∈ N, satisfying

⋃
n∈N Bn ∈

Bb(M
−
d ×R) the series

∑∞
n=1 �(Bn) converges almost surely and it holds that

�(
⋃

n∈N Bn) = ∑∞
n=1 �(Bn).

In the literature Lévy bases are also often called infinitely divisible indepen-
dently scattered random measures (abbreviated i.d.i.s.r.m.) instead.

In the following we will only consider Lévy bases, which are homogeneous (in
time) and factorizable (into the effects of one underlying infinitely divisible distri-
bution and a probability distribution on M−

d ); that is, their characteristic function
is of the form

E(exp(iu∗�(B))) = exp(ϕ(u)�(B))(2.1)
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for all u ∈ R
d and B ∈ Bb(M

−
d (R) × R). Here � = π × λ is the product of a

probability measure π on M−
d (R) and the Lebesgue measure λ on R and

ϕ(u) = iu∗γ − 1

2
u∗
u +

∫
Rd

(
eiu∗x − 1 − iu∗x1[0,1](‖x‖))ν(dx)(2.2)

is the cumulant transform of an infinitely divisible distribution on R
d with Lévy–

Khintchine triplet (γ,
, ν), that is, γ ∈ R
d , 
 ∈ S

+
d and ν is a Lévy measure—

a Borel measure on R
d with ν({0}) = 0 and

∫
Rd (‖x‖2 ∧1)ν(dx) < ∞. The quadru-

ple (γ,
, ν,π) determines the distribution of the Lévy basis completely and is
henceforth referred to as the “generating quadruple” (cf. [18]).

The Lévy process L defined by

Lt = �
(
M−

d × (0, t]) and L−t = �
(
M−

d × (−t,0)
)

for t ∈ R
+,

has characteristic triplet (γ,
, ν) and is called “the underlying Lévy process.”
For more information on R

d -valued Lévy bases see [39] and [44].
A Lévy basis has a Lévy–Itô decomposition.

THEOREM 2.2 (Lévy–Itô decomposition). Let � be a homogeneous and
factorisable R

d -valued Lévy basis on M−
d × R with generating quadruple

(γ,
, ν,π). Then there exists a modification �̃ of � which is also a Lévy basis
with generating quadruple (γ,
, ν,π) such that there exists an R

d -valued Lévy
basis �̃G on M−

d × R with generating quadruple (0,
,0, π) and an independent
Poisson random measure μ on (Rd × M−

d × R,B(Rd × M−
d × R)) with intensity

measure ν × π × λ which satisfy

�̃(B) = γ (π × λ)(B) + �̃G(B)

+
∫
‖x‖≤1

∫
B

x
(
μ(dx, dA,ds) − ds π(dA)ν(dx)

)
(2.3)

+
∫
‖x‖>1

∫
B

xμ(dx, dA,ds)

for all B ∈ Bb(M
−
d × R) and all ω ∈ �.

Provided
∫
‖x‖≤1 ‖x‖ν(dx) < ∞, it holds that

�̃(B) = γ0(π × λ)(B) + �̃G(B) +
∫

Rd

∫
B

xμ(dx, dA,ds)

for all B ∈ Bb(M
−
d × R) with

γ0 := γ −
∫
‖x‖≤1

xν(dx).(2.4)

Furthermore, the integral with respect to μ exists as a Lebesgue integral for all
ω ∈ �.



MULTIVARIATE SUPOU PROCESSES 145

Here an R
d -valued Lévy basis �̃ on M−

d × R is called a modification of a
Lévy basis � if �̃(B) = �(B) a.s. for all B ∈ Bb(M

−
d × R). For the necessary

background on the integration with respect to Poisson random measures we refer
to [24], Section 2.1, and [27], Lemma 12.13.

PROOF OF THEOREM 2.2. This follows immediately from [39], Theorem 4.5,
because the control measure m is given by m(B) = (‖γ ‖ + tr(
) + ∫

Rd (1 ∧
‖x‖2)ν(dx))(π × λ)(B) which is trivially continuous due to the presence of the
Lebesgue measure. The second part is an immediate consequence, as no compen-
sation for the small jumps is needed if

∫
‖x‖≤1 ‖x‖ν(dx) < ∞. �

From now on we assume without loss of generality that all Lévy bases are such
that they have the Lévy–Itô decomposition (2.3).

In the following we need to define integrals of deterministic functions with
respect to a Lévy basis �. Following [44], for simple functions f :M−

d × R →
Md(R),

f (x) =
m∑

i=1

ai1Bi
(x)

with m ∈ N, ai ∈ Md(R) and Bi ∈ Bb(M
−
d × R), and for every B ∈ B(M−

d × R)

we define the integral

∫
B

f (x)�(dx) =
m∑

i=1

ai�(B ∩ Bi).

A B(M−
d × R)-B(Md(R))-measurable function f :M−

d × R → Md(R) is said
to be �-integrable if there exists a sequence of simple functions (fn)n∈N such
that fn → f Lebesgue almost everywhere, and for all B ∈ B(M−

d × R) the
sequence

∫
B fn(x)�(dx) converges in probability. For �-integrable f we set∫

B f (x)�(dx) = plimn→∞
∫
B fn(x)�(dx). As in [44] well definedness of the in-

tegral is ensured by [48].
The following result is a straightforward generalization of [44], Propositions 2.6

and 2.7, to R
d -valued Lévy bases and follows along the same lines.

PROPOSITION 2.3. Let � be an R
d -valued Lévy basis with characteristic

function of the form (2.1) and f :M−
d × R → Md(R) a B(M−

d × R)-B(Md(R))-
measurable function. Then f is �-integrable if and only if
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M−

d

∫
R

∥∥∥∥f (A, s)γ

+
∫

Rd
f (A, s)x

(
1[0,1](‖f (A, s)x‖)(2.5)

− 1[0,1](‖x‖))ν(dx)

∥∥∥∥ds π(dA) < ∞,

∫
M−

d

∫
R

‖f (A, s)
f (A, s)∗‖ds π(dA) < ∞,(2.6)

∫
M−

d

∫
R

∫
Rd

(1 ∧ ‖f (A, s)x‖2)ν(dx) ds π(dA) < ∞.(2.7)

If f is �-integrable, the distribution of
∫
M−

d

∫
R+ f (A, s)�(dA,ds) is infinitely

divisible with characteristic function

E

(
exp

(
iu∗

∫
M−

d

∫
R+

f (A, s)�(dA,ds)

))
(2.8)

= exp
(∫

M−
d

∫
R+

ϕ(f (A, s)∗u)ds π(dA)

)

and characteristic triplet (γint,
int, νint) given by

γint =
∫
M−

d

∫
R

(
f (A, s)γ

+
∫

Rd
f (A, s)x

(
1[0,1](‖f (A, s)x‖)(2.9)

− 1[0,1](‖x‖))ν(dx)

)
ds π(dA),


int =
∫
M−

d

∫
R

f (A, s)
f (A, s)∗ ds π(dA),(2.10)

νint(B) =
∫
M−

d

∫
R

∫
Rd

1B(f (A, s)x)ν(dx) ds π(dA) ∀B ∈ B(Rd).(2.11)

When the underlying Lévy process has finite variation we can do ω-wise
Lebesgue integration; that is, the integral can be obtained as a Lebesgue integral
for each ω ∈ �.

PROPOSITION 2.4. Let � be an R
d -valued Lévy basis with characteristic

quadruple (γ,0, ν,π) satisfying
∫
‖x‖≤1 ‖x‖ν(dx) < ∞, and define γ0 as in (2.4),

that is, ϕ(u) = iu∗γ0 + ∫
Rd (eiu∗x − 1)ν(dx). Furthermore, let f :M−

d × R →
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Md(R) be a B(M−
d × R)-B(Md(R))-measurable function satisfying∫

M−
d

∫
R

‖f (A, s)‖ds π(dA) < ∞,(2.12)

∫
M−

d

∫
R

∫
Rd

(
1 ∧ ‖f (A, s)x‖)

ν(dx) ds π(dA) < ∞.(2.13)

Then ∫
M−

d

∫
R

f (A, s)�(dA,ds) =
∫
M−

d

∫
R

f (A, s)γ0 ds π(dA)

(2.14)
+

∫
Rd

∫
M−

d

∫
R

f (A, s)xμ(dx, dA,ds),

and the right-hand side is a Lebesgue integral for every ω ∈ � [conditions (2.12)
and (2.13) are also necessary for this].

Moreover, the distribution of
∫
M−

d

∫
R

f (A, s)�(dA,ds) is infinitely divisible
with characteristic function

E

(
exp

(
iu∗

∫
M−

d

∫
R

f (A, s)�(dA,ds)

))

= eiu∗γint,0+∫
Rd (eiu∗x−1)νint(dx), u ∈ R

d,

where

γint,0 =
∫
M−

d

∫
R

f (A, s)γ0 ds π(dA),(2.15)

νint(B) =
∫
M−

d

∫
R

∫
Rd

1B(f (A, s)x)ν(dx) ds π(dA) ∀B ∈ B(Rd).(2.16)

PROOF. Follows from the Lévy–Itô decomposition and the usual integration
theory with respect to Poisson random measures (see [27], Lemma 12.13). �

REMARK 2.5. All results of this section remain valid when replacing M−
d

with Mk(R), k ∈ N, or any measurable subset of a finite-dimensional real vector
space and when considering integration of functions f :Mk(R) × R → Mm,d(R).
We decided to state all our results with M−

d as this set will be used mainly in the
following and it reduces the notational burden.

3. Multidimensional supOU processes. In this section we introduce supOU
processes taking values in R

d with d ∈ N and analyze their properties. This extends
to a multivariate setting the theory of univariate supOU processes as introduced in
[2] and studied further, for example, in [19].

Intuitively supOU processes are obtained by “adding up” independent OU-type
processes with different mean reversion coefficient.
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3.1. Definition and existence. We define a d-dimensional supOU process as a
process of the form (3.4) below.

THEOREM 3.1. Let � be an R
d -valued Lévy basis on M−

d × R with generat-
ing quadruple (γ,
, ν,π) satisfying∫

‖x‖>1
ln(‖x‖)ν(dx) < ∞,(3.1)

and assume there exist measurable functions ρ :M−
d → R

+\{0} and κ :M−
d →

[1,∞) such that

‖eAs‖ ≤ κ(A)e−ρ(A)s ∀s ∈ R
+, π-almost surely,(3.2)

and ∫
M−

d

κ(A)2

ρ(A)
π(dA) < ∞.(3.3)

Then the process (Xt)t∈R given by

Xt =
∫
M−

d

∫ t

−∞
eA(t−s)�(dA,ds)(3.4)

is well defined for all t ∈ R and stationary. The distribution of Xt is infinitely
divisible with characteristic triplet (γX,
X, νX) given by

γX =
∫
M−

d

∫
R+

(
eAsγ +

∫
Rd

eAsx
(
1[0,1](‖eAsx‖)

(3.5)

− 1[0,1](‖x‖))ν(dx)

)
ds π(dA),


X =
∫
M−

d

∫
R+

eAs
eA∗s ds π(dA),(3.6)

νX(B) =
∫
M−

d

∫
R+

∫
Rd

1B(eAsx)ν(dx) ds π(dA)

(3.7)
for all Borel sets B ⊆ R

d .

PROOF. The stationarity is obvious once the well definedness is shown. Using
Proposition 2.3 it follows that necessary and sufficient conditions for the integral
to exist are given by∫

M−
d

∫
R+

∥∥∥∥eAsγ +
∫

Rd
eAsx

(
1[0,1](‖eAsx‖)

(3.8)

− 1[0,1](‖x‖))ν(dx)

∥∥∥∥ds π(dA) < ∞,
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M−

d

∫
R+

‖eAs
eA∗s‖ds π(dA) < ∞,(3.9)

∫
M−

d

∫
R+

∫
Rd

(1 ∧ ‖eAsx‖2)ν(dx) ds π(dA) < ∞.(3.10)

First we show (3.10)∫
M−

d

∫
R+

∫
Rd

(1 ∧ ‖eAsx‖2)ν(dx) ds π(dA)

≤
∫
M−

d

∫
R+

∫
Rd

(
1 ∧ κ(A)2e−2ρ(A)s‖x‖2)

ν(dx) ds π(dA)

=
∫
M−

d

∫
‖x‖>1/κ(A)

ln(κ(A)‖x‖) + 1/2

ρ(A)
ν(dx)π(dA)

+
∫
M−

d

∫
‖x‖≤1/κ(A)

κ(A)2‖x‖2

2ρ(A)
ν(dx)π(dA).

The finiteness of the first integral follows from (3.1), (3.3), κ(A) ≥ 1 and ν being
a Lévy measure, which imply∫

M−
d

∫
‖x‖>1/κ(A)

ln(κ(A)‖x‖) + 1/2

ρ(A)
ν(dx)π(dA)

≤
∫
M−

d

∫
‖x‖>1

ln(κ(A)) + ln(‖x‖) + 1/2

ρ(A)
ν(dx)π(dA)

+
∫
M−

d

∫
‖x‖≤1

3κ(A)2‖x‖2

2ρ(A)
ν(dx)π(dA)

=
∫
M−

d

ln(κ(A))

ρ(A)
π(dA)

∫
‖x‖>1

ν(dx)

+
∫
M−

d

3κ(A)2

2ρ(A)
π(dA)

∫
‖x‖≤1

‖x‖2ν(dx)

+
∫
M−

d

1

ρ(A)
π(dA)

∫
‖x‖>1

(
ln(‖x‖) + 1/2

)
ν(dx) < ∞.

Likewise the finiteness of the second integral is implied by (3.3), κ(A) ≥ 1 and∫
‖x‖≤1 ‖x‖2ν(dx) < ∞, as ν is a Lévy measure.

Next (3.9) follows from (3.3) and∫
M−

d

∫
R+

‖eAs
eA∗s‖ds π(dA) ≤ ‖
‖
∫
M−

d

∫
R+

κ(A)2e−2ρ(A)s ds π(dA)

= ‖
‖
∫
M−

d

κ(A)2

2ρ(A)
π(dA).
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Turning to (3.8) we have from (3.3) that∫
M−

d

∫
R+

‖eAsγ ‖ds π(dA) ≤ ‖γ ‖
∫
M−

d

∫
R+

κ(A)e−ρ(A)s ds π(dA)

= ‖γ ‖
∫
M−

d

κ(A)

ρ(A)
π(dA) < ∞.

Moreover,∫
M−

d

∫
R+

∥∥∥∥
∫

Rd
eAsx

(
1[−1,1](‖eAsx‖) − 1[−1,1](‖x‖))ν(dx)

∥∥∥∥ds π(dA)

≤
∫
M−

d

∫
R+

∫
‖x‖≤1,‖eAsx‖≥1

‖eAsx‖ν(dx) ds π(dA)

+
∫
M−

d

∫
R+

∫
‖x‖≥1,‖eAsx‖≤1

‖eAsx‖ν(dx) ds π(dA)

≤
∫
M−

d

∫
R+

∫
‖x‖≤1,‖eAsx‖≥1

‖eAsx‖2ν(dx) ds π(dA)

+
∫
M−

d

∫
R+

∫
‖x‖∈(1,eρ(A)s/2)

‖x‖κ(A)e−ρ(A)sν(dx) ds π(dA)

+
∫
M−

d

∫
R+

∫
‖x‖≥eρ(A)s/2

ν(dx) ds π(dA)

≤
∫
‖x‖≤1

‖x‖2ν(dx)

∫
M−

d

κ(A)2

2ρ(A)
π(dA) +

∫
M−

d

2κ(A)

ρ(A)
π(dA)

∫
‖x‖>1

ν(dx)

+
∫
M−

d

2

ρ(A)
π(dA)

∫
‖x‖>1

ln(‖x‖)ν(dx) < ∞

with the finiteness following from (3.1), (3.3) and ν being a Lévy measure.
That the distribution of Xt is infinitely divisible and has the stated characteristic

triplet follows now immediately from Proposition 2.3. �

REMARK 3.2. (i) The necessary and sufficient conditions for the existence of
the multivariate supOU process X are (3.8)–(3.10). However, as they are obviously
very intricate to check in concrete situations, it seems to be appropriate to replace
them by the sufficient conditions (3.1)–(3.3). One particular advantage of these
conditions is that they involve only integrals with respect to either ν or π , but not
with respect to both.

(ii) Note also that for d = 1 the conditions above become the necessary and
sufficient conditions of [19], as we can then take κ(A) = 1 and ρ(A) = −A.

(iii) By looking at the Jordan decomposition one can see that pointwise there
is for any A ∈ M−

d a constant κ ∈ [1,∞) and a ρ ∈ (0,−max(�(σ (A)))] such
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that ‖eAs‖ ≤ κe−ρs for all s ∈ R
+. If A is diagonalizable, it is possible to choose

ρ(A) = −max(�(σ (A))) and κ(A) = ‖U‖‖U−1‖ with U ∈ GLd(C) being such
that UAU−1 is diagonal. So (3.2) essentially demands that this choice has to be
done measurably in A (see especially Example 3.5 for a concrete example).

It seems important, especially for applications, to understand how close our
sufficient existence conditions are to necessity and to give also necessary con-
ditions easier checkable than (3.8)–(3.10). To this end we need the concept of
modulus of injectivity (see, e.g., [40], Section B.3). For a Z ∈ Md(R) the modu-
lus of injectivity is defined as j (Z) = min‖x‖=1 ‖Zx‖. It is immediate to see that
0 ≤ j (Z) ≤ ‖Z‖ and j (Z) = ‖Z−1‖−1 for Z ∈ GLd(R).

PROPOSITION 3.3. Let � be an R
d -valued Lévy basis on M−

d × R with
generating quadruple (γ,
, ν,π) and assume there exist measurable functions
τ : M−

d → R
+\{0} and ϑ :M−

d → (0,1] such that

j (eAs) ≥ ϑ(A)e−τ(A)s ∀s ∈ R
+, π-almost surely.(3.11)

Then necessary conditions for the integral (3.4) to exist are∫
ϑ(A)≥ε

1

τ(A)
π(dA) < ∞

(3.12)
for any ε ∈ (0,1] with ν

({‖x‖ > 1/ε}) > 0 and π({ϑ(A) ≥ ε}) > 0,∫
M−

d

ϑ(A)2

τ(A)
π(dA) < ∞ provided j (
) > 0 or ν({‖x‖ ≤ 1}) > 0(3.13)

and ∫
‖x‖>1

ln(‖x‖)ν(dx) < ∞.(3.14)

This shows, in particular, that the logarithmic moment condition on ν is both
necessary and sufficient and that (3.2), (3.3) together with (3.11)–(3.13) form a set
of sufficient and necessary conditions which are as close as one can probably hope
for conditions reasonably easy to work with.

PROOF OF PROPOSITION 3.3. In the case j (
) > 0 condition (3.13) follows
immediately from (3.9).

Equation (3.10) implies that a necessary condition is

∞ >

∫
M−

d

∫
R+

∫
Rd

(
1 ∧ ϑ(A)2e−2τ(A)s‖x‖2)

ν(dx) ds π(dA)

=
∫
M−

d

∫
‖x‖>1/ϑ(A)

ln(ϑ(A)‖x‖) + 1/2

τ(A)
ν(dx)π(dA)

+
∫
M−

d

∫
‖x‖≤1/ϑ(A)

ϑ(A)2‖x‖2

2τ(A)
ν(dx)π(dA).
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Since ϑ(A) ≤ 1, the second summand implies (3.13) given ν({‖x‖ ≤ 1}) > 0.
Choose now ε > 0 such that π({ϑ(A) ≥ ε}) > 0. Then the first integral is bigger

than ∫
ϑ(A)≥ε

∫
‖x‖>1/ε

ln(ϑ(A)‖x‖) + 1/2

τ(A)
ν(dx)π(dA).

This gives the necessity of (3.12). Moreover, the above integral is again greater
than ∫

ϑ(A)≥ε

∫
‖x‖>1/ε

ln(ε) + ln(‖x‖) + 1/2

τ(A)
ν(dx)π(dA).

Since
∫
ϑ(A)≥ε

∫
‖x‖>1/ε

1
τ(A)

ν(dx)π(dA) is necessarily finite, we have that∫
ϑ(A)≥ε

∫
‖x‖>1/ε

ln(ε)

τ (A)
ν(dx)π(dA) > −∞.

Hence,
∫
ϑ(A)≥ε

∫
‖x‖>1/ε

ln(‖x‖)
τ (A)

ν(dx)π(dA) < ∞. Since
∫
ϑ(A)≥ε

1
τ(A)

π(dA) > 0
by construction, this implies the necessity of (3.14). �

REMARK 3.4. (i) For d = 1 we have again recovered the necessary and suffi-
cient conditions of [19], as we can then take ϑ(A) = 1 and τ(A) = −A.

(ii) Pointwise there is again for any A ∈ M−
d a constant ϑ ∈ (0,1] and a

τ ∈ [−min(�(σ (A))),∞) such that j (eAs) ≥ ϑe−τs for all s ∈ R
+. For A di-

agonalizable τ(A) = −min(�(σ (A))) and ϑ(A) = j (U)j (U−1) can be chosen if
UAU−1 is diagonal.

(iii) If ν has unbounded support,
∫
ϑ(A)≥ε

1
τ(A)

π(dA) < ∞ is necessary for all

ε > 0. If π({ϑ(A) ≥ ε̃}) = 1 for some ε̃ > 0, then
∫
M−

d

1
τ(A)

π(dA) < ∞ becomes
a necessary condition, provided ν({‖x‖ > 1/ε̃}) > 0.

In some applications like stochastic volatility modeling, for instance, one is
particularly interested in the case where the underlying Lévy process is of finite
variation and the supOU process is defined via ω-wise integration. The following
result is proved using Proposition 2.4 together with variations of the arguments of
the proofs of Theorem 3.1 and Proposition 3.3.

PROPOSITION 3.5. (i) Let � be an R
d -valued Lévy basis on M−

d × R with
generating quadruple (γ,0, ν,π) satisfying∫

‖x‖>1
ln(‖x‖)ν(dx) < ∞ and

∫
‖x‖≤1

‖x‖ν(dx) < ∞(3.15)

and assume there exist measurable functions ρ :M−
d → R

+\{0} and κ :M−
d →

[1,∞) such that

‖eAs‖ ≤ κ(A)e−ρ(A)s ∀s ∈ R
+, π-almost surely,(3.16)
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and ∫
M−

d

κ(A)

ρ(A)
π(dA) < ∞.(3.17)

Then the process (Xt)t∈R given by

Xt =
∫
M−

d

∫ t

−∞
eA(t−s)�(dA,ds)

(3.18)

=
∫
M−

d

∫ t

−∞
eA(t−s)γ0 ds π(dA) +

∫
Rd

∫
M−

d

∫ t

−∞
eA(t−s)xμ(dx, dA,ds)

is well defined as a Lebesgue integral for all t ∈ R and ω ∈ � and X is stationary.
(ii) If there exist measurable functions τ :M−

d → R
+\{0} and ϑ : M−

d → (0,1]
such that j (eAs) ≥ ϑ(A)e−τ(A)s ∀s ∈ R

+, π-almost surely, then necessary condi-
tions for the integral (3.18) to exist as a Lebesgue integral are:∫

ϑ(A)≥ε

1

τ(A)
π(dA) < ∞

(3.19)
for any ε ∈ (0,1] such that ν({‖x‖ > 1/ε}) > 0 and π

({ϑ(A) ≥ ε}) > 0,∫
M−

d

ϑ(A)

τ(A)
π(dA) < ∞ provided γ0 �= 0 or ν({‖x‖ ≤ 1}) > 0,(3.20)

∫
‖x‖>1

ln(‖x‖)ν(dx) < ∞ and
∫
‖x‖≤1

‖x‖ν(dx) < ∞.(3.21)

REMARK 3.6. If (3.3) is satisfied for a Lévy basis, then (3.17) is also satisfied.

We shall not develop the general case further, but consider two special cases
which appear to be sufficient for most purposes. We define MN−

d := {A ∈ Md(R) :
A is normal and σ(A) ⊂ (−∞,0) + iR}.

PROPOSITION 3.7. (i) Assume that π(MN−
d ) = 1, then (3.2) or (3.16) are

satisfied with κ(A) = 1 and ρ(A) = −max(�(σ (A))). Moreover, (3.3) or (3.17)
are implied by

−
∫
MN−

d

1

max(�(σ (A)))
π(dA) < ∞.(3.22)

Likewise, (3.11) is satisfied with ϑ(A) = 1 and τ(A) = −min(�(σ (A))). The
necessary conditions (3.12), (3.13), (3.19) and (3.20) all become

−
∫
MN−

d

1

min(�(σ (A)))
π(dA) < ∞

[assuming ν(‖x‖ > 1) > 0 for (3.12), (3.19)].
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(ii) Assume that there are a K ∈ N and diagonalizable A1, . . . ,AK ∈ M−
d (R)

such that π({λAi : i = 1, . . . ,K;λ ∈ R
+\{0}}) = 1. Then (3.2) or (3.16) are satis-

fied with κ(A) = C for some C ∈ [1,∞) and ρ(A) = −max(�(σ (A))). Moreover,
(3.3) or (3.17) are implied by

−
∫
M−

d

1

max(�(σ (A)))
π(dA) < ∞.(3.23)

Likewise, (3.11) is satisfied with τ(A) = −min(�(σ (A))) and ϑ(A) = c for some
c ∈ (0,1] and the necessary conditions (3.12), (3.13), (3.19) and (3.20) all become
− ∫

M−
d

1
min(�(σ (A)))

π(dA) < ∞ [assuming ν(‖x‖ > 1/c) > 0 for (3.12), (3.19)].

In dimension one these are again the well-known necessary and sufficient con-
ditions. Observe also that the eigenvalues are continuous (and hence measurable)
in A because they are the zeros of the characteristic polynomial.

PROOF OF PROPOSITION 3.7. Part (i) follows immediately from the fact that
all normal matrices are unitarily diagonalizable.

Likewise, (ii) is a consequence of the above mentioned pointwise bound and
the fact that this can be turned into a global one because for fixed i = 1, . . . ,N the
matrices {λAi}λ∈R+\{0} are all diagonalized by the same invertible matrices. �

In (i) the mean reversion parameter A of the superimposed OU-type processes
is restricted to normal matrices and in (ii) to finitely many rays {λAi}λ∈R+\{0}.

REMARK 3.8. (i) Typically one will, in general, not consider normal matrices
for A as in (i), but only negative definite ones, since this allows one to use well-
known distributions on the positive definite matrices (see, e.g., [21]) for π . In the
case (ii) possible π can be obtained by using arbitrary distributions on R

+ along
the rays and positive weights summing to one for the different rays.

(ii) Intuitively (3.22) and (3.23) and their necessary counterparts mean that π

must not put too much mass on elements with very slow exponential decay rates.

3.2. Finiteness of moments and second-order structure. Before we look at the
second-order structure, we give conditions ensuring the finiteness of moments.

THEOREM 3.9. Let X be a stationary d-dimensional supOU process driven
by a Lévy basis � satisfying the conditions of Theorem 3.1.

(i) If ∫
‖x‖>1

‖x‖rν(dx) < ∞(3.24)

for r ∈ (0,2], then X has a finite r th moment, that is, E(‖Xt‖r ) < ∞.



MULTIVARIATE SUPOU PROCESSES 155

(ii) If r ∈ (2,∞) and∫
‖x‖>1

‖x‖rν(dx) < ∞,

∫
M−

d

κ(A)r

ρ(A)
π(dA) < ∞,(3.25)

then X has a finite r th moment, that is, E(‖Xt‖r ) < ∞.
(iii) Necessary conditions for X to have a finite r th moment are∫

‖x‖>1
‖x‖rν(dx) < ∞(3.26)

in general and ∫
ϑ(A)≥ε

ϑ(A)r

τ (A)
π(dA) < ∞(3.27)

for any ε such that ν({‖x‖ > 1/ε}) > 0 and π({ϑ(A) ≥ ε}) > 0.

In connection with the above results observe that the underlying Lévy process L

has an r th moment, that is, E(‖L1‖r ) < ∞, for r ∈ R
+ if and only if∫

‖x‖>1
‖x‖rνL(dx) is finite.

PROOF OF THEOREM 3.9. Using [45], Corollary 25.8, we have to show∫
‖x‖>1 ‖x‖rνX(dx) < ∞ to establish (i) and (ii). Now,∫
‖x‖>1

‖x‖rνX(dx)

=
∫
M−

d

∫ ∞
0

∫
Rd

‖eAsx‖r1(1,∞)(‖eAsx‖)ν(dx) ds π(dA)

≤
∫
M−

d

∫ ∞
0

∫
Rd

κ(A)re−rρ(A)s‖x‖r1(1,∞)

(
κ(A)e−ρ(A)s‖x‖)

ν(dx) ds π(dA)

=
∫
M−

d

∫
‖x‖>1/κ(A)

∫ ln(κ(A)‖x‖)/ρ(A)

0
κ(A)re−rρ(A)s‖x‖r ds ν(dx)π(dA)

=
∫
M−

d

∫
‖x‖>1/κ(A)

κ(A)r‖x‖r

rρ(A)

(
1 − 1

κ(A)r‖x‖r

)
ν(dx)π(dA)

=
∫
M−

d

∫
‖x‖>1/κ(A)

κ(A)r‖x‖r − 1

rρ(A)
ν(dx)π(dA).

That
∫
M−

d

∫
‖x‖>1/κ(A)

1
rρ(A)

ν(dx)π(dA) < ∞ has already been shown in the proof
of Theorem 3.1.
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Moreover, we obtain∫
M−

d

∫
‖x‖>1/κ(A)

κ(A)r‖x‖r

ρ(A)
ν(dx)π(dA)

≤
∫
M−

d

∫
‖x‖>1

κ(A)r‖x‖r

ρ(A)
ν(dx)π(dA)

+
∫
M−

d

∫
‖x‖≤1

κ(A)r∨2‖x‖r∨2

ρ(A)
ν(dx)π(dA).

Hence, (i) and (ii) follow, since ν is a Lévy measure, using also (3.3) for (i).
Regarding the proof of (iii), analogous arguments give that∫

M−
d

∫
‖x‖>1/ϑ(A)

ϑ(A)r‖x‖r − 1

rτ (A)
ν(dx)π(dA) < ∞

is a necessary condition. An inspection of the proof of Proposition 3.3 shows that∫
M−

d

∫
‖x‖>1/ϑ(A)

(
1/τ(A)

)
ν(dx)π(dA) < ∞

is already necessary for X to exist. Hence,

∞ >

∫
M−

d

∫
‖x‖>1/ϑ(A)

ϑ(A)r‖x‖r

rτ (A)
ν(dx)π(dA)

≥
∫
ϑ(A)≥ε

∫
‖x‖>1/ε

ϑ(A)r‖x‖r

rτ (A)
ν(dx)π(dA)

is necessary for a finite r th moment of X. This implies (iii), since
∫
‖x‖>1 ‖x‖rν(dx)

is finite if and only if
∫
‖x‖>c ‖x‖rν(dx) < ∞ for arbitrary c > 0. �

REMARK 3.10. In the set-up of Proposition 3.7(i) [and analogously in (ii)]

−
∫
M−

d

1

max(�(σ (A)))
π(dA) < ∞,

∫
‖x‖>1

‖x‖rν(dx) < ∞(3.28)

imply (3.22) and (3.25) [resp. (3.24)].
Likewise, − ∫

M−
d

1
min(�(σ (A)))

π(dA) < ∞, provided ν(‖x‖ > 1) > 0 or ν(‖x‖ >

1/c) > 0, respectively, and
∫
‖x‖>1 ‖x‖rν(dx) < ∞ become necessary conditions

for X to exist and to have a finite r th moment.

In applications these results have important implications for modeling. If one
wants to have certain moments finite and certain moments infinite, for example,
because this is what observed data strongly suggests, one has to use a driving
Lévy basis � having exactly the same moments finite.

Moreover, knowledge of the moments allows for the estimation of the model
based on empirical observations by using the general method of moments (GMM)
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estimation procedure, for example. Often the inference on parameters is based on
the second-order moment structure as, for instance, in the estimation of multivari-
ate OU-type stochastic volatility models in [41] or the one of univariate supOU
type models in [7]. To provide the foundations for such work and due to the im-
portance in applications of understanding the temporal dependence structure, we
now calculate the second-order moment structure.

THEOREM 3.11. Let X be a stationary d-dimensional supOU process driven
by a Lévy basis � satisfying the conditions of Theorem 3.1 and assume additionally
that

∫
Rd ‖x‖2ν(dx) < ∞. Then E(‖X0‖2) < ∞ and we have

E(X0) = −
∫
M−

d

A−1
(
γ +

∫
|x|>1

xν(dx)

)
π(dA),(3.29)

var(X0) = −
∫
M−

d

(A (A))−1
(

 +

(∫
Rd

xx∗ν(dx)

))
π(dA),(3.30)

cov(Xh,X0) = −
∫
M−

d

eAh(A (A))−1
(

 +

∫
Rd

xx∗ν(dx)

)
π(dA)

(3.31)
for h ∈ R

+

with A (A) :Md(R) → Md(R),X 
→ AX + XA∗.
Moreover, it holds that

lim
h→∞ cov(Xh,X0) = 0.(3.32)

PROOF. The finiteness of the second moments follows from Theorem 3.9. Us-
ing the formulae of Theorem 3.1 and [45], Example 25.12, we obtain

E(X0) = γX +
∫
‖x‖>1

xνX(dx) =
∫
M−

d

∫
R+

eAs

(
γ +

∫
‖x‖>1

xν(dx)

)
ds π(dA).

Noting that d
ds

A−1eAs = eAs , integrating over s gives (3.29).
Likewise we get

var(X0) = 
X +
∫

Rd
xx∗νX(dx)

=
∫
M−

d

∫
R+

eAs

(

 +

∫
Rd

xx∗ν(dx)

)
eA∗s ds π(dA)

which implies (3.30) by integrating over s.



158 O. E. BARNDORFF-NIELSEN AND R. STELZER

Finally,

cov(Xh,X0) = cov
(∫

M−
d

∫ h

−∞
eA(h−s)�(dA,ds),

∫
M−

d

∫ 0

−∞
e−As�(dA,ds)

)

= cov
(∫

M−
d

∫ 0

−∞
eA(h−s)�(dA,ds),

∫
M−

d

∫ 0

−∞
e−As�(dA,ds)

)
(3.33)

=
∫
M−

d

eAh

(∫ 0

−∞
e−As

(

 +

∫
Rd

xx∗ν(dx)

)
e−A∗sds

)
π(dA)

= −
∫
M−

d

eAh(A (A))−1
(

 +

∫
Rd

xx∗ν(dx)

)
π(dA),

since � is a Lévy basis, and hence the random measures � on M−
d × (0, h] and on

M−
d × (−∞,0] are independent.
From (3.33) one obtains∥∥∥∥

∫
M−

d

eAh

(∫ 0

−∞
e−As

(

 +

∫
Rd

xx∗ν(dx)

)
e−A∗s ds

)
π(dA)

∥∥∥∥
≤

∫
M−

d

∫ 0

−∞
κ(A)2eρ(A)(2s−h) ds π(dA)

∥∥∥∥
 +
∫

Rd
xx∗ν(dx)

∥∥∥∥
≤

∫
M−

d

κ(A)2

2ρ(A)
π(dA)

∥∥∥∥
 +
∫

Rd
xx∗ν(dx)

∥∥∥∥ < ∞.

Therefore limh→∞ eAh = 0 for all A ∈ M−
d and dominated convergence establish

(3.32). �

3.3. “SDE representation” and some important path properties. In this sec-
tion we show for a supOU process X a representation which generalises the SDE
that governs OU-type processes, and we derive important path properties of X.
The “SDE representation”—identity (3.38) below—has been conjectured in the
univariate case in [2], where neither a proof nor conditions for its validity have
been given. Below we are able to show these results for finite variation Lévy bases,
which are naturally appearing in applications like stochastic volatility modeling.
The properties which we establish are especially important in the context of in-
tegration, since they imply that, if X is the integrator, then pathwise Lebesgue
integration can be carried out, and, when X is the integrand, the theory of sto-
chastic integrals of càdlàg processes with respect to semimartingales (see [43], for
instance) respectively the L2-theory of, for example, [38] applies. Likewise, the
integrated process is of importance in certain applications (see Section 5.2).

Below the filtration (Ft )t∈R generated by � is defined by Ft being the σ -
algebra generated by the set of random variables {�(B) :B ∈ B(M−

d × (−∞, t])}
for t ∈ R.
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THEOREM 3.12. Let X be a supOU process as in Proposition 3.5. Then:

(i) Xt(ω) is B(R) × F measurable as a function of t ∈ R and ω ∈ � and
adapted to the filtration (Ft )t∈R generated by �.

(ii) If ∫
M−

d

κ(A)π(dA) < ∞,(3.34)

the paths of X are locally uniformly bounded in t for every ω ∈ �.
Furthermore, X+

t = ∫ t
0 Xs ds exists for all t ∈ R

+ and

X+
t =

∫
M−

d

∫ t

−∞
A−1eA(t−s)�(dA,ds) −

∫
M−

d

∫ 0

−∞
A−1e−As�(dA,ds)

(3.35)

−
∫
M−

d

∫ t

0
A−1�(dA,ds).

(iii) Provided that ∫
M−

d

(‖A‖ ∨ 1)κ(A)

ρ(A)
π(dA) < ∞(3.36)

and ∫
M−

d

‖A‖κ(A)π(dA) < ∞(3.37)

it holds that

Xt = X0 +
∫ t

0
Zu du + Lt,(3.38)

where L is the underlying Lévy process and

Zu =
∫
M−

d

∫ u

−∞
AeA(u−s)�(dA,ds)(3.39)

for all u ∈ R with the integral existing ω-wise.
Moreover, the paths of X are càdlàg and of finite variation on compacts.

PROOF. (i) is immediate from the definition of Xt as a Lebesgue integral and
the measurability properties of the integrand eA(t−s)x1R+(t − s) which as a func-
tion of t, s,A, x is B(R × R × M−

d × R
d)-B(Rd)-measurable.

(ii) We first show local uniform boundedness of X. Choose arbitrary T1, T2 ∈ R

with T1 < T2. Then

fT1,T2(A, s, x) := sup
t∈[T1,T2]

∥∥eA(t−s)x1R+(t − s)
∥∥

≤ (
κ(A)e−ρ(A)(T1−s)1(−∞,T1](s) + κ(A)1(T1,T2](s)

)‖x‖
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for all A ∈ M−
d (R), s ∈ R and x ∈ R

d and

sup
t∈[T1,T2]

‖Xt‖ ≤
∫
M−

d

∫
R

fT1,T2(A, s, γ0) ds π(dA)

+
∫

Rd

∫
M−

d

∫
R

fT1,T2(A, s, x)μ(dx, dA,ds).

Therefore we only have to show the ω-wise existence and finiteness of the integral
on the right-hand side. This is, however, an immediate consequence of the above
upper bound, (3.34), Proposition 2.4 and arguments as in the proof of Theorem 3.1
noting that

∫
M−

d

∫ T2

T1

∫
Rd

(
1 ∧ κ(A)‖x‖)

ν(dx) ds π(dA)

≤ (T2 − T1)

(∫
M−

d

∫
‖x‖≤1

κ(A)‖x‖ν(dx)π(dA)

+
∫
M−

d

∫
‖x‖>1

1ν(dx)π(dA)

)
.

Turning to X+
t the existence follows immediately from the local boundedness.

Noting that we have actually proved the local boundedness of

∫
M−

d

∫ t

−∞
∥∥eA(t−s)γ0

∥∥ds π(dA) +
∫

Rd

∫
M−

d

∫ t

−∞
∥∥eA(t−s)x

∥∥μ(dx, dA,ds)

above, we can use Fubini to obtain

X+
t =

∫
M−

d

∫ t

−∞

∫ t

0∨u
eA(s−u)γ0 ds duπ(dA)

+
∫

Rd

∫
M−

d

∫ t

−∞

∫ t

0∨u
eA(s−u)x ds μ(dx, dA,du)

=
∫
M−

d

∫ t

−∞
A−1eA(s−u)γ0

∣∣t
s=(0∨u) duπ(dA)

+
∫

Rd

∫
M−

d

∫ t

−∞
A−1eA(s−u)x

∣∣t
s=(0∨u) ds μ(dx, dA,du),

which establishes (3.35) by straightforward calculations.
(iii) Using similar calculations as before, the existence of Zu as an ω-wise inte-

gral follows from Proposition 2.4 and (3.36). Similarly to (ii) one sees that under
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(3.37) Z is locally uniformly bounded in u. Hence, one can use Fubini to obtain∫ t

0
Zu du =

∫
Rd

∫
M−

d

∫ t

−∞

∫ t

0∨s
AeA(u−s)x duμ(dx, dA,ds)

+
∫
M−

d

∫ t

−∞

∫ t

0∨s
AeA(u−s)γ0 duds π(dA)

=
∫

Rd

∫
M−

d

∫ t

−∞
eA(u−s)x

∣∣t
u=(0∨s)μ(dx, dA,ds)

+
∫
M−

d

∫ t

−∞
eA(u−s)γ0

∣∣t
u=(0∨s) ds π(dA) = Xt − X0 − Lt

which establishes (3.38). That X has cádlág paths of finite variation is now an
immediate consequence of this integral representation. �

REMARK 3.13. (i) Condition (3.34) is always true if π is concentrated on
the normal matrices or on finitely many rays and hence especially in dimension
d = 1. Moreover, it could be replaced by the weaker but rather impracticable con-
dition that f[T1,T2](A, s, x) ∧ 1 is integrable with respect to π × λ × ν and that, for
any fixed x, f[T1,T2](A, s, x) is integrable with respect to π × λ (cf. [29], Proposi-
tion 2.1, for a very related result whose proof is similar in spirit to ours, but uses a
series representation instead of the Lévy–Itô decomposition).

(ii) Intuitively (3.37) means that π does not place too much mass on the ele-
ments of M−

d with high norm and thus very fast exponential decay rates.
If π is concentrated on the normal matrices or finitely many diagonalizable rays,

then (3.36) and (3.37) become

−
∫
M−

d

(‖A‖ ∨ 1)

max�(σ (A))
π(dA) < ∞ and

∫
M−

d

‖A‖π(dA) < ∞.(3.40)

In particular, the second condition simply means that π has a finite first moment.
If π is concentrated on S

−−
d , then we have ‖A‖ = −min(σ (A)), and (3.36)

becomes ∫
S

−−
d

(min(σ (A)) ∧ −1)

max (σ (A))
π(dA) < ∞,(3.41)

so it can be seen as a condition on the spread between the different exponential
decay rates measured by the eigenvalues. It is easy to see that in dimension d = 1,
it is equivalent to

∫
R−(−1/A)π(dA) < ∞, which is part of the necessary and suf-

ficient conditions for the existence of the supOU process.
(iii) It is very easy to construct examples when our sufficient conditions for X to

exist as an ω-wise integral are satisfied, but neither (3.36) nor (3.37) for Z above.
Take, for example, π concentrated on vn =

(−n
0

0
−1

)
with π(vn) = 6/(π2n2). In

such a case we unfortunately do not know whether Z exists because our previously
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employed techniques seem, at best, to give a necessary condition of the type (3.36)
involving j (A) ∧ 1, and hence the necessary conditions for Z to exist would be
implied by the sufficient ones for X. Therefore, we also refrained from giving
necessary conditions in this section.

3.4. Examples and long-range dependence. Like in the univariate case, the
expression (3.31) does not imply that we necessarily have an exponential decay of
the autocovariance function and thus a short memory process. On the contrary we
can easily obtain a long memory process, as the following examples exhibit. Note
that this illustrates that (3.32) is not obvious and indeed requires a detailed proof
as above.

Apart from showing that multivariate supOU processes may exhibit long-range
dependence, the purpose of this section is to analyze some concrete examples and
their properties.

Regarding long-range dependence, there is, unfortunately, basically no general
theory developed in the multivariate case so far. Below we mean by long-range
dependence (or long memory) simply that at least one element of the autocovari-
ance function decays asymptotically like h−α for the lag h going to infinity and for
some α ∈ (0;1). Intuitively this should clearly be a case when one may appropri-
ately speak of long-range dependence. Establishing a general theory for multivari-
ate long-range dependence seems to be very important, but is beyond the scope of
this paper.

EXAMPLE 3.1. Let � be a d-dimensional Lévy basis with generating quadru-
ple (γ,
, ν,π) with ν satisfying

∫
Rd ‖x‖2ν(dx) < ∞ and π being given as the

distribution of RB with a diagonalizable B ∈ M−
d and R being a real �(α,β)-

distributed random variable with α > 1, β ∈ R
+\{0}. Hence, R has probability

density f (r) = βα

�(α)
rα−1e−βr1R+(r), and from

−
∫
M−

d

1

max(�(σ (A)))
π(dA)

= −βα

max(�(σ (B)))�(α)

∫
R+

rα−2e−βr dr

= −βα

max(�(σ (B)))�(α)
· �(α − 1)

βα−1 = −β

α max(�(σ (B)))

we conclude that (3.28) holds. Hence, the process Xt = ∫
M−

d

∫ t
−∞ eA(t−s)�(dA,

ds) exists, is stationary and has finite second moments. Similar calculations imply
that α > 1 is also necessary for Xt to exist.
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For the autocovariance function at positive lags h we find

cov(Xh,X0) = −
∫
M−

d

eAh(A (A))−1 vec
(

 +

∫
Rd

xx∗ν(dx)

)
π(dA)

=
∫

R+
eBhr−βIdr rα−2 dr

(
− βα

�(α)
B−1

(

 +

∫
Rd

xx∗ν(dx)

))

with B :Md(R) → Md(R),X 
→ BX + XB∗. Let now U ∈ GLd(C) and λ1, λ2,

. . . , λd ∈ (−∞,0) + iR be such that

UBU−1 =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd

⎞
⎟⎟⎟⎠ .

Then, from
∫ ∞

0 tz−1e−kt dt = �(z)k−z for all z, k ∈ (0,∞)+ iR, where the power
is defined via the principal branch of the complex logarithm (see [1], page 255),
we obtain that∫

R+
eBhr−βIdrrα−2 dr

= U

∫
R+

exp

⎛
⎜⎜⎜⎝−r

⎛
⎜⎜⎜⎝βId −

⎛
⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd

⎞
⎟⎟⎟⎠h

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ rα−2 dr U−1

= �(α − 1)U

⎛
⎜⎜⎜⎝βId −

⎛
⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd

⎞
⎟⎟⎟⎠h

⎞
⎟⎟⎟⎠

1−α

U−1

= �(α − 1)(βId − Bh)1−α.

Above the (1 − α)th power of a matrix is understood to be defined via spectral
calculus as usual.

Hence,

cov(Xh,X0) = − βα

α − 1
(βId − Bh)1−αB−1

(

 +

∫
Rd

xx∗ν(dx)

)
,

and thus we have a polynomially decaying autocovariance function. For α ∈ (1,2)

we obviously get long memory.
Another question is whether we have the nice path properties of Theorem 3.12.

Hence, assume additionally that
∫
‖x‖≤1 ‖x‖ν(dx) < ∞. In our example condition
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(3.34) is trivially satisfied and so the paths of X are locally uniformly bounded
in t . Regarding condition (3.40) the second part is equivalent to

‖B‖
∫ ∞

0
rαe−βr dr < ∞,

which is always true, as any Gamma distribution has a finite mean. Denoting the
density of the �(α,β)-distribution by fα,β(r), one obtains for the first part

−
∫ ∞

0

(r‖B‖ ∨ 1)

r max(�(σ (B)))
fα,β(r) dr = −

∫ ‖B‖−1

0

1

r max(�(σ (B)))
fα,β(r) dr

−
∫ ∞
‖B‖−1

‖B‖
max(�(σ (B)))

fα,β(r) dr,

which is obviously finite. Hence, the conditions of Theorem 3.12(iii) are satisfied
and thus the paths are càdlàg and of finite variation, and (3.38) is valid.

EXAMPLE 3.2. The previous example has an immediate extension to the case
when π is concentrated on several rays instead of a single one as above. Assume
we have w1, . . . ,wm ∈ [0,1] with

∑m
i=1 wi = 1 and diagonalizable B1, . . . ,Bm ∈

M−
d , and define πi to be the probability measure of the random variable RiBi

with Ri being �(αi, βi) distributed with αi > 1, βi ∈ R
+\{0}. If ν is as above and

π = ∑m
i=1 wiπi , we get for the multivariate supOU process X

cov(Xh,X0) = −
m∑

i=1

(
wiβ

αi

i

αi − 1
(βiId − Bih)1−αiB−1

i

)(

 +

∫
Rd

xx∗ν(dx)

)

with Bi :Md(R) → Md(R),X 
→ BiX + XB∗
i .

Assuming now
∫
‖x‖≤1 ‖x‖ν(dx) < ∞, it is likewise straightforward to see that

conditions (3.34) and (3.40) are satisfied. Hence, the paths of X are locally uni-
formly bounded in t , càdlàg and of finite variation, and (3.38) is valid.

EXAMPLE 3.3. A similar result can be obtained if we restrict the mean re-
version parameter A to the strictly negative definite matrices S

−−
d and define π

as a probability distribution on the proper convex cone S
−−
d as follows. Let S−−

d

denote the intersection of the unit sphere in Sd with S
−−
d , let α : S−−

d → (1,∞),
β : S−−

d → (0,∞) be measurable mappings and w a probability distribution on
S−−

d such that

−
∫

S−−
d

β(v)

α(v)max(σ (v))
w(dv) < ∞.(3.42)

Now define π via

π(B) =
∫

S−−
d

∫ ∞
0

1B(rv)
β(v)α(v)

�(α(v))
rα(v)−1e−β(v)r dr w(dv)
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for any Borel set B ∈ M−
d (R). Then π is a probability distribution concentrated

on S
−−
d .

Using this π in the above set-up means that the mean reversion parameter is no
longer necessarily restricted to finitely many rays. Moreover, similar calculations
to the ones in Example 3.1 give

−
∫
M−

d

1

max(�(σ (A)))
π(dA) =

∫
S−−

d

−β(v)

α(v)max(σ (v))
w(dv) < ∞.

Hence, (3.28) holds and the process Xt = ∫
M−

d

∫ t
−∞ eA(t−s)�(dA,ds) exists, is

stationary and has finite second moments. Likewise we get for the autocovariance
function

cov(Xh,X0) = −
(∫

S−−
d

β(v)α(v)

α(v) − 1

(
β(v)Id − vh

)1−α(v)

(V (v))−1w(dv)

)

×
(

 +

∫
Rd

xx∗ν(dx)

)

with V (v) :Md(R) → Md(R),X 
→ vX + Xv∗.
Turning to the path properties, assume now that

∫
‖x‖≤1 ‖x‖ν(dx) < ∞. Again

condition (3.34) is trivially satisfied and so the paths of X are locally uniformly
bounded in t . Regarding condition (3.40) the second part becomes∫

M−
d

‖A‖π(dA) =
∫

S−−
d

∫ ∞
0

rfα(v),β(v)(r) dr w(dv) =
∫

S−−
d

α(v)

β(v)
w(dv),

and for the first part one obtains

−
∫
M−

d

(‖A‖ ∨ 1)

max�(σ (A))
π(dA)

= −
∫

S−−
d

∫ 1

0

1

r max(σ (v))
fα(v),β(v)(r) dr w(dv)(3.43)

−
∫

S−−
d

∫ ∞
1

1

max(σ (v))
fα(v),β(v)(r) dr w(dv).

The first summand is finite due to (3.42) and the second one is finite if the integral
− ∫

S−−
d

(1/max(σ (v)))w(dv) is finite. Hence, provided

−
∫

S−−
d

1

max(σ (v))
w(dv) < ∞ and

∫
S−−

d

α(v)

β(v)
w(dv) < ∞,

the conditions of Theorem 3.12(iii) are satisfied, and thus the paths are càdlàg and
of finite variation and (3.38) is valid.
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Based on this we can easily give an example where we know that the supOU
process exists due to Proposition 3.5, but the conditions of Theorem 3.12(iii) are
not satisfied. Assume w is a discrete distribution concentrated on the points

vn =
⎛
⎝−1 0 0

0 −1 + (3n)−1 0
0 0 −1/2

⎞
⎠ , n ∈ N,

and that w(vn) = 6
π2n2 , α(vn) = 2 and β(vn) = n−1. Then we have that

−
∫

S−−
d

β(v)

α(v)max(σ (v))
w(dv) = 6

π2

∞∑
n=1

n−3 < ∞,

but ∫
M−

d

‖A‖π(dA) = 12

π2

∞∑
n=1

n−1 = ∞,

and hence condition (3.37) is not satisfied. Observe that this means that the proba-
bility measure π we have constructed does not have a first moment, although it is
defined via a polar representation where the radial parts are all univariate Gamma
distributions. Moreover, it is easy to see that (3.43) is finite and so Z exists and
thus it is only the local uniform boundedness our sufficient conditions fail to pro-
vide when trying to show (3.38). Showing that (3.38) is indeed not valid seems to
be a very delicate issue, as already remarked.

EXAMPLE 3.4. Let � be now a two-dimensional Lévy basis with generating
quadruple (γ,
, ν,π) with ν satisfying

∫
R2 ‖x‖2ν(dx) < ∞. We restrict the mean

reversion parameter A to D
−−
2 , the 2 × 2 diagonal matrices with strictly negative

entries on the diagonal. Hence, π is a measure on D
−−
2 , which can be identified

with (R−−)2, and we assume that π has Lebesgue density

π(da1, da2)

= β
α1
1 β

α2
2

�(α1)�(α2)
(−a1)

α1−1(−a2)
α2−1eβ1a1+β2a21(R−−)2(a1, a2) da1 da2

with α1, α2 > 1 and β1, β2 > 0. So the diagonal elements are independent, and
their absolute values follow Gamma distributions. We obtain

−
∫

D
−−
2

1

max(�(σ (A)))
π(dA)

=
∫ ∞

0

∫ ∞
0

1

min(a1, a2)

β
α1
1 β

α2
2

�(α1)�(α2)
(a1)

α1−1(a2)
α2−1e−β1a1−β2a2 da1 da2

≤
∫ ∞

0

β
α1
1

�(α1)
(a1)

α1−2e−β1a1 da1

∫ ∞
0

β
α2
2

�(α2)
(a2)

α2−1e−β2a2 da2

+
∫ ∞

0

β
α1
1

�(α1)
(a1)

α1−1e−β1a1 da1

∫ ∞
0

β
α2
2

�(α2)
(a2)

α2−2e−β2a2 da2 < ∞.
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Hence, (3.28) holds, and the process Xt = ∫
M−

d

∫ t
−∞ eA(t−s)�(dA,ds) exists, is

stationary and has finite second moments.
Let us now consider the individual components X1,t , X2,t of Xt . Denote by

P1 : R2 → R, (x1, x2)
∗ 
→ x1 the projection onto the first coordinate and define an

R-valued Lévy basis �1 on R
−− × R via �1(da1, ds) = P(�(P −1

1 (da1), ds) and
a Lévy measure ν1 on R via ν1(dx1) = ν(P −1

1 (dx1)). Then �1 has characteristic
quadruple (γ1,
11, ν1, π1) with π1 having Lebesgue density

π1(da1) = β
α1
1

�(α1))
(−a1)

α1−1eβ1a11(R−−)(a1) da1

and

X1,t =
∫

R−−

∫ t

−∞
ea1(t−s)�1(da1, ds).

For the autocovariance function of the first component we get

cov(X1,h,X1,0) = β
α1
1

2(α1 − 1)
(β1 + h)1−α1

(

11 +

∫
R

x2
1ν1(dx1)

)
, h ∈ R

+.

An analogous result holds for the second component X2,t and we have long mem-
ory in both components provided α1, α2 ∈ (1,2).

The importance of this example is, however, that we can model the stationary
distributions of X1 and X2, that is, the margins of the stationary distribution of
Xt , very explicitly by specifying the margins of ν, that is, ν1 and ν2. From [2],
Theorem 3.1, Corollary 3.1, and [19], Remark 2.2, we know that it is exactly all
nondegenerate self-decomposable distributions on R which arise as the station-
ary distributions of the components. Moreover, these authors provide formulae to
calculate ν1 (or ν2) if one wants to obtain a given stationary distribution for the
component (alternatively [3], Lemma 5.1, or the refinement [42], Theorem 4.9,
can be used). Hence, one can specify a two-dimensional supOU process with pre-
scribed stationary distributions of the components by calculating the required ν1
and ν2 and choosing ν accordingly. The easiest way to get a possible ν is by spec-
ifying ν(dx1, dx2) = ν1(dx1) × δ0(x2) + δ0(x1) × ν2(dx2) with δ0 denoting the
Dirac distribution with unit mass at zero. In this case the components of X are
independent. An easy way to get an appropriate ν and allowing for dependence is
to combine ν1 and ν2 using a Lévy copula (see [4, 28]).

Likewise it is again interesting to look at the path properties of Theorem 3.12.
Assuming again

∫
‖x‖≤1 ‖x‖ν(dx) < ∞, condition (3.34) is trivially satisfied, and

so the paths of X are locally uniformly bounded in t . Regarding the second part of
condition (3.40) we have that ∫

M−
d

‖A‖π(dA) < ∞
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is equivalent to∫
(R+)2

max(a1, a2)fα1,β1(a1)fα2,β2(a2) da1 da2

≤
∫

R+
a1fα1,β1(a1) da1 +

∫
R+

a2fα2,β2(a2) da2 < ∞,

which is always true. Turning to (3.41), it is implied by∫
(R+)2

max(a1, a2)

min(a1, a2)
fα1,β1(a1)fα2,β2(a2) da1 da2

≤
∫
(R+)2

a1 + a2

a1
fα1,β1(a1)fα2,β2(a2) da1 da2

+
∫
(R+)2

a1 + a2

a2
fα1,β1(a1)fα2,β2(a2) da1 da2 < ∞,

which is easily seen to be always true. Hence, the conditions of Theorem 3.12(iii)
are satisfied, and thus the paths are càdlàg and of finite variation and (3.38) is valid.

Obviously this example has a straightforward extension to general dimension d .

EXAMPLE 3.5. So far we have only studied cases where we could use Propo-
sition 3.7 and did especially never have to bother with κ(A) in the conditions of
Theorem 3.1.

In this example we will present a case where the behavior of κ(A) is crucial and
where we show how κ and ρ can be specified in a measurable way. We define the
following sets:

D−
d = {X ∈ Md(R) :X is diagonal; all diagonal elements are strictly negative,

pairwise distinct and ordered such that xii < xjj ∀1 ≤ i ≤ j ≤ d};
Sd = {X ∈ GLd(R) : the first nonzero element in each column is 1};

M −
d = {SDS−1 :S ∈ Sd,D ∈ D−

d }.
If A = SDS−1 is in M −

d , the matrix D consists of the eigenvalues of A, and
the columns of S are the eigenvectors of A. In principle there are many possible
S and D if we only demand A = SDS−1. However, if we restrict ourselves to
S ∈ Sd,D ∈ D−

d , then S,D are unique, as elementary linear algebra shows. This
means that the map

M :Sd × D−
d → M −

d , (S,D) 
→ SDS−1

is bijective (and obviously continuous). We denote by M−1 = (S,D) the inverse
mapping. Since computing eigenvectors and eigenvalues are measurable proce-
dures as are the orderings and normalizations involved in obtaining the diagonal
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matrix in D−
d and the eigenvector matrix in Sd , all these mappings are measurable.

Note also that D−
d , Sd , M −

d are Borel sets.
Defining κ :M −

d → [1,∞),A 
→ ‖S(A)‖‖(S(A))−1‖, ρ(A) =
−max(�(σ (A))) gives, therefore, measurable mappings on M −

d satisfying
‖eAs‖ ≤ κ(A)e−ρ(A)s . Using these definitions for κ and ρ one could now specify
probability distributions π on M −

d and check whether condition (3.3) is satisfied,
and the associated supOU process therefore exists.

However, in concrete situations it seems easier to specify a Borel probability
measure πSd×D−

d
on Sd × D−

d and define π as its image under M, i.e. π(B) =
πSd×D−

d
(M−1(B)) for all Borel sets B . Assume πSd×D−

d
= πSd

× πD−
d

is the

product of two probability measures πSd
on Sd and πD−

d
on D−

d . Then we have

∫
M−

d

κ(A)2

ρ(A)
π(dA) < ∞ ⇐⇒

∫
Sd

‖S‖2‖S−1‖2πSd
(dS) < ∞ and

−
∫
D−

d

1

max(�(σ (D)))
πD−

d
(dD) < ∞.

That
∫
Sd

‖S‖2‖S−1‖2πSd
(dS) can be finite or infinite depending on the choice

of πSd
is exhibited by the following example. Let πS2 be a discrete measure

concentrated on the points

Sn =
(

1 0
n 1

)
and pn := πS2(Sn) = Cαn−α ∀n ∈ N

with α > 1 and Cα = 1/
∑∞

n=1 n−α . Then

S−1
n =

(
1 0

−n 1

)
.

Using the equivalence of all norms we get that

∫
S2

‖S‖2‖S−1‖2πS2(dS) < ∞ ⇐⇒ Cα

∞∑
n=1

n4pn < ∞ ⇐⇒ α > 5.

Returning to the general example with π given via πSd
× πD−

d
and turning to

path properties, we assume again
∫
‖x‖≤1 ‖x‖ν(dx) < ∞. In this finite variation

case the existence conditions (3.17) become∫
Sd

‖S‖‖S−1‖πSd
(dS) < ∞ and −

∫
D−

d

1

max(�(σ (D)))
πD−

d
(dD) < ∞.

Furthermore, condition (3.34) is always satisfied when the existence conditions are
satisfied and so the paths of X are locally uniformly bounded in t . Straightforward
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arguments show that the conditions of Theorem 3.12(iii) are satisfied, and thus the
paths are càdlàg and of finite variation and (3.38) is valid if∫

Sd

‖S‖2‖S−1‖2πSd
(dS) < ∞, −

∫
D−

d

‖D‖
max(�(σ (D)))

πD−
d
(dD) < ∞

and ∫
D−

d

‖D‖πD−
d
(dD) < ∞.

By polarly decomposing πD−
d

into a measure on the unit sphere in the diagonal ma-
trices and a radial part, the long memory specifications of the foregoing examples
have straightforward extensions to this set-up.

4. Positive semi-definite supOU processes. Based on the previous section
we now consider supOU processes which are positive semi-definite at all times.
The importance of such processes is that they can be used to describe the random
evolution of a latent covariance matrix over time and, hence, they can be used in
multivariate models for heteroskedastic data, for example, the stochastic volatility
model of [9].

Let us briefly recall that a d × d positive semi-definite OU-type process (see
[8]) is defined as the unique càdlàg solution of the SDE

d
t = (A
t + 
tA
∗) dt + dLt , 
0 ∈ S

+
d ,

with A ∈ Md(R) and L being a d × d matrix subordinator (see [5]), that is, a Lévy
process in Sd with Lt − Ls ∈ S

+
d ∀s, t ∈ R

+, s < t . If E(ln(max(‖L1‖,1))) < ∞
and max(�(σ (A))) < 0, the above SDE has the unique stationary solution


t =
∫ t

−∞
eA(t−s) dLse

A∗(t−s).

That the linear operators Sd → Sd of the form Z 
→ AZ + ZA∗ with some A ∈
Md(R) are the ones to be used for positive semi-definite OU-type processes has
been established in [42].

As just recalled, one has to restrict the driving Lévy process to matrix subor-
dinators in order to obtain OU-type processes taking values in the positive semi-
definite matrices. Below we need to impose a comparable condition on the Lévy
basis to get positive semi-definite supOU processes. Note that for a d × d matrix-
valued Lévy basis � we denote by vec(�) the R

d2
-valued Lévy basis given by

vec(�)(B) = vec(�(B)) for all Borel sets B . Moreover, observe that tr(XY ∗)
[with X,Y ∈ Md(R) and tr denoting the usual trace functional] defines a scalar
product on Md(R) and that the vec operator is a Hilbert space isometry between
Md(R) equipped with this scalar product and R

d2
with the usual Euclidean scalar

product.
Positive semi-definite supOU processes are defined as processes of the form

(4.4) below, which is the analogue of (3.4).
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THEOREM 4.1. Let � be an Sd -valued Lévy basis on M−
d ×R with generating

quadruple (γ,0, ν,π) with γ0 := γ − ∫
‖x‖≤1 xν(dx) ∈ S

+
d and ν being a Lévy

measure on Sd satisfying ν(Sd\S
+
d ) = 0,∫

‖x‖>1
ln(‖x‖)ν(dx) < ∞ and

∫
‖x‖≤1

‖x‖ν(dx) < ∞.(4.1)

Moreover, assume there exist measurable functions ρ :M−
d → R

+\{0} and
κ :M−

d → [1,∞) such that

‖eAs‖ ≤ κ(A)e−ρ(A)s ∀s ∈ R
+, π-almost surely,(4.2)

and ∫
M−

d

κ(A)2

ρ(A)
π(dA) < ∞.(4.3)

Then the process (
t)t∈R given by


t =
∫
M−

d

∫ t

−∞
eA(t−s)�(dA,ds)eA∗(t−s)

=
∫
M−

d

∫ t

−∞
eA(t−s)γ0e

A∗(t−s) ds π(dA)(4.4)

+
∫

Sd

∫
M−

d

∫ t

−∞
eA(t−s)xeA∗(t−s)μ(dx, dA,ds)

is well defined as a Lebesgue integral for all t ∈ R and ω ∈ � and 
 is stationary.
Moreover,

vec(
t) =
∫
M−

d

∫ t

−∞
e(A⊗Id+Id⊗A)(t−s) vec(�)(dA,ds),(4.5)


t ∈ S
+
d for all t ∈ R and the distribution of 
t is infinitely divisible with charac-

teristic function

E(exp(i tr(u
t))) = exp
(
i tr(uγ
,0) +

∫
Sd

(
ei tr(ux) − 1

)
ν
(dx)

)
, u ∈ Sd,

where

γ
,0 =
∫
M−

d

∫ ∞
0

eAsγ0e
A∗s ds π(dA),(4.6)

ν
(B) =
∫
M−

d

∫ ∞
0

∫
S

+
d

1B(eAsxeA∗s)ν(dx) ds π(dA)(4.7)

for all Borel sets B ⊆ Sd .
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PROOF. The equivalence of (4.5) and (4.4) follows from standard results on
the vectorization operator and the tensor product (see [23]).

Next we note that e(A⊗Id+Id⊗A)(t−s) = eA ⊗ eA and that ‖eA ⊗ eA‖ = ‖eA‖2

(using the operator norm associated with the Euclidean norm). Hence, all asser-
tions except 
t ∈ S

+
d for all t ∈ R

+ follow immediately from Propositions 2.4
and 3.5.

However, 
t ∈ S
+
d for all t ∈ R

+ is now immediate, since the integral exists
ω-wise, eAsXeA∗s ∈ S

+
d ∀A ∈ Md(R),X ∈ S

+
d , s ∈ R and S

+
d is a closed convex

cone. �

REMARK 4.2. (i) As in Proposition 3.7, κ(A) can be replaced by 1 and ρ(A)

by −max(�(σ (A))) in (4.3) [and also in (4.14) and (4.15) below] provided π is
concentrated on the normal matrices or finitely many diagonalizable rays.

(ii) Throughout this section we refrain from stating necessary conditions, as
they can be immediately inferred from the foregoing sections and the arguments
presented for the sufficient conditions.

Most importantly in the context of stochastic volatility models, which involve
stochastic integrals with 
 as integrand, Theorem 3.12 also has an analogue for
positive semi-definite supOU processes.

THEOREM 4.3. Let 
 be the positive semi-definite supOU process of Theo-
rem 4.1. Then:

(i) 
t(ω) is B(R) × F measurable as a function of t ∈ R and ω ∈ � and
adapted to the filtration (Ft )t∈R generated by �.

(ii) If ∫
M−

d

κ(A)2π(dA) < ∞,(4.8)

the paths of 
 are locally uniformly bounded in t for every ω ∈ �.
Furthermore, 
+

t = ∫ t
0 
s ds exists for all t ∈ R

+ and


+
t =

∫
M−

d

∫ t

−∞
(A(A))−1(

eA(t−s)�(dA,ds)eA∗(t−s))

−
∫
M−

d

∫ 0

−∞
(A(A))−1(e−As�(dA,ds)e−A∗s)(4.9)

−
∫
M−

d

∫ t

0
(A(A))−1�(dA,ds)

with A(A) : Sd → Sd,X 
→ AX + XA∗.
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(iii) Provided that

−
∫
M−

d

(‖A‖ ∨ 1)κ(A)2

ρ(A)
π(dA) < ∞(4.10)

and ∫
M−

d

‖A‖κ(A)2π(dA) < ∞(4.11)

it holds that


t = 
0 +
∫ t

0
Zudu + Lt,(4.12)

where L is the underlying matrix subordinator and

Zu =
∫
M−

d

∫ u

−∞
(
AeA(u−s)�(dA,ds)eA∗(u−s)

(4.13)
+ eA(u−s)�(dA,ds)eA∗(u−s)A∗)

for all u ∈ R with the integral existing ω-wise.
Moreover, the paths of 
 are càdlàg and of finite variation on compacts.

Formula (4.9) is of particular interest in connection with stochastic volatility
modeling, as in this case the integrated volatility 
+

t is a quantity of fundamental
importance (see Section 5.2).

Finally, we consider the existence of moments and the second-order structure
which follow immediately from Theorems 3.9 and 3.11.

PROPOSITION 4.4. Let 
 be a stationary S
+
d -valued supOU process driven

by a Lévy basis � satisfying the conditions of Theorem 4.1.
(i) If ∫

‖x‖>1
‖x‖rν(dx) < ∞(4.14)

for r ∈ (0,1], then 
 has a finite r th moment, that is, E(‖
t‖r ) < ∞.
(ii) If r ∈ (1,∞) and

∫
‖x‖>1

‖x‖rν(dx) < ∞,

∫
M−

d

κ(A)2r

ρ(A)
π(dA) < ∞,(4.15)

then 
 has a finite r th moment, that is, E(‖
t‖r ) < ∞.
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(iii) If the conditions given in (ii) are satisfied for r = 2, then the second-order
structure of 
 is given by

E(
0) = −
∫
M−

d

A(A)−1
(
γ0 +

∫
Sd

xν(dx)

)
π(dA),

var(vec(
0)) = −
∫
M−

d

(A (A))−1
(∫

Sd

vec(x)vec(x)∗ν(dx)

)
π(dA),

cov(vec(
h),vec(
0)) = −
∫
M−

d

e(A⊗Id+Id⊗A)h(A (A))−1

×
(∫

Sd

vec(x)vec(x)∗ν(dx)

)
π(dA)

∀h ∈ R
+,

with A(A) :Md(R) → Md(R),X 
→ AX + XA∗ and A (A) :Md2(R) → Md2(R),

X 
→ (A ⊗ Id + Id ⊗ A)X + X(A∗ ⊗ Id + Id ⊗ A∗).

Examples 3.1–3.5 can all be immediately adapted to the positive semi-definite
set-up. More examples in connection with stochastic volatility modeling can be
found in [9].

5. Areas of applications. In this section we discuss possible applications for
our model and the relevance of our results for them. Some of these applications
are already developed further in other work.

5.1. Time series modeling. In many areas of applications (e.g., telecommu-
nication, hydrology, economics, finance) one is confronted with time series ex-
hibiting a long memory behavior (see [16], for instance) or at least a decay of the
autocovariance appearing to be a polynomial decay rather than the exponential as
typically encountered in models of Markovian nature. Moreover, often the rele-
vant data series are multidimensional, and multivariate models are needed in order
to understand and adequately model the dependence effects of the observed data.
For irregularly-spaced or high-frequency data as well as when intending to look at
the data at more than one frequency, it is often advisable not to use discrete-time
models (like AR(FI)MA, see, e.g., [12]), but continuous-time models. Such mod-
els can exhibit both continuous and discontinuous sample paths. Among the ones
with continuous sample paths are continuous-time counterparts of ARFIMA, like
FICARMA (see [13, 31, 47]), which also exhibit long memory. Often it is, how-
ever, appropriate to use models with discontinuous sample paths. In such situations
it appears adequate to use multivariate supOU processes. It should be noted that
the individual autocovariances of multivariate supOU processes do not necessarily
have to decay monotonically like in the univariate case, but may exhibit damped
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sinusoidal-like and comparable behavior due to the involved matrix exponentials.
Hence, one can reproduce second-order moment behavior which in the univariate
case calls for the use of CARMA(p, q)-based models.

As for all such models it is a delicate issue to estimate multivariate supOU
processes from observed data, and this poses many challenging questions. Our cal-
culation of the second-order moment structure clearly opens the door for (general)
method-of-moments-based techniques. Let us illustrate this in a simple example.

Consider the set-up of Example 3.1 with B restricted to have only real eigenval-
ues. Note that in this set-up the parameters cannot be identified, because replacing
β by βc and B by cB leaves the law of the Lévy basis invariant for any c > 0. So
we assume β = 1 without loss of generality. Recall that

acov(h) := cov(Xh,X0) = −(Id − Bh)1−α

α − 1
B−1

(

 +

∫
Rd

xx∗ν(dx)

)

with B :Md(R) → Md(R),X 
→ BX + XB∗. Assuming that 
 + ∫
Rd xx∗ν(dx)

is invertible we can define

�h = acov(h) acov(0)−1 = (Id − Bh)1−α

which has eigenvalues of the form f (h) = (1 − λh)1−α with λ ∈ (−∞,0).
So we can obtain an estimator α̂ by calculating the empirical autocovariance
function from data and fitting f to the maximum (or any other) eigenvalue
of âcov(h)âcov(0)−1 for h = n� with n ∈ N and � > 0 being the distance
between subsequent observations (assumed to be constant) by nonlinear least
squares, for instance. Thereafter, we can get an estimator for B by B̂ = Id −
(âcov(h)âcov(0)−1)α̂−1. Now it is straightforward to also get estimators for
γ + ∫

‖x‖>1 xν(dx) and 
 + ∫
Rd xx∗ν(dx) from the empirical mean and variance.

One thus obtains the first two moments of the underlying Lévy process. If we re-
strict the allowed Lévy bases such that the first two moments of the underlying
Lévy process identify the parameters γ,
, ν, we have thus obtained a procedure
to estimate all parameters of our model.

To prove consistency and asymptotic normality (or other asymptotic distribu-
tions in the case of true long memory) of the estimators one obviously needs to
understand the (highly non-Markovian) dependence structure of our processes and
establish mixing conditions or appropriate substitutes. We hope to address this is-
sue in future work.

In a set-up like in Example 3.4 the estimation becomes much easier because all
parameters except the ones describing the dependence between the components
can be inferred from the univariate marginal distributions and the univariate mo-
ment structure. In particular, the parameters βi and αi can be estimated from the
autocovariances of the individual one-dimensional series; hence, one does not have
to compute eigenvalues or matrix powers as above.

Finally, it should be noted that in Theorem 3.1 or formula (2.8) we have given
formulae for the characteristic function of multivariate supOU processes. Hence,
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one can also use estimation techniques based on the empirical characteristic func-
tion. This is obviously best done in cases where the driving Lévy basis is chosen
such that the integrals in Theorem 3.1 or formula (2.8) can be calculated analyt-
ically. Moreover, these formulae can be used to calculate higher order cumulants
for the methods of moments based estimation.

5.2. Finance and econometrics. Lévy-based stochastic volatility models are
very successfully applied in both financial mathematics and financial economet-
rics, since they capture many of the stylized facts (nonconstant, stochastic volatil-
ity exhibiting jumps, heavy tails, volatility clustering, leverage effect, . . . ; see, e.g.,
[15, 20]) of financial returns very well. One model often employed is the Ornstein–
Uhlenbeck-type stochastic volatility model introduced in [6]. The use of supOU
processes as the volatility process, that is, the process modelling the instantaneous
(co)variance, allows one to introduce also long memory, which is another impor-
tant stylized fact, but not covered by most models, into the model. Let us illustrate
this in a simple set-up. Let 
 be a positive semi-definite supOU process as intro-
duced in Section 4 and satisfying the conditions of Theorem 4.3(ii) and (iii). Then
the log-returns of d financial assets (stocks or currencies, for instance) are given
by

Yt = Y0 +
∫ t

0
(μ + 
sβ)ds +

∫ t

0

1/2

s dWs + ρ dLt(5.1)

with μ,β ∈ R
d , initial log prices Y0 independent of �, ρ : Sd → R

d a linear opera-
tor and L being the underlying Lévy process. It should be noted that in this model
jumps in the price and the volatility always occur together which is reasonable for
financial data (see [25]).

An extension of the above model has been investigated in-depth in [9] where it
is, in particular, shown that long memory in 
 causes long-range dependence in
Y and explicit formulae for the moment structure of the (squared) returns are ob-
tained. This allows an in-depth econometric analysis and estimation of the supOU
stochastic volatility model comparable to what has been done in [41] for the mul-
tivariate OU-type stochastic volatility model, where it was shown that that model
can be estimated and fits well to observed data, both from the stock and foreign
exchange markets.

In financial mathematics one is often interested in calculating prices of deriv-
atives from a given model and in determining the parameters from option prices
observed on the markets, referred to as calibration. In most reasonably realistic
models, unlike the Black–Scholes model, one cannot obtain closed-form formulae
for the prices of derivatives. However, calculating prices via Monte Carlo simu-
lations is typically too time consuming. Whenever possible, better techniques to
calculate derivative prices, that is, conditional expectations of future payoffs, are
called for. One technique which proved to be very adequate in many situations is
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the calculation of the prices by inverting the Laplace transform (see [14, 17, 37]).
For the multivariate OU model this technique is successfully applied in [36].

Also, in the above given model (5.1) one can calculate the conditional Fourier
transform of the future prices. Since some complex values will arise, one has to be
careful with the scalar products. We use the scalar product 〈x1, x2〉 = x∗

2x1 on R
d

and 〈X1,X2〉 = tr(X∗
2X1) on Sd denoting by x∗ the Hermitian and by tr the trace of

a matrix. For a linear operator ∗ also denotes the adjoint operator in the following.
Moreover, we assume that E(exp(i tr(�(B)∗u)) = exp(ϕ�(u)�(B)) for all u ∈ Sd

with ϕ being the cumulant transform of the underlying Lévy process and � =
π × �. Actually, E(exp(i tr(�(B)∗u)) exists for all u ∈ Md(R) + iS+

d and ϕ can
be extended to this domain as well. Then it follows by similar arguments as in [36,
41] that

E(eiY ∗
t u|Y0) = exp

{
i(Y0 + μt)∗u

+
∫
M−

d

∫ t

−∞
ϕ�

[
eA∗(t−s)

(
A(A)−∗

(
uβ∗ + i

2
uu∗

))
eA(t−s)

(5.2)

− 1(−∞,0](s)e−A∗s
(

A(A)−∗
(
uβ∗ + i

2
uu∗

))
e−As

− 1(0,t](s)
(

A(A)−∗
(
uβ∗ + i

2
uu∗

)
− ρ∗u

)]
ds π(dA)

}

for all u ∈ R
d and t ∈ (0,∞). Here A(A)−∗ := (A(A)−1)∗ is the linear operator

on Md(R) given by X 
→ A∗X + XA. If one restates the above formula by rep-
resenting ϕ� in terms of the Lévy–Khintchine triplet, one can calculate some of
the integrals with respect to ds in the drift and Brownian covariance matrix part
explicitely, since

∫ t
−∞ eA∗(t−s)(A(A)−∗X)eA(t−s) ds = X, for example. However,

since this results in rather lengthy formulae, especially in the part coming from the
Lévy measure, we refrain from giving further details. Note that we only condition
on Y0, since 
0 is highly non-Markovian and, hence, not informative regarding
future values of 
, and that equation (4.9) is essential to obtain (5.2).

However, it seems to be an important question what to condition upon in such a
non-Markovian setting and to the best of our knowledge this issue has not been
addressed so far. In (5.2) we basically assume that we only know the current
price. One could also assume that one knows all historic prices and, hence, the
historic values of 
, since they are given by the continuous quadratic variation of
the prices. Unfortunately, it seems extremely hard to understand what happens if
one conditions on all these historic prices. Another point of view would be to say
that W and � resemble the information arriving at the markets and that market
participants observe all this information precisely. In that case it is appropriate to
condition upon the σ -algebra G0 generated by � up to time zero and Y0 (which
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now is only assumed to be independent of future values of � and W ) and one
obtains

E(eiY ∗
t u|G0)

= exp
{
i

[
(Y0 + μt)∗u

+ tr
(∫

M−
d

∫ 0

−∞
A(A)−1(

eA(t−s)�(dA,ds)eA∗(t−s)

(5.3)

− e−As�(dA,ds)e−A∗s)(uβ∗ + i

2
uu∗

))]

+
∫
M−

d

∫ t

0
ϕ�

[
eA∗(t−s)

(
A(A)−∗

(
uβ∗ + i

2
uu∗

))
eA(t−s)

−
(

A(A)−∗
(
uβ∗ + i

2
uu∗

)
− ρ∗u

)]
ds π(dA)

}

for all u ∈ R
d and t ∈ (0,∞).

It is clear that under appropriate technical conditions the conditional Laplace
transform given Y0 or G0, respectively, exists in a neighborhood of zero and (5.2)
or (5.3) can be extended to hold on this neighborhood. Then one can use Laplace
transform techniques to calculate prices of financial derivatives. Like for the stan-
dard OU-type model in [36] specifications are called for under which some of
the integrals can be calculated explicitly, since otherwise the numerical integration
takes too long to make pricing and especially calibration feasible in reasonable
time. Observe that in (5.3) one would set

Zt :=
∫
M−

d

∫ 0

−∞
A(A)−1(

eA(t−s)�(dA,ds)eA∗(t−s) − e−As�(dA,ds)e−A∗s)
and determine Zt also by calibration to option prices. Obviously, one can do this
only for derivatives with a fixed maturity t ∈ R

+, unless one increases the number
of parameters one calibrates.

5.3. Multivariate supCAR(MA). Ornstein–Uhlenbeck-type processes are a
special case of the so-called (multivariate) continuous time autoregressive moving-
average (CARMA) processes (see [10, 11, 33]). As the continuous time analogue
of ARMA processes, CARMA processes, are a fundamental class of processes for
time series modeling in continuous time. A d-dimensional supCAR(p) process Y

can be defined by

Yt = (Id,0, . . . ,0)

∫
M−

dp

∫ t

−∞
eA(t−s)(0, . . . ,0, Id)T�(dA,ds),
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where � is an R
d -valued Lévy basis on M−

dp ×R with generating quadruple (γ,
,

ν,π) with π concentrated on the matrices in M−
dp of the form

⎛
⎜⎜⎜⎜⎜⎝

0 Id 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 Id

−Ap −Ap−1 · · · −A2 −A1

⎞
⎟⎟⎟⎟⎟⎠(5.4)

with appropriate d × d matrices Ai . Clearly, “
∫ t
−∞ eA(t−s)(0, . . . ,0, Id)T�(dA,

ds)” is for A fixed a CAR(p) process (note that this is in contrast to [32] who
define supCARMA processes differently), so it is appropriate to call this process
supCAR(p). Obviously many properties for Y follow from our results immedi-
ately, since it is basically given by the first d-coordinates of a high-dimensional
supOU process, and this definition gives a possibility to extend CAR processes
allowing for long memory and jumps.

Using our techniques one can define supCARMA(p,q) process with q < p

using an R
d -valued Lévy basis on M−

dp × Mdp,d × R with generating quadru-
ple (γ,
, ν,π). To obtain proper supCARMA processes one demands π(A ×
Mdp,d) = 1, denoting the set of matrices of the form (5.4) by A , and one sets

Yt = (Id,0, . . . ,0)

∫
M−

dp

∫ t

−∞
eA(t−s)B�(dA,dB,ds).

Adapting and extending our arguments one can easily obtain results for this class
of processes. For the interpretation as CARMA processes note that the moving
average coefficients have to be calculated from the d × d blocks of B by inverting
the formulae given in [33], Theorem 3.12.

6. Conclusion. In this paper we introduced multivariate supOU processes and
obtained various important properties of them. Furthermore, some areas of appli-
cation have been outlined and we are currently considering their use in stochastic
volatility modelling beginning in [9]. However, there are still many important is-
sues concerning the supOU processes themselves which we hope to address in
future work. Of particular interest is, for example, the development of good esti-
mators for supOU models and to show properties like consistency and asymptotic
normality for them. This is related to understanding better the dependence struc-
ture of supOU processes, which are clearly not Markovian.

Likewise, we have shown that supOU processes allow to model long memory
effects (in a specific sense). However, a detailed theory of multivariate long-range
dependence needs to be developed.
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