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Abstract

We obtain central limit theorems for stationary random fields which are based
on the use of a novel measure of dependence called θ-lex weak dependence. We
discuss hereditary properties for θ-lex and η-weak dependence and illustrate the
possible applications of the weak dependence notions to the study of the asymp-
totic properties of stationary random fields. Our general results are applied to mixed
moving average fields (MMAF in short) and ambit fields. We show general condi-
tions such that MMAF and ambit fields, with the volatility field being an MMAF
or a p-dependent random field, are weakly dependent. For all the aforementioned
models, we give a complete characterization of their weak dependence coefficients
and sufficient conditions to obtain asymptotic normality of their sample moments.
Finally, we give explicit computations of the weak dependence coefficients in the
case of MSTOU and CARMA fields.
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1 Introduction
Many modern statistical applications consider the modeling of phenomena evolving in
time and/or space with either a countable or uncountable index set. To this end, we
can employ random fields on Z

m or Rm which are defined, for example, as solutions of
recurrence equations, e.g. in [34], or stochastic partial differential equations [16, 25, 51].
Noticeable examples of the latter come from the class of ambit and mixed moving average
fields.
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The mixed moving average fields, MMAF in short, are defined as

Xt =
∫
S

∫
Rm
f(A, t− s) Λ(dA, ds), t ∈ Rm, (1.1)

where A is a random parameter with values in a Polish space S, f a deterministic func-
tion called kernel and Λ a Lévy basis. The above model encompasses Gaussian and non-
Gaussian random fields by choosing the Lévy basis Λ. Ambit fields are defined by con-
sidering an additional multiplicative random function in the integrand of (1.1) which is
called volatility or intermittency field. However, an ambit field is typically defined with-
out allowing the presence of the random parameter A in its kernel function. We refer
the reader to [6] for a comprehensive introduction to ambit fields which provide a rich
class of spatial-temporal models on R × R

m. Overall, MMAF and ambit fields are used
in many applications throughout different disciplines, like geophysics [38], brain imaging
[40], physics [11], biology [8, 10], economics and finance [3, 5, 22, 46, 47].

The generality and flexibility of these models motivate an in-depth analysis of their
properties. If we consider purely temporal ambit fields, i.e. Lévy semistationary processes,
in [7, 9, 14] the authors obtain infill asymptotic results for this class of processes, that
is, under the assumption that the number of observations in a given interval approaches
to infinity. For ambit fields on R × Rm with m ≥ 1 where Λ is of Gaussian type and the
volatility field is independent of Λ, the asymptotic behavior of the lattice power variation
of the field is studied in [48]. We notice that in the literature there are no asymptotic
results for partial sums of ambit fields when the number of observations approaches to
infinity without infill asymptotics. If we look instead at the class of MMAF, we have
several results existing in this direction.

In a stationary framework, we could attempt to show that an MMAF is strongly
mixing or associated. Under strong mixing conditions several central limit theorems for
strictly stationary random fields are available, see [17], [24], [27], [43], [44] (note that
caution has to be used when handling some of the classical concepts of mixing for random
fields, see [19] and Chapter 29 in [20]). If we then look at an MMAF on R, i.e. a mixed
moving average process, several difficulties already arise in showing that it is strongly
mixing, see [26]. Usually, strong mixing is established by using a Markovian representation
and showing geometric ergodicity of it. In turn this often requires smoothness conditions
on the driving random noise and it is well-known that even autoregressive processes of
order one are not strongly mixing when the distribution of the noise is not sufficiently
regular, see [1]. Since we are interested in central limit results which do not require heavy
assumptions on Λ or a Markovian representation, a different measure of dependence is
required. Gaussian MMAF on R

m for m ≥ 2 that satisfy the conditions of Theorem 7,
pg. 73 in [53] are α mixing. However, for general driving Lévy bases no results in the
literature can be found regarding the strong mixing of MMAF. On the other hand, if we
look at the concept of association, a powerful measure of dependence which allows sharp
central limit results (see [23, 45] for a comprehensive introduction on this topic), we are
capable of obtaining central limit theorems for MMAF just under restrictive conditions
on the kernel function f in (1.1), see e.g. Theorem 3.27 in [23]. Moreover, association
is inherited only under monotone functions which restricts the possible extension of its
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related asymptotic theory. At last, we mention the results in [15] where the author shows
asymptotic normality of the sample mean and sample autocovariance of a moving average
field, a sub-class of the MMAF. This line of proof is not directly applicable to the study
of higher order sample moments and therefore we do not pursue it.

We are interested in studying asymptotics of the partial sums (and of higher sample
moments) of MMAF and ambit fields in general, i.e. without imposing regularity con-
ditions on the driving Lévy basis Λ apart from moment conditions. To do so, we define
a new notion of dependence called θ-lex weak dependence. This tool can overcome the
bottlenecks identified in the literature above. We want to emphasize that, although all the
examples of our theory will be taken from the aforementioned model classes, we present
general central limit theorem results which can be applied to different stationary random
fields.

In order to introduce θ-lex weak dependence, we first present the notions of η and θ-
weak dependence introduced for stochastic processes in [32] and [29], respectively. η-weak
dependence is typically associated with the study of non-causal processes whereas θ-weak
dependence is connected to the analysis of the causal ones. Central limit theorems for θ-
weakly dependent processes hold under weaker conditions compared to results for η-weakly
dependent processes (different demands on the decay rate of the η- and θ-coefficients as
determined in Theorem 2.2 [35] and Theorem 2 [29]). We have that the definition of η-
and θ-weak dependence can be easily extended to the field case by following Remark
2.1 [30]. However, just for η-weakly dependent random fields, asymptotics of the partial
sums of the process X have been so far analyzed in [33]. We aim to determine a central
limit theorem which improves the results obtained in [33]. This is achieved by defining
the notion of θ-lex-weak dependence which is a modification of the original definition of
θ-weak dependence. In fact, we can show that for θ-lex-weakly dependent random fields
the sufficient conditions of a very powerful central limit theorem from Dedecker [27] hold.
Moreover, we obtain hereditary properties for θ-lex and η-weakly dependent random fields
which allow us to easily extend the asymptotic results under weak dependence to the study
of sample moments estimators.

We then look at the class of MMAF. We distinguish in our theory between influ-
enced and non-influenced MMAF, see Definition 3.8. Influenced MMAF represent a pos-
sible extension of causal mixed moving average processes (Section 3.2 [26]) to random
fields. Hence, we show that influenced MMAF are θ-lex-weakly dependent and that non-
influenced MMAF are η-weakly dependent with coefficients computable in terms of the
kernel function f and the characteristic quadruplet of the Lévy basis Λ. From this we no-
tice that in the case of influenced MMAF the conditions ensuring asymptotic normality
of the partial sums of X are weaker– in terms of the decay rate of the weak dependence
coefficients– in comparison with the one obtained for non-influenced MMAF. We then ob-
serve a parallel between our results and the one obtained for causal and non-causal mixed
moving average processes [26]. Moreover, we exploit the hereditary properties of η- as well
as θ-lex-weak dependence and obtain conditions for the sample moments of order p with
p ≥ 1 to be asymptotic normally distributed. Finally, we give explicit computations for
mixed spatio-temporal Ornstein-Uhlenbeck processes [47], also called MSTOU processes,
and Lévy-driven CARMA fields [22, 51]. In particular, our calculations in the case of the
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MSTOU processes show that it is possible to determine the asymptotic normality of the
generalized method of moments estimator, GMM in short, proposed in [47].

At last, we apply our theory to ambit fields. We assume that the volatility field is
an MMAF or a p−dependent random field which is independent of the Lévy basis Λ.
Under these assumptions, we show that homogeneous and stationary ambit fields are
θ-lex-weakly dependent and give sufficient conditions on the θ-lex-coefficients to ensure
asymptotic normality of the sample moments.

The paper is structured as follows. In Section 2, we introduce η-weak dependence
and the novel θ-lex-weak dependence. In Section 2.2 we state central limit theorems for
θ-lex weakly dependent random fields in an ergodic, non-ergodic and multivariate setting.
Additionally, we provide some insight into possible functional extensions of the theorem.
In Section 3, we discuss weak dependence properties of MMAF. We first give a compre-
hensive introduction to Lévy bases and its related integration theory which leads to the
formal definition of an MMAF. We discuss conditions on MMAF to be η or θ-lex-weakly
dependent and their related sample moment asymptotics. In Section 3.7, we apply the de-
veloped theory to MSTOU processes and give explicit conditions assuring the asymptotic
normality of their sample moments under a Gamma distributed mean reversion param-
eter. We conclude Section 3 with an application of the theory to Lévy-driven CARMA
fields. In Section 4, we discuss weak dependence properties and related limit theorems for
ambit fields. Section 5 contains the detailed proofs of most of the results presented in the
paper.

2 Weak dependence and central limit theorems
We assume that all random elements in this paper are defined on a given complete prob-
ability space (Ω,A,P). By N we denote the set of non-negative integers, N∗ denotes the
set of positive integers, and R+ the set of the non-negative real numbers. For x ∈ Rd we
define |x| = ‖x‖∞ = maxj=1,...,d |x(j)| and ‖x‖ denotes the Euclidean norm of x. For a
function F : Rd → R

k we define ‖F‖∞ = supt∈Rd‖F (t)‖ and by ‖X‖p for p > 0 we denote
the Lp-norm of a random vector X. In the following Lipschitz continuousis understood to
mean globally Lipschitz. For a random field X = (Xt)t∈Rm and a finite set Γ ⊂ R

m with
Γ = (i1, . . . , iu) we define the vector XΓ = (Xi1 , . . . , Xiu). Finally, A ⊂ B denotes a not
necessarily proper subset A of a set B and |B| denotes the cardinality of B.

2.1 Weak dependence properties
For u, n ∈ N∗, let F∗u be the class of bounded functions from (Rn)u to R and Fu be the class
of bounded, Lipschitz continuous functions from (Rn)u to R with respect to the distance
δ1 on (Rn)u defined by

δ1((x1, . . . , xu), (y1, . . . , yu)) =
u∑
i=1

δ(xi, yi),
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where δ is the Euclidean norm on Rn such that δ(xi, yi) = ‖xi − yi‖. Now define

F =
⋃
u∈N∗
Fu, F∗ =

⋃
u∈N∗
F∗u ,

and for G ∈ F∗n

Lip(G) = sup
x 6=y

|G(x)−G(y)|
‖x1 − y1‖+ . . .+ ‖xu − yu‖

Definition 2.1 ([30, Definition 2.2 and Remark 2.1]). Let X = (Xt)t∈Rm be an Rn-valued
random field. Then, X is called η-weakly dependent if

η(h) = sup
u,v∈N∗

ηu,v(h) −→
h→∞

0,

where

ηu,v(h) = sup
{

|Cov(F (XΓ), G(XΓ̃))|
u‖G‖∞Lip(F ) + v‖F‖∞Lip(G) ,

F,G ∈ F ,Γ, Γ̃ ⊂ R
m, |Γ| = u, |Γ̃| = v, dist(Γ, Γ̃) ≥ h

}
,

with dist(Γ, Γ̃) = infi∈Γ,j∈Γ̃‖i− j‖∞. We call (η(h))h∈R+ the η-coefficients.
In the following we consider the lexicographic order on Rm, i.e. for distinct elements

y = (y1, . . . , ym) ∈ Rm and z = (z1, . . . , zm) ∈ Rm we say y <lex z if and only if y1 < z1 or
yp < zp and yq = zq for some p ∈ {2, . . . ,m} and q = 1, . . . , p − 1. Furthermore, we say
y ≤lex z if y <lex z or y = z holds. Let us define the sets Vt = {s ∈ Rm : s <lex t} ∪ {t}
and V h

t = Vt ∩{s ∈ Rm : ‖t− s‖∞ ≥ h} for h > 0. The same definitions of the sets Vt and
V h
t are going to be used when referring to the lexicographic order on Zm.

Definition 2.2. Let X = (Xt)t∈Rm be an R
n-valued random field. Then, X is called

θ-lex-weakly dependent if

θ(h) = sup
u∈N∗

θu(h) −→
h→∞

0,

where

θu(h) = sup
{
|Cov(F (XΓ), G(Xj))|
‖F‖∞Lip(G) ,

F ∈ F∗, G ∈ F , j ∈ Rm,Γ ⊂ V h
j , |Γ| = u

}
.

We call (θ(h))h∈R+ the θ-lex-coefficients.
Remark 2.3. Our definition of θ-lex-weak dependence differs from the θ-weak dependence
definition given in Remark 2.1 [30]. In fact, instead of considering the covariance of two
arbitrary finite dimensional samples XΓ and XΓ̃, for Γ, Γ̃ ∈ Rm, we control the covariance
of a finite dimensional sample XΓ and an arbitrary one point sample Xj. Secondly, by
assuming that all points in the sampling set Γ are lexicographically smaller than j, we
provide an order in the sampling scheme.
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Let (Xt)t∈Rm be θ-lex- or η-weakly dependent and h : Rn → R
k be an arbitrary

Lipschitz function, then the field (h(Xt))t∈Rm is also θ-lex- or η-weakly dependent. The
latter can be readily checked based on Definition 2.1 and 2.2. In the next proposition,
we give conditions for hereditary properties of functions that are only locally Lipschitz
continuous. The proof of the result below is analogous to Proposition 3.2 [26].

Proposition 2.4. Let X = (Xt)t∈Rm be an Rn-valued stationary random field and assume
that there exists a constant C > 0 such that E[‖X0‖p] ≤ C, for p > 1. Let h : Rn → R

k be
a function such that h(0) = 0, h(x) = (h1(x), . . . , hk(x)) and

‖h(x)− h(y)‖ ≤ c‖x− y‖(1 + ‖x‖a−1 + ‖y‖a−1),

for x, y ∈ R
n, c > 0 and 1 ≤ a < p. Define Y = (Yt)t∈Rm by Yt = h(Xt). If X is η or

θ-lex-weakly dependent, then Y is η or θ-lex-weakly dependent respectively with coefficients

ηY (h) ≤ CηX(h)
p−a
p−1 or θY (h) ≤ CθX(h)

p−a
p−1

for all h > 0 and a constant C independent of h.

2.2 Central limit theorems for θ-lex-weakly dependent random
fields

In the theory of stochastic processes one of the typical ways to prove central limit type
results is to approximate the process of interest by a sequence of martingale differences.
This approach was first introduced by Gordin [36]. However, the latter does not apply to
high-dimensional random fields as successfully as to processes. This unpleasant circum-
stance has been known among researchers for almost 40 years, as Bolthausen [17] noted
that martingale approximation appears a difficult concept to generalize to dimensions
greater or equal than two.

For stationary random fields X = (Xt)t∈Zm , Dedecker derived a central limit result
in [27] under the projective criterion∑

k∈V 1
0

|XkE[X0|FΓ(k)]| ∈ L1, for FΓ(k) = σ(Xk : k ∈ V |k|0 ). (2.1)

This condition is weaker than martingale-type assumptions and provides optimal results
for mixing random fields. We show in this section that (2.1) is also fulfilled by appropriate
θ-lex-weakly dependent random fields.

In the following by stationarity we mean stationarity in the strict sense. Let Γ be a
subset of Zm. We define ∂Γ = {i ∈ Γ : ∃j /∈ Γ : ‖i− j‖∞ = 1}. Let (Dn)n∈N be a sequence
of finite subsets of Zm such that

lim
n→∞

|Dn| =∞ and lim
n→∞

|∂Dn|
|Dn|

= 0.
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Theorem 2.5. Let X = (Xt)t∈Zm be a stationary centered real-valued random field such
that E[|Xt|2+δ] < ∞ for some δ > 0. Additionally, assume that θ(h) ∈ O(h−α) with
α > m(1 + 1

δ
). Define

σ2 =
∑
k∈Zm

E[X0Xk|I],

where I is the σ-algebra of shift invariant sets as defined in [27, Section 2] (see [41,
Chapter 1] for an introduction to ergodic theory). Then, σ2 is finite, non-negative and

1
|Dn|

1
2

∑
j∈Γn

Xj
d−−−→

n→∞
εσ, (2.2)

where ε is a standard normally distributed random variable which is independent of σ2.

Proof. See Section 5.1.

In the following we give an ergodic multivariate extension of the previous theorem.

Corollary 2.6. Let X = (Xt)t∈Zm be a stationary ergodic centered Rn-valued random field
such that E[‖Xt‖2+δ] <∞ for some δ > 0. Additionally, let us assume that θ(h) ∈ O(h−α)
with α > m(1 + 1

δ
). Then

Σ =
∑
k∈Zm

E[X0X
′
k],

is finite, positive definite and

1
|Dn|

1
2

∑
j∈Γn

Xj
d−−−→

n→∞
N(0,Σ),

where N(0,Σ) denotes the multivariate normal distribution with mean 0 and covariance
matrix Σ.

Proof. First, the univariate result follows directly from Theorem 2.5, since X is ergodic.
Now let X be multivariate. Since linear functions are Lipschitz we note that for all a ∈ Rn,
a′Xt is a θ-lex-weakly dependent field with θ-lex-coefficients smaller or equal to those of
Xt. Then

1
|Dn|

1
2

∑
j∈Γn

a′Xj
d−−−→

n→∞
N(0, a′Σa).

Applying the Cramér-Wold device, the asymptotic normality of the sample mean follows
immediately.
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Remark 2.7. It is natural to ask for conditions on a functional extension of Theorem 2.5.
As a matter of fact, results of this kind are strongly related to the following Lp-projective
criterion ∑

k∈V0

E[|XkE[X0|FV |k|0
]|p] <∞, p ∈ [1,∞], (2.3)

where FΓ = σ(Xk, k ∈ Γ). If (2.3) holds for p = 1, then [27, Theorem 1] provides a
non-functional central limit theorem for stationary random fields which yields Theorem
2.5. Now, possible functional extensions depend on the dimension of the domain of the
random field.
When m = 1, Dedecker and Rio showed in [31, Theorem] that if (2.3) holds for p = 1,
then a functional central limit theorem holds.
In the general case m > 1, Dedecker proved in [28, Theorem 1] a functional central limit
theorem if (2.3) holds for p > 1.
Since we can establish the connection between the Lp-projective criterion (2.3) and the
summability condition of the θ-lex-coefficients of X just for p = 1, there is no functional
extension of Theorem 2.5 readily obtainable, except for m = 1 (see [26, Remark 4.2]).

3 Mixed moving average fields
In this section we first introduce MMAF driven by a Lévy basis. Then, we discuss weak de-
pendence properties of such MMAF and derive sufficient conditions such that the asymp-
totic results of Section 2.2 apply.

3.1 Preliminaries
Let S denote a non-empty polish space, B(S) the Borel σ-algebra on S, π some probability
measure on (S,B(S)) and Bb(S × Rm) the bounded Borel sets of S × Rm.

Definition 3.1. Consider a family Λ = {Λ(B), B ∈ Bb(S × R
m)} of Rd-valued random

variables. Then Λ is called an R
d-valued Lévy basis or infinitely divisible independently

scattered random measure on S × Rm if

(i) the distribution of Λ(B) is infinitely divisible (ID) for all B ∈ Bb(S × Rm),

(ii) for arbitrary n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ Bb(S × Rm) the random
variables Λ(B1), . . . ,Λ(Bn) are independent and

(iii) for any pairwise disjoint sets B1, B2, . . . ∈ Bb(S × Rm) with ⋃n∈NBn ∈ Bb(S × Rm)
we have, almost surely, Λ(⋃n∈NBn) = ∑

n∈N Λ(Bn).

In the following we will restrict ourselves to Lévy bases which are homogeneous in
space and time and factorisable, i.e. Lévy bases with characteristic function

ϕΛ(B)(u) = E
[
ei〈u,Λ(B)〉

]
= eΦ(u)Π(B), (3.1)
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for all u ∈ Rd, B ∈ Bb(S × Rm) and Π = π × λ is the product measure of the probability
measure π on S and the Lebesgue measure λ on Rm. Furthermore,

Φ(u) = i〈γ, u〉 − 1
2〈u,Σu〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖)

)
ν(dx), (3.2)

is the cumulant transform of an ID distribution with characteristic triplet (γ,Σ, ν), where
γ ∈ Rd, Σ ∈Md×d(R) is a symmetric positive-semidefinite matrix and ν is a Lévy-measure
on Rd, i.e.

ν({0}) = 0 and
∫
Rd

(
1 ∧ ‖x‖2

)
ν(dx) <∞.

The quadruplet (γ,Σ, ν, π) determines the distribution of the Lévy basis completely and
therefore it is called the characteristic quadruplet. Following [50], it can be shown that a
Lévy basis has a Lévy-Itô decomposition.

Theorem 3.2. Let {Λ(B), B ∈ Bb(S × Rm)} be an Rd-valued Lévy basis on S × Rm with
characteristic quadruplet (γ,Σ, ν, π). Then there exists a modification Λ̃ of Λ which is also
a Lévy basis with characteristic quadruplet (γ,Σ, ν, π) such that there exists an Rd-valued
Lévy basis Λ̃G on S × R

m with characteristic quadruplet (0,Σ, 0, π) and an independent
Poisson random measure µ on (Rd × S × R

m,B(Rd × S × R
m)) with intensity measure

ν × π × λ such that

Λ̃(B) = γ(π × λ)(B)+Λ̃G(B) +
∫
‖x‖≤1

∫
B
x(µ(dx, dA, ds)− dsπ(dA)ν(dx))

+
∫
‖x‖>1

∫
B
xµ(dx, dA, ds),

(3.3)

for all B ∈ Bb(S × Rm).
If the Lévy measure additionally fulfills

∫
‖x‖≤1‖x‖ν(dx) <∞, it holds that

Λ̃(B) = γ0(π × λ)(B) + Λ̃G(B) +
∫
Rd

∫
B
xµ(dx, dA, ds), (3.4)

for all B ∈ Bb(S × Rm) with

γ0 := γ −
∫
‖x‖≤1

xν(dx). (3.5)

Note that the integral with respect to µ exists ω-wise as a Lebesgue integral.

Proof. Analogous to [12, Theorem 2.2].

We refer the reader to [39, Section 2.1] for further details on the integration with
respect to Poisson random measures. From now on we assume that any Lévy basis has a
decomposition (3.3).

Let us recall the following multivariate extension of [52, Theorem 2.7]. We denote by
A′ the transpose of a matrix A in what follows.
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Theorem 3.3. Let Λ = {Λ(B), B ∈ Bb(S × Rm)} be an R
d-valued Lévy basis with char-

acteristic quadruplet (γ,Σ, ν, π), f : S × R
m → Mn×d(R) be a B(S × R

m)-measurable
function. Then f is Λ-integrable in the sense of [52], if and only if∫

S

∫
Rm

∥∥∥∥f(A, s)γ+
∫
Rd
f(A, s)x

(
1[0,1](‖f(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥∥dsπ(dA) <∞,
(3.6)∫

S

∫
Rm
‖f(A, s)Σf(A, s)′‖ dsπ(dA) <∞ and (3.7)∫

S

∫
Rm

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx)dsπ(dA) <∞. (3.8)

If f is Λ-integrable, the distribution of the stochastic integral
∫
S

∫
Rm
f(A, s)Λ(dA, ds) is

ID with the characteristic triplet (γint,Σint, νint) given by

γint =
∫
S

∫
Rm

(
f(A, s)γ +

∫
Rd
f(A, s)x

(
1[0,1](‖f(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

)
dsπ(dA),

Σint =
∫
S

∫
Rm
f(A, s)Σf(A, s)′dsπ(dA) and

νint(B) =
∫
S

∫
Rm

∫
Rd

1B(f(A, s)x)ν(dx)dsπ(dA),

for all Borel sets B ⊂ R
n\{0}.

Proof. Analogous to [12, Proposition 2.3].

Implicitly, we always assume that Σint or νint are different from zero throughout the
paper to rule out the deterministic case.

For m = 1 it is known that the Lévy-Itô decomposition simplifies if the underly-
ing Lévy process Lt = Λ(S × (0, t]) is of finite variation (if and only if Σ = 0 and∫
|x|≤1 |x|ν(dx) <∞). Extending this one-dimensional notion, we speak of the finite varia-
tion case whenever Σ = 0 and

∫
‖x‖≤1‖x‖ν(dx) <∞.

Corollary 3.4. Let Λ = {Λ(B), B ∈ Bb(S × Rm)} be an R
d-valued Lévy basis with char-

acteristic quadruplet (γ, 0, ν, π) satisfying
∫
‖x‖≤1 ‖x‖ν(dx) <∞, and define γ0 as in (3.5),

such that for Φ(u) in (3.1) we have Φ(u) = i〈γ0, u〉+
∫
Rd

(
ei〈u,x〉 − 1

)
ν(dx). Furthermore,

let f : S × Rm →Mn×d(R) be a B(S × Rm)-measurable function satisfying∫
S

∫
Rm
‖f(A, s)γ0‖ dsπ(dA) <∞ and (3.9)∫

S

∫
Rm

∫
Rd

(
1 ∧ ‖f(A, s)x‖

)
ν(dx)dsπ(dA) <∞. (3.10)

Then,∫
S

∫
Rm
f(A, s)Λ(dA, ds) =

∫
S

∫
Rm
f(A, s)γ0 dsπ(dA) +

∫
Rd

∫
S

∫
Rm
f(A, s)xµ(dx, dA, ds),
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where the right hand side denotes a ω-wise Lebesgue integral. Additionally, the distribution
of the stochastic integral

∫
S

∫
Rm
f(A, s)Λ(dA, ds) is ID with characteristic function

E
[
ei〈u,

∫
S

∫
Rm

f(A,s)Λ(dA,ds)〉
]

= ei〈u,γint,0〉+
∫
Rd

(ei〈u,x〉−1)νint(dx), u ∈ Rd,

where

γint,0 =
∫
S

∫
Rm
f(A, s)γ0 dsπ(dA),

νint(B) =
∫
S

∫
Rm

∫
Rd

1B(f(A, s)x)ν(dx)dsπ(dA).

3.2 The MMAF framework
Definition 3.5. Let Λ = {Λ(B), B ∈ Bb(S × R

m)} be an R
d-valued Lévy basis and let

f : S × R
m → Mn×d(R) be a B(S × R

m)-measurable function satisfying the conditions
(3.6), (3.7) and (3.8). Then the stochastic integral

Xt :=
∫
S

∫
Rm
f(A, t− s)Λ(dA, ds) (3.11)

is stationary, well-defined for all t ∈ Rm and its distribution is ID. The random field X
is called an Rn-valued mixed moving average field (MMAF) and f its kernel function.

In the following result we give conditions ensuring finite moments of an MMAF and
explicit formulas for the first- and second-order moments.

Proposition 3.6. Let X be an Rn-valued MMAF driven by an Rd-valued Lévy basis with
characteristic quadruplet (γ,Σ, ν, π) and with Λ-integrable kernel function f : S × Rm →
Mn×d(R).

(i) If
∫
‖x‖>1 ‖x‖r ν(dx) <∞ and f ∈Lr(S×Rm, π⊗λ) for r ∈ [2,∞), then E[‖Xt‖r] <∞

for all t ∈ Rm.

(ii) If
∫
‖x‖>1 ‖x‖r ν(dx) <∞ and f ∈Lr(S×Rm, π⊗λ)∩L2(S×Rm, π⊗λ) for r ∈ (0, 2),

then E[‖Xt‖r] <∞ for all t ∈ Rm.

Consider the finite variation case, i.e. Σ = 0 and
∫
‖x‖≤1‖x‖ν(dx) <∞, then the following

holds

(i) If
∫
‖x‖>1 ‖x‖r ν(dx) <∞ and f ∈Lr(S×Rm, π⊗λ) for r ∈ [1,∞), then E[‖Xt‖r] <∞.

(ii) If
∫
‖x‖>1 ‖x‖r ν(dx) <∞ and f ∈Lr(S×Rm, π⊗λ)∩L1(S×Rm, π⊗λ) for r ∈ (0, 1),

then E[‖Xt‖r] <∞.

Proof. Analogous to [26, Proposition 2.6].

Proposition 3.7. Let X be an Rn-valued MMAF driven by an Rd-valued Lévy basis with
characteristic quadruplet (γ,Σ, ν, π) and with Λ-integrable kernel function f : S × Rm →
Mn×d(R).

11



(i) If
∫
‖x‖>1‖x‖ν(dx) < ∞ and f ∈ L1(S × R

m, π × λ) ∩ L2(S × R
m, π × λ) the first

moment of X is given by

E[Xt] =
∫
S

∫
Rm
f(A,−s)µΛdsπ(dA),

where µΛ = γ +
∫
‖x‖≥1 xν(dx).

(ii) If
∫
Rd
‖x‖2ν(dx) <∞ and f ∈ L2(S × Rm, π × λ), then Xt ∈ L2 and

V ar(Xt) =
∫
S

∫
Rm
f(A,−s)ΣΛf(A,−s)′dsπ(dA) and

Cov(X0, Xt) =
∫
S

∫
Rm
f(A,−s)ΣΛf(A, t− s)′dsπ(dA),

where ΣΛ = Σ +
∫
Rd
xx′ν(dx).

(iii) Consider the finite variation case, i.e. Σ = 0 and
∫
‖x‖≤1‖x‖ν(dx) <∞. If

∫
‖x‖>1‖x‖ν(dx) <

∞ and f ∈ L1(S × Rm, π × λ) the first moment of X is given by

E[Xt] =
∫
S

∫
Rm
f(A,−s)

(
γ0 +

∫
Rd
xν(dx)

)
dsπ(dA),

with γ0 as defined in (3.5).

Proof. Immediate from [54, Section 25] and Theorem 3.3.

3.3 Weak dependence properties of (A,Λ)-influenced MMAF
Since there is no natural order on R

m for m > 1 we cannot extend the definition of a
natural filtration and therefore causal processes in a natural way to random fields. In the
following we will propose such an extension and prove θ-lex-weak dependence for MMAF
falling within this framework. Examples will be presented in Section 3.7.

Definition 3.8. Let X = (Xt)t∈Rm be a random field, A = (At)t∈Rm ⊂ R
m a family of

Borel sets andM = {M(B), B ∈ Bb(S×Rm)} an independently scattered random measure.
Assume that Xt is measurable with respect to σ(M(B), B ∈ Bb(S × At)). We then call A
the sphere of influence, M the influencer, (σ(M(B), B ∈ Bb(S × At)))t∈Rm the filtration
of influence and X an (A,M)-influenced random field. If A is translation invariant, i.e.
At = t + A0, the sphere of influence is fully described by the set A0 and we call A0 the
initial sphere of influence.

Note that for m = 1, the class of causal mixed moving average processes driven by a
Lévy basis Λ equals the class of (A,Λ)-influenced mixed moving average processes driven
by Λ with At = Vt.

Let A = (At)t∈Rm be a full dimensional, translation invariant sphere of influence with
initial sphere of influence A0. In this section we consider the filtration (At)t∈Rm generated
by Λ, i.e. the σ-algebra generated by the set of random variables {Λ(B) : B ∈ B(S×At)}

12



with t ∈ Rm.
Consider an MMAF X that is adapted to (At)t∈Rm . Then, X is (A,Λ)-influenced and can
be written as

Xt =
∫
S

∫
Rm
f(A, t− s)Λ(dA, ds) =

∫
S

∫
At
f(A, t− s)Λ(dA, ds). (3.12)

Note that the translation invariance of A is required to ensure stationarity of X.
In the following we discuss under which assumptions an (A,Λ)-influenced MMAF is

θ-lex-weakly dependent. We start with a preliminary definition.

Definition 3.9 ([18, Definition 2.4.1]). K ⊂ R
m is called a closed convex proper cone if

it satisfies the following properties

(i) K +K ⊂ K (ensures convexity)

(ii) αK ⊂ K for all α ≥ 0 (ensures that K is a cone)

(iii) K is closed

(iv) K is pointed (i.e. x ∈ K and −x ∈ K =⇒ x = 0).

We then apply a truncation technique to show that X is θ-lex-weakly dependent.
Define Xj, XΓ as in Definition 2.2 such that j ∈ R

m and Γ ⊂ V h
j (see Figure 1). We

truncate Xj such that the truncation X̃j and XΓ become independent. From our con-
struction it will become clear that it is enough to find a truncation such that X̃j and Xi

are independent for the lexicographic greatest point i ∈ V h
j .

For a given point j, we determine the truncation of Xj by intersecting the integration set
with V ψ

j for ψ > 0 such that it does not intersect with Ai (see Figure 2 and 3). In the
following we will describe the choice of ψ. The figures illustrate the case m = 2.

Let i ∈ V h
j be the lexicographic greatest point in V h

j , i.e. k ≤lex i for all k ∈ V h
j . In

the following dist(A,B) = infa∈A,b∈B‖a− b‖ denotes the Euclidean distance of the sets A
and B. To ensure the existence of the above truncation, we assume that there exists an
α ∈ Rm\{0} such that

sup
x∈A0,x 6=0

α′x

‖x‖
< 0. (3.13)

Intuitively, (3.13) ensures that the initial sphere of influence A0 can be covered by a closed
convex proper cone. Moreover, w.l.o.g. by applying a rotation to A0, we can always assume
to work with A0 ⊂ V0. The following remark discuss such transformation.

Remark 3.10. Let A0 be a full dimensional subset of a half-space such that A0 * V0
Define the translation invariant sphere of influence A = (At)t∈Rm by At = (A0+t)t∈Rm and
consider the (A,Λ)-influenced MMAF X = (Xt)t∈Rm of the form Xt =

∫
S

∫
A0+t f(A, t −

s)Λ(dA, ds). Note that if A0 would not be full dimensional, X would be 0 since the Lebesgue
measure of A0 is zero. Define the hyperplane D = {x ∈ R

m : α′x = 0}. Using the
principal axis theorem we find an orthogonal matrix O such that the axis of the first
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coordinate is orthogonal to the rotated hyperplane OD. Since O is orthogonal it holds that
|Det(Dϕ)(u)| = |Det(O)| = 1, where Dϕ denotes the Jacobian matrix of the function
ϕ : u 7→ Ou. Additionally, for the rotated initial set OA0 it holds that OA0\V0 ⊂ {0} ×
[0,∞)m−1, such that λ({0}× [0,∞)m−1) = 0. By substitution for multiple variables we get
for t̃ = Ot.

Xt =
∫
S

∫
Rm
f(A, t− s)1A0+t(s)Λ(dA, ds)

=
∫
S

∫
Rm
f(A,O−1(Ot−Os))1OA0+Ot(Os)Λ(dA, ds)

=
∫
S

∫
OA0+t̃

f(A,O−1(t̃− s̃))Λ(dA, ds̃) =
∫
S

∫
OA0∩V0+t̃

f(A,O−1(t̃− s̃))Λ(dA, ds̃)

=
∫
S

∫
Vt̃

f̃O(A, t̃− s̃)Λ(dA, ds̃) = X̃t̃,

(3.14)

with f̃O(A, t− s) = f(A,O−1(t− s))1{s∈OA0+t}.

In Figure 4, it is pictured the smallest closed convex proper cone covering Ai which
is called K. Note that all conditions can be formulated in terms of A0 since the sphere of
influence A is translation invariant.
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Figure 1: Integration
sets Aj and Ai of Xj

and Xi
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Figure 2: Aj and Ai to-
gether with V ψ

j
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Figure 3: Integration
setsAi andAj\V ψ

j ofXi

and X̃j

In order to choose ψ we first define

b = sup
x∈A0
‖x‖=1

α′x

‖α‖
< 0 and K̃ =

{
x ∈ Rm : α

′x

‖x‖
≤ b

}
, (3.15)

where the last inequality follows from (3.13) (see Figure 4). It holds −1 ≤ b < 0. For
x1, x2 ∈ K̃ it holds

α′(x1 + x2)
‖x1 + x2‖

≤ α′x1

‖x1 + x2‖
+ α′x2

‖x1 + x2‖
≤ b
‖x1‖+ ‖x2‖
‖x1 + x2‖

≤ b

such that K̃ is a closed convex proper cone. It can be interpreted as the smallest equian-
gular closed convex proper cone that contains A0. Then, cos(β + π

2 ) = b such that
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β = arcsin(−b) ∈ [0, π2 ) (see Figure 5) and dist(j, K̃) ≥ sin(β)h = −bh (see Figure
6). We choose ψ as

ψ(h) = −bh√
m
. (3.16)

In particular we have ψ(h) = O(h).
Let l ∈ V h

j be now an arbitrary point. From the given choice of ψ and i it holds
dist(l, j) ≥ dist(i, j), Ai ∩ (Aj\V ψ

j ) = ∅, Ai = i + A0 ⊂ i + K̃ and Al = l + A0 ⊂ l + K̃.
Since K̃ is an equiangular closed convex proper cone we get Al ∩ (Aj\V ψ

j ) = ∅.
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Figure 4: Choice of α and β
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Figure 5: Choice of K̃
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Figure 6: Construction of ψ

Hence, the conditions below, which are expressed in terms of the kernel function f
and the characteristic quadruplet of the driving Lévy basis, are sufficient to show that an
(A,Λ)-influenced MMAF is θ-lex-weakly dependent.
Proposition 3.11. Let Λ be an Rd-valued Lévy basis with characteristic quadruplet (γ,Σ, ν, π)
and f : S × R

m → Mn×d(R) a B(S × R
m)-measurable function. Consider the (A,Λ)-

influenced MMAF

Xt =
∫
S

∫
At
f(A, t− s)Λ(dA, ds), t ∈ Rm,

with translation invariant sphere of influence A such that (3.13) holds.
(i) If

∫
‖x‖>1‖x‖2ν(dx) <∞, γ +

∫
‖x‖>1 xν(dx) = 0 and f ∈ L2(S × Rm, π ⊗ λ), then X

is θ-lex-weakly dependent with θ-lex-coefficients satisfying

θX(h) ≤ 2
( ∫

S

∫
A0∩V ψ(h)

0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
= θ̂

(i)
X (h). (3.17)

(ii) If
∫
‖x‖>1‖x‖2ν(dx) <∞ and f ∈ L2(S × Rm, π ⊗ λ) ∩ L1(S × Rm, π ⊗ λ), then X is

θ-lex-weakly dependent with θ-lex-coefficients satisfying

θX(h) ≤ 2
(∫

S

∫
A0∩V ψ(h)

0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)

+
∥∥∥∥ ∫

S

∫
A0∩V ψ(h)

0

f(A,−s)µΛdsπ(dA)
∥∥∥∥2
) 1

2

= θ̂
(ii)
X (h).

(3.18)
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(iii) If
∫
Rd
‖x‖ν(dx) <∞, Σ = 0 and f ∈ L1(S × Rm, π ⊗ λ) with γ0 as in (3.5), then X

is θ-lex-weakly dependent with θ-lex-coefficients satisfying

θX(h) ≤ 2
(∫

S

∫
A0∩V ψ(h)

0

‖f(A,−s)γ0‖dsπ(dA)

+
∫
S

∫
A0∩V ψ(h)

0

∫
Rd
‖f(A,−s)x‖ν(dx)dsπ(dA)

)
= θ̂

(iii)
X (h).

(3.19)

(iv) If
∫
‖x‖>1‖x‖ν(dx) < ∞ and f ∈ L1(S × Rm, π ⊗ λ) ∩ L2(S × Rm, π ⊗ λ), then X is

θ-lex-weakly dependent with θ-lex-coefficients satisfying

θX(h) ≤ 2
(∫

S

∫
A0∩V ψ(h)

0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)

+
∥∥∥∥ ∫

S

∫
A0∩V ψ(h)

0

f(A,−s)γdsπ(dA)
∥∥∥∥2
) 1

2

+2
∫
S

∫
A0∩V ψ(h)

0

∫
‖x‖>1

‖f(A,−s)x‖ν(dx)dsπ(dA) = θ̂
(iv)
X (h).

for all h > 0, with ψ as defined in (3.16). Furthermore, ΣΛ = Σ +
∫
Rd
xx′ν(dx) and

µΛ = γ −
∫
‖x‖≥1 xν(dx).

Proof. See Section 5.2.

In the next proposition we consider a vector of a shifted real-valued (A,Λ)-influenced
MMAF and we show that it is θ-lex weakly dependent. This result is necessary to analyze,
for example, the asymptotic behavior of the sample autocovariances. Define the set of
possible shifts

Sk = {(a, b)′ ∈ {0, . . . , k} × {−k, . . . , k}m−1}, k ∈ N (3.20)

and consider the enumeration {s1, . . . , s|Sk|} of Sk, where |Sk| = (k+1)(2k+1)m−1. Besides
the hereditary properties from Proposition 2.4 we show that weak dependence properties
are inherited by the field

Zt = (Xt, Xt+s1 , Xt+s2 , . . . , Xt+s|Sk|
). (3.21)

Proposition 3.12. Let Λ be an Rd-valued Lévy basis with characteristic quadruplet (γ,Σ, ν, π)
and f : S × Rm → M1×d(R) be a Λ-integrable, B(S × Rm)-measurable function. Consider
the (A,Λ)-influenced MMAF

Xt =
∫
S

∫
At
f(A, t− s)Λ(dA, ds), t ∈ Rm,

with translation invariant sphere of influence A such that (3.13) holds. Then

Zt :=
∫
S

∫
At
g(A, t− s)Λ(dA, ds), t ∈ Rm,
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where g(A, s) = (f(A, s), f(A, s − s1), . . . , f(A, s − s|Sk|))′ is a B(S × R
m)-measurable

function with values in M(k+1)(2k+1)m−1×d(R) for k ∈ N, is an (A,Λ)-influenced MMAF.
If X additionally satisfies the conditions of Proposition 3.11 (i), (ii), (iii) or (iv) then Z
is θ-lex-weakly dependent with coefficients respectively given by

θ
(i)
Z (h) ≤Dθ̂(i)

X (h− ψ−1(k)), θ
(ii)
Z (h) ≤ Dθ̂(ii)

X (h− ψ−1(k)),
θ

(iii)
Z (h) ≤Cθ̂(iii)

X (h− ψ−1(k)) and θ
(iv)
Z (h) ≤ Cθ̂(iv)

X (h− ψ−1(k)),
(3.22)

where D = |Sk|m/2, C = |Sk|m for ψ(h) > k with the corresponding θ̂(·)(h) from Proposition
3.11.

Proof. See Section 5.2.

3.4 Sample moments of (A,Λ)-influenced MMAF
Let us consider an Rn-valued (A,Λ)-influenced MMAF

X = (Xu)u∈Zm with Xu =
∫
S

∫
Au
f(A, u− s)Λ(dA, ds), (3.23)

with full-dimensional translation invariant sphere of influence A and initial sphere of
influence A0 ⊂ V0 such that (3.13) holds. We assume that we observe X on the finite
sampling sets Dn ⊂ Z

m, such that

lim
n→∞

|Dn| =∞ and lim
n→∞

|Dn|
|∂Dn|

= 0. (3.24)

We note that this includes in particular the equidistant sampling

En = (0, n]m ∩ Zm such that |En| = nm, n ∈ N. (3.25)

The sample mean of the random field X is then defined as

1
|Dn|

∑
u∈Dn

Xu. (3.26)

If
∫
‖x‖>1‖x‖ν(dx) <∞ we define the centered MMAF X̃u = Xu − E[Xu] and the sample

autocovariance on En at lag k ∈ N× Zm−1

1
|En−k̃|

∑
u∈En−k̃

X̃uX̃u+k, k ∈ N× Zm−1, (3.27)

where k̃ = ‖k‖∞. Let us start by analyzing the asymptotic properties of the sample mean
(3.26) for a centered (A,Λ)-influenced MMAF.
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Theorem 3.13. Let X = (Xu)u∈Zm be an (A,Λ)-influenced MMAF as defined in (3.23)
such that

∫
‖x‖>1‖x‖2+δν(dx) < ∞, γ +

∫
‖x‖>1 xν(dx) = 0 and f ∈ L2(S × R

m, π ⊗ λ) ∩
L2+δ(S × R

m, π ⊗ λ) for some δ > 0. Assume that X has θ-lex-coefficients satisfying
θX(h) = O(h−α), where α > m(1 + 1

δ
). Then

Σ =
∑
k∈Zm

E[X0X
′
k],

is finite, positive semidefinite and

1
|Dn|

1
2

∑
j∈Dn

Xj
d−−−→

n→∞
N(0,Σ). (3.28)

Proof. By [49, Theorem 3.6], it follows that an MMAF is ergodic.
Then, the result follows from Corollary 2.6.

In the theorem above, the initial sphere of influence A0 must satisfy (3.13). Addi-
tionally, we observe a trade-off between moment conditions on X and the decay rate of
the θ-lex coefficients. However, one can derive similar results for the sample mean of a
MMAF by relaxing condition (3.13) and exploiting the second order moment structure
of a MMAF. On the other hand, the following technique does not carry over to higher
moments.

Theorem 3.14. Let X = (Xu)u∈Zm be an (A,Λ)-influenced MMAF defined by

Xu =
∫
S

∫
Au
f(A, u− s)Λ(dA, ds),

with full dimensional translation invariant sphere of influence A and initial sphere of
influence A0 ⊂ V0 such that γ +

∫
‖x‖>1 xν(dx) = 0 and E[‖X0‖2] < ∞. Assume that X

has θ-lex-coefficients satisfying θX(h) = O(h−α), where α > m. Then

Σ =
∑
k∈Zm

E[X0X
′
k],

is finite, positive definite and

1
|DN |

1
2

∑
j∈DN

Xj
d−−−→

N→∞
N(0,Σ). (3.29)

Proof. See Section 5.3.

To lighten notation in the following we assume that X is real-valued and centered,
i.e. E[X0] = 0. In order to derive asymptotic properties for the distribution of (3.27) we
need to show weak dependence properties of the random field Y = (Yj,k)j∈Zm defined as

Yj,k = XjXj+k −R(k), k ∈ N× Zm−1, (3.30)
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where

R(k) = Cov(X0, Xk) = E[X0X
′
k] =

∫
S

∫
A0∩Ak

f(A,−s)ΣΛf(A, k − s)′dsπ(dA), k ∈ N× Zm−1,

with ΣΛ = Σ+
∫
Rd
xx′ν(dx) for an (A,Λ)-influenced MMAF X with characteristic quadru-

plet (γ,Σ, ν, π). The last equality follows from Proposition 3.7.

Proposition 3.15. Let X = (Xu)u∈Zm be a real-valued (A,Λ)-influenced MMAF as de-
fined in (3.23) such that E[X0] = 0 and E[‖X0‖2+δ] < ∞ for some δ > 0 with θ-lex-
coefficients θX . Then, (Yj,k)j∈Zm, k ∈ N × Z

m−1 as defined in (3.30) is θ-lex-weakly de-
pendent with coefficients

θY (h) ≤ C
(√

2θ̂(i)
X

(
h− ψ−1(‖k‖∞)

)) δ
1+δ ,

where C is a constant, independent of h, θ̂(i)
X from Proposition 3.12, and ψ as defined in

(3.16). Furthermore, in the finite variation case it holds

θY (h) ≤ C
(
2θ̂(i)

X

(
h− ψ−1(‖k‖∞)

)) δ
1+δ .

Proof. Consider the 2-dimensional process Z = (Xj, Xj+k)j∈Zm with k ∈ N × Z
m−1.

Proposition 3.12 implies that Z is θ-lex-weakly dependent and from the proof we obtain
the coefficients

θZ(h) ≤
√

2θ̂(i)
X (h− ψ−1(‖k‖∞)) for ψ(h) > ‖k‖∞.

Consider the function h : R2 → R such that h(x1, x2) = x1x2. The function h satisfies the
assumptions of Proposition 2.4 for p = 2+δ, c = 1 and a = 2. Considering h(Z) = XjXj+k
we obtain the θ-lex-coefficients of (Yj,k)j∈Zm

θY (h) ≤ C(
√

2θ̂(i)
X (h− ψ−1(‖k‖∞)))

δ
1+δ for ψ(h) > ‖k‖∞.

The coefficients for the finite variation case can be obtained from Proposition 2.4 and
(3.22).

The next corollary gives asymptotic properties of the sample autocovariances (3.27)
for (A,Λ)-influenced MMAF, i.e. we can give a distributional limit theorem for the process
(Yj,k)j∈Zm by determining the asymptotic distribution of

1
|En−k̃|

1
2

∑
j∈En−k̃

Yj,k, k ∈ N× Zm−1,

where k̃ = ‖k‖∞.
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Corollary 3.16. Let X = (Xu)u∈Zm be a real-valued (A,Λ)-influenced MMAF as defined
in (3.23) such that E[X0] = 0 and E[‖X0‖4+δ] <∞, for some δ > 0. If θ̂(i)

X (h) = O(h−α),
with θ̂(i)

X from Proposition 3.12 and α > m
(
1 + 1

δ

)
(3+δ

2+δ ), then

Σ =
∑
l∈Zm

Cov



Y0,0
...
Y0,k

 ,

Yl,0
...
Yl,k


′ =

∑
l∈Zm

Cov



X0X0

...
X0Xk

 ,


XlXl
...

XlXl+k


′ ,

is finite, positive semidefinite and

1
|En−k̃|

1
2

∑
j∈En−k̃


Yj,0
...
Yj,k

 d−−−→
N→∞

N (0,Σ) ,

where k̃ = ‖k‖∞.
Proof. Analogous to Theorem 3.13 we obtain the stated convergence using Proposition
3.15.

Corollary 3.17. Let X = (Xu)u∈Zm be a real-valued (A,Λ)-influenced MMAF as defined
in (3.23) and p ≥ 1 such that E[|X0|2p+δ] <∞ for some δ > 0. If θ̂(i)

X (h) = O(h−α), with
θ̂

(i)
X from Proposition 3.12 and α > m

(
1 + 1

δ

)
(2p−1+δ

p+δ ), then

Σ =
∑
k∈Zm

Cov(Xp
0 , X

p
k),

is finite, positive semidefinite and
1

|En−k̃|
1
2

∑
j∈En−k̃

(Xp
j − E[Xp

0 ]) d−−−→
N→∞

N(0,Σ),

where k̃ = ‖k‖∞.
Remark 3.18. The theory developed in this section is an important first step in showing
asymptotic normality of parametric estimators based on moment functions as the gener-
alized method of moments (for a comprehensive introduction see [37]). An example of the
application of the weak dependence properties and related central limit theorems to the
study of GMM estimators can be found in [26, Section 6.1], where the authors analyze
parametric estimators of the supOU process.

3.5 Weak dependence properties of non-influenced MMAF
In this subsection we consider a general MMAF X = (Xt)t∈Rm as defined in (3.11), i.e.

Xt =
∫
S

∫
Rm
f(A, t− s)Λ(dA, ds), t ∈ Rm,

and discuss under which assumptions a non-influenced MMAF is η-weakly dependent.
Note that we do not demand any additional assumption on the structure of X as assumed
in Section 3.2 and 3.3.
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Proposition 3.19. Let Λ be an Rd-valued Lévy basis with characteristic quadruplet (γ,Σ, ν, π)
and f : S × R

m → Mn×d(R) a B(S × R
m)-measurable function. Consider the MMAF

X = (Xt)t∈Rm with

Xt =
∫
S

∫
Rm
f(A, t− s)Λ(dA, ds), t ∈ Rm.

(i) If
∫
‖x‖>1‖x‖2ν(dx) <∞, γ +

∫
‖x‖>1 xν(dx) = 0 and f ∈ L2(S × Rm, π ⊗ λ), then X

is η-weakly dependent with η-coefficients satisfying

ηX(h) ≤
∫

S

∫
((−h2 ,h2 )m)c

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
 1

2

= η̂
(i)
X (h).

(ii) If
∫
‖x‖>1‖x‖2ν(dx) <∞ and f ∈ L2(S × Rm, π ⊗ λ) ∩ L1(S × Rm, π ⊗ λ), then X is

η-weakly dependent with η-coefficients satisfying

ηX(h) ≤
(∫

S

∫
((−h2 ,h2 )m)c

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)

+
∥∥∥∥ ∫

S

∫
((−h2 ,h2 )m)c

f(A,−s)µΛdsπ(dA)
∥∥∥∥2
) 1

2

= η̂
(ii)
X (h).

(iii) If
∫
Rd
‖x‖ν(dx) <∞, Σ = 0 and f ∈ L1(S × Rm, π ⊗ λ) with γ0 as in (3.5), then X

is η-weakly dependent with η-coefficients satisfying

ηX(h) ≤
∫
S

∫
((−h2 ,h2 )m)c

‖f(A,−s)γ0‖dsπ(dA)

+
∫
S

∫
((−h2 ,h2 )m)c

∫
Rd
‖f(A,−s)x‖ν(dx)dsπ(dA) = η̂

(iii)
X (h).

(iv) If
∫
‖x‖>1‖x‖ν(dx) < ∞ and f ∈ L1(S × Rm, π ⊗ λ) ∩ L2(S × Rm, π ⊗ λ), then X is

η-weakly dependent with η-coefficients satisfying

ηX(h) ≤
(∫

S

∫
((−h2 ,h2 )m)c

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)

+
∥∥∥∥ ∫

S

∫
((−h2 ,h2 )m)c

f(A,−s)µΛdsπ(dA)
∥∥∥∥2
) 1

2

+
∫
S

∫
((−h2 ,h2 )m)c

∫
‖x‖>1

‖f(A,−s)x‖ν(dx)dsπ(dA) = η̂
(iv)
X (h),

for all h > 0, where ΣΛ = Σ +
∫
Rd
xx′ν(dx) and µΛ = γ −

∫
‖x‖≥1 xν(dx).

Proof. See Section 5.4.
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Analogous to Proposition 3.12 we obtain the following result.

Proposition 3.20. Let Λ be an Rd-valued Lévy basis with characteristic quadruplet (γ,Σ, ν, π)
and f : S × Rm → M1×d(R) be a Λ-integrable, B(S × Rm)-measurable function. Consider
the real-valued MMAF

Xt =
∫
S

∫
Rm
f(A, t− s)Λ(dA, ds), t ∈ Rm.

Then

Zt :=
∫
S

∫
Rm
g(A, t− s)Λ(dA, ds), t ∈ Rm,

where g(A, s) = (f(A, s), f(A, s − s1), . . . , f(A, s − s|Sk|))′ is a B(S × R
m)-measurable

function with values in M(k+1)(2k+1)m−1×d(R) for k ∈ N, is an MMAF.
If X additionally satisfies the conditions of Proposition 3.19 (i), (ii), (iii) or (iv), then Z
is η-weakly dependent with coefficients respectively given by

η
(i)
Z (h) ≤Dη̂(i)

X (h− 2k), η
(ii)
Z (h) ≤ Dη̂(ii)

X (h− 2k),
η

(iii)
Z (h) ≤Cη̂(iii)

X (h− 2k) and η
(iv)
Z (h) ≤ Cη̂(iv)

X (h− 2k),
(3.31)

where D = |Sk|m/2, C = |Sk|m for h > 2k with the corresponding η̂(·)(h) from Proposition
3.19.

Proof. Analogous to Proposition 3.12.

3.6 Sample moments of non-influenced MMAF
Let us consider an Rn-valued MMAF

X = (Xu)u∈Zm with Xu =
∫
S

∫
Rm
f(A, u− s)Λ(dA, ds). (3.32)

As in Section 3.2 we assume that we observe X on a sequence of finite sampling sets
Dn ⊂ Z

m, such that (3.24) holds.

Theorem 3.21. Let (Xu)u∈Zm be an MMAF as defined in (3.32) such that E[X0] = 0 and
E[‖X0‖2+δ] < ∞ for some δ > 0. Assume that X has η-coefficients satisfying ηX(h) =
O(h−β), where β > mmax

(
2,
(
1 + 1

δ

))
. Then

Σ =
∑
u∈Zm

Cov(X0, Xu) =
∑
u∈Zm

E[X0X
′
u], (3.33)

is finite, positive semidefinite and

1
|Dn|

1
2

∑
u∈Dn

Xu
d−−−→

n→∞
N(0,Σ). (3.34)
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Proof. Let us consider the notations and assumptions stated in Definition 2.1. Then, X
is λ-weakly dependent, see definition in [33, Definition 1]. Finally [33, Theorem 2] implies
the summability of σ2 and the result stated in (3.34). The multivariate extension follows
analogously to Corollary 2.6 by the Cramér-Wold device.

Remark 3.22. Theorem 3.21 can be formulated as a functional central limit theorem,
following [33, Theorem 3]. Set Sn(t) = ∑

j∈tEn Xj, t ∈ R
m with En as defined in (3.25)

and the additional assumption that Sn(t) = 0 if one coordinate of t equals zero. Then,
under the assumptions of Theorem 3.21 it holds that

1
n
m
2
Sn(t) D([0,1])−−−−→

n→∞
σW (t), (3.35)

where W denotes a Brownian sheet and D([0,1])−−−−→
n→∞

denotes the convergence in the Skorokhod
space.

Analogous to Proposition 3.15 we show the following result.

Proposition 3.23. Let (Xu)u∈Zm be a real-valued MMAF as defined in (3.32) such that
E[X0] = 0 and E[‖X0‖2+δ] < ∞ for some δ > 0. Then, (Yj,k)j∈Zm, k ∈ N × Z

m−1 as
defined in (3.30) is η-weakly dependent with coefficients

ηY (h) ≤ C(
√

2η̂(i)
X (h− 2‖k‖∞))

δ
1+δ ,

where C is a constant, independent of h and η̂(i)
X from Proposition 3.20.

Furthermore, in the finite variation case it holds

ηY (h) ≤ C(2η̂(iii)
X (h− 2‖k‖∞))

δ
1+δ .

In the following we give asymptotic properties of the sample autocovariances (3.27).

Corollary 3.24. Let (Xu)u∈Zm be a real-valued MMAF as defined in (3.32) such that∫
‖x‖>1‖x‖4+δν(dx) < ∞, γ +

∫
‖x‖>1 xν(dx) = 0 and f : S × R

m → M1×d(R) satisfies
f ∈ L2(S × Rm, π ⊗ λ) ∩ L4+δ(S × Rm, π ⊗ λ) for some δ > 0. If η̂(i)

X (h) = O(h−β), with
η̂

(i)
X from Proposition 3.20 and β > mmax

(
2,
(
1 + 1

δ

))
(3+δ

2+δ ), then

Σ =
∑
l∈Zm

Cov



Y0,0
...
Y0,k

 ,

Yl,0
...
Yl,k


′ =

∑
l∈Zm

Cov



X0X0

...
X0Xk

 ,


XlXl
...

XlXl+k


′ ,

is finite, positive semidefinite and

1
|En−k̃|

1
2

∑
j∈En−k̃


Yj,0
...
Yj,k

 d−−−→
N→∞

N (0,Σ) ,

where k̃ = ‖k‖∞.
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Proof. Analogous to Theorem 3.21 we obtain the stated convergence using Proposition
3.23.

Remark 3.25. Note that for m = 1 Theorem 3.21 improves the only existing central
limit theorem for MMA processes based on η-weak dependence (see [26, Theorem 4.1]) by
reducing the necessary decay of the η-coefficients from β > 4+ 2

δ
to β > max

(
2,
(
1 + 1

δ

))
.

Remark 3.26. Let X be an (A,Λ)-influenced MMAF satisfying the conditions of Propo-
sition 3.11 (i). Then X is θ-lex- and η-weakly dependent with the same weak dependence
coefficients and both the asymptotic results in Section 3.4 and 3.6 can be applied.
Note that the asymptotic results in Section 3.4 hold under weaker decay demands for the
weak dependence coefficients compared to the results in Section 3.6.

3.7 Example of (A,Λ)-influenced MMAF: MSTOU processes
We apply the developed asymptotic theory to mixed spatio-temporal Ornstein-Uhlenbeck
(MSTOU) processes. MSTOU processes were introduced in [47] and extend spatio-temporal
Ornstein-Uhlenbeck (STOU) processes (see [11],[46]) by additionally mixing the mean re-
version parameter. Moreover, this extension can cover short-range as well as long-range
dependence structures in space-time.

In the following we will treat the temporal and spatial domain separately.
MSTOU processes are an example of (A,Λ)-influenced MMAF where the sphere of

influence is a family of ambit sets, i.e. At(x) ⊂ R× Rm such that
At(x) = A0(0) + (t, x), (Translation invariant)
As(x) ⊂ At(x),
At(x) ∩ ((t,∞))× Rm = ∅. (Non-anticipative).

(3.36)

Proposition 3.27. Let Λ be a real-valued Lévy basis on (0,∞)×R×Rm with characteristic
quadruplet (γ,Σ, ν, π) such that

∫
|x|>1 x

2ν(dx) <∞ and f(λ) be the density function of π
(i.e. the mean reversion parameter λ) with respect to the Lebesgue measure. Furthermore,
let A = (At(x))(t,x)∈R×Rm be an ambit set. If∫ ∞

0

∫
At(x)

exp(−λ(t− s)) dsdξf(λ)dλ <∞,

then the (A,Λ)-influenced MMAF

Yt(x) =
∫ ∞

0

∫
At(x)

exp(−λ(t− s)) Λ(dλ, ds, dξ), (t, x) ∈ R× Rd,

is well defined and we call Yt(x) a mixed spatio-temporal Ornstein-Uhlenbeck (MSTOU)
process.

Proof. Follows immediately from [47, Corollary 1].
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In order to calculate explicit conditions for the asymptotic results of Section 3.3, it
becomes necessary to specify a family of ambit sets. In the following we will consider
c-class MSTOU processes which are a sub-class of the g-class MSTOU processes defined
in [47, Definition 9].

Definition 3.28. Let Yt(x) be a MSTOU process as in Proposition 3.27. If, for a constant
c > 0,

At(x) = {(s, ξ) : s ≤ t, ‖x− ξ‖ ≤ c|t− s|},

then Yt(x) is called a c-class MSTOU process. A c-class MSTOU process is well defined
if ∫ ∞

0

1
λd+1f(λ)dλ <∞. (3.37)

The next theorem expresses the θ-lex coefficients of c-class MSTOU processes in
terms of the characteristic quadruplet of the driving Lévy basis. We note that A0(0) is a
full dimensional closed convex proper cone satisfying (3.13). From (3.16) it follows that
ψ(h) = 1√

c2+1
h√
d+1 .

Theorem 3.29. Let (Yt(x))(t,x)∈R×Rm be a c-class MSTOU process and (γ,Σ, ν, π) the
characteristic quadruplet of its driving Lévy basis. Moreover, let f(λ) be the density of π
with respect to the Lebesgue measure.

(i) If
∫
|x|>1 x

2ν(dx) <∞ and γ+
∫
|x|>1 x ν(dx) = 0, then Yt(x) is θ-lex-weakly dependent.

For c ∈ (0, 1], θY (h) satisfies

m = 1 : θY (h) ≤
2cΣΛ

∫ ∞
0

(2λψ(h) + 1)
λ2 e−2λψ(h)f(λ)dλ

 1
2

,

m ≥ 2 : θY (h) ≤ 2
(
Vm(c)ΣΛ

∫ ∞
0

m!∑m
k=0

1
k!(2λψ(h))k

(2λ)d+1 e−2λψ(h)f(λ)dλ
) 1

2

,

and for c > 1

m = 1 : θY (r) ≤ 2
(
cΣΛ

∫ ∞
0

(2λψ(h)
c

+ 1)
2λ2 e−2λψ(h)

c dsf(λ)dλ
) 1

2
,

m ≥ 2 : θY (h) ≤ 2
Vm(c)ΣΛ

∫ ∞
0

m!∑m
k=0

1
k!(2

λψ(h)
c

)k

(2λ)d+1 e−2λψ(h)
c f(λ)dλ

 1
2

.

(ii) If
∫
R
|x| ν(dx) < ∞, Σ = 0 and γ0 as defined in (3.5), then Yt(x) is θ-lex-weakly

dependent. For c ∈ (0, 1]

m ∈ N : θY (h) ≤ 2Vm(c)
(
|γ0|+

∫
R

|x|ν(dx)
)(∫ ∞

0

m!∑m
k=0

1
k!(λψ(h))k

λd+1 e−λψ(h)f(λ)dλ
)
,

25



and for c > 1

m ∈ N : θY (h) ≤ 2Vm(c)
(
|γ0|+

∫
R

|x|ν(dx)
)∫ ∞

0

m!∑m
k=0

1
k!(

λψ(h)
c

)k

λd+1 e−
λψ(h)
c f(λ)dλ

.
Vm(c) = (Γ( 1

2 )c)m
Γ(m2 +1) denotes the volume of the m-dimensional ball with radius c, ψ(h) =

1√
c2+1

h√
m+1 and ΣΛ = Σ +

∫
R
x2ν(dx).

Proof. (i) Let us consider the case m = 1. From Proposition 3.11 we deduce

θY (h) ≤ 2
(

ΣΛ

∫ ∞
0

∫
A0(0)∩V ψ(h)

0

exp(2sλ)ds dξ f(λ)dλ
) 1

2
. (3.38)

As first step, one has to evaluate the truncated integration set A0(0)∩V ψ(h)
0 . Depend-

ing on the width of A0(0), we distinguish the two cases illustrated in the following
figures. Figure 7 and 8 consider the case c ∈ (0, 1] and Figure 9 and 10 cover the
case c > 1.
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Figure 7: Inte-
gration set A0(0)
with (V h

(0,0))
c for

c = 1√
2 and h =

4
√

3.
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Figure 8: Trun-
cated set A0(0) ∩
V
ψ(h)

(0,0) for c = 1√
2

and h = 4
√

3.
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Figure 9: Inte-
gration set A0(0)
with (V h

(0,0))
c for

c =
√

2 and h =
4
√

6.
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Figure 10: Trun-
cated set A0(0) ∩
V
ψ(h)

(0,0) for c =
√

2
and h = 4

√
6.

Let c ∈ (0, 1], then (3.38) is equal to

2
(

ΣΛ

∫ ∞
0

∫ −ψ(h)

−∞

∫
‖ξ‖≤cs

dξ e2sλdsf(λ)dλ
) 1

2
= 2

(
ΣΛ

∫ ∞
0

∫ −ψ(h)

−∞
(−2cs)e2sλdsf(λ)dλ

) 1
2

=
(

2cΣΛ

∫ ∞
0

(2λψ(h) + 1)
λ2 e−2λψ(h)f(λ)dλ

) 1
2
.

The integral
∫
‖ξ‖≤cs dξ is the volume of an m-dimensional ball of radius cs which for

m = 1 is equal to −2cs.
For c > 1 we can bound (3.38) by

2
(

ΣΛ

∫ ∞
0

∫ −ψ(h)
c

−∞
(−2cs)e2sλdsf(λ)dλ

) 1
2

= 2
(
cΣΛ

∫ ∞
0

(2λψ(h)
c

+ 1)
2λ2 e−2λψ(h)

c dsf(λ)dλ
) 1

2
.

In a similar way, one can derive the θ-lex coefficients for m ≥ 2.
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(ii) Analogous to (i).

We now give explicit computations of the θ-lex-coefficients of a c-class MSTOU pro-
cess in the case in which the mean reverting parameter λ is gamma distributed. For a
Gamma(α, β) distributed mean reversion parameter λ, i.e. f(λ) = βα

Γ(α)λ
α−1e−βλ 1[0,∞)(λ),

the c-class MSTOU process is well defined if α > m+1 and β > 0 due to condition (3.37).

Theorem 3.30. Let (Yt(x))(t,x)∈R×Rm be a c-class MSTOU process and (γ,Σ, ν, π) the
characteristic quadruplet of its driving Lévy basis. Moreover, let the mean reversion pa-
rameter λ be Gamma(α, β) distributed with α > m+ 1 and β > 0.

(i) If
∫
|x|>1 x

2 ν(dx) < ∞, γ +
∫
|x|>1 xν(dx) = 0, then Yt(x) is θ-lex-weakly dependent.

For c ∈ [0, 1],

m = 1 : θY (h) ≤ 2
(
cΣΛβ

α

2Γ(α)

(
Γ(α− 2)

(2ψ(h) + β)α−2 + 2ψ(h)Γ(α− 1)
(2ψ(h) + β)α−1

)) 1
2

,

m ≥ 2 : θY (h) ≤ 2
(
Vm(c)m!ΣΛβ

α

2m+1

m∑
k=0

(2ψ(h))k
k!(2ψ(h) + β)α−m−1+k

Γ(α−m− 1 + k)
Γ(α)

) 1
2

,

and for c > 1

m ∈ N : θY (h) ≤ 2
Vm(c)m!ΣΛβ

α

2m+1

m∑
k=0

(
2ψ(h)
c

)k
k!
(

2ψ(h)
c

+ β
)α−m−1+k

Γ(α−m− 1 + k)
Γ(α)

 1
2

,

such that θY (h) = O(h
(m+1)−α

2 ).

(ii) If
∫
R
|x| ν(dx) < ∞, Σ = 0 and γ0 as defined in (3.5), then Yt(x) is θ-lex-weakly

dependent. For c ∈ (0, 1],

m ∈ N : θY (h) ≤ 2Vm(c)m!βα
(
|γ0|+

∫
R

|x|ν(dx)
) m∑
k=0

ψ(h)k
k!(ψ(h) + β)α−m−1+k

Γ(α−m− 1 + k)
Γ(α) ,

and for c > 1

m ∈ N : θY (h) ≤ 2Vm(c)d!βα
(
|γ0|+

∫
R

|x|ν(dx)
) m∑
k=0

(
ψ(h)
c

)k
k!
(
ψ(h)
c

+ β
)α−m−1+k

Γ(α−m− 1 + k)
Γ(α) ,

such that θY (h) = O(h(m+1)−α).

This implies the following sufficient conditions for the asymptotic normality of the
sample mean and the sample autocovariance function.
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Corollary 3.31. Let (Yt(x))(t,x)∈R×Rm be a c-class MSTOU process and (γ,Σ, ν, π) the
characteristic quadruplet of its driving Lévy basis. Moreover, let the mean reversion pa-
rameter λ be Gamma(α, β) distributed with α > m+ 1 and β > 0.

(i) If γ +
∫
|x|>1 xν(dx) = 0,

∫
|x|>1 |x|2+δν(dx) < ∞ for some δ > 0 and α > (m +

1)
(
3 + 2

δ

)
, then the sample mean of Yt(x) as defined in (3.26) is asymptotically

normal.

(ii) If γ +
∫
|x|>1 xν(dx) = 0,

∫
|x|>1 |x|4+δν(dx) < ∞ for some δ > 0 and α > (m +

1)
(

3+δ
2+δ

) (
3 + 2

δ

)
, then the sample autocovariances as defined in (3.27) are asymp-

totically normal.

Corollary 3.32. Let (Yt(x))(t,x)∈R×Rm be a c-class MSTOU process and (γ,Σ, ν, π) the
characteristic quadruplet of its driving Lévy basis. Moreover, let the mean reversion pa-
rameter λ be Gamma(α, β) distributed such that α > d+ 1 and β > 0.

(i) If
∫
R
|x|ν(dx) <∞, Σ = 0, γ0 as defined in (3.5) and α > (m+ 1)

(
2 + 2

δ

)
, then the

sample mean of Yt(x) as defined in (3.26) is asymptotically normal.

(ii) If
∫
R
|x|ν(dx) < ∞, Σ = 0, γ0 as defined in (3.5),

∫
|x|>1 |x|4+δν(dx) < ∞ for some

δ > 0 and α > (m+ 1)
(

3+δ
2+δ

) (
2 + 2

δ

)
, then the sample autocovariances as defined in

(3.27) are asymptotically normal.

Remark 3.33. Since the c-class MSTOU processes satisfy the assumptions of Theorem
3.14, we can derive asymptotic normality of the sample mean for this fields under the
weaker assumptions E[Yt(x)2] <∞ and α > 3(d+ 1).

We conclude with some remarks regarding the short and long range dependence of
an MSTOU process.

Definition 3.34. A stationary random field Y = (Yt(x))(t,x)∈R×Rm is said to have temporal
short-range dependence if ∫ ∞

0
Cov(Yt(x), Yt+τ (x))dτ <∞,

and temporal long-range dependence if the integral is infinite.
If Cov(Yt(x), Yt(x + mx)) = C(|mx|) for all mx ∈ R

m and a positive definite function
C the random field Y is called isotropic. Now, an isotropic random field is said to have
spatial short-range dependence if ∫ ∞

0
C(r)dr <∞.

We have that an MSTOU is a stationary and isotropic random field, see Theorem 5
[47]. By assuming a Gamma(α, β)-distributed random parameter λ, we have the following
results, as shown in Section 6 [26] and Section 3.3 [47]:
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(i) For m = 0, we have that Y is a supOU process which is well-defined for α > 1 and
β > 0. Thus, we obtain a long-memory process for 1 < α ≤ 2 and a short memory
one for α > 2.

(ii) For m = 1, Y is well-defined if α > 2 and β > 0. Y exhibits temporal as well as
spatial long-range dependence for 2 < α ≤ 3. If α > 3 we observe temporal and
spatial short-range dependence.

(iii) For m = 3, Y is well-defined if α > 4 and β > 0. Y exhibits temporal as well as
spatial long-range dependence for 4 < α ≤ 5. If α > 5 we observe temporal and
spatial short-range dependence.
It is then easy to see that the assumptions in the Corollaries 3.31 and 3.32 imply that

we are in the realm of short-range dependence.
Remark 3.35. (GMM estimator)

For m = 0, a consistent GMM estimator for the supOU process is defined in [55]. In
[26], the authors show asymptotic normality of the estimator and that if the underlying
Lévy process is of finite variation and all moments exist, then the GMM estimator is
asymptotic normally distributed for α > 2.

For m ≥ 1, a consistent GMM estimator for a c-class MSTOU process is introduced
in [47]. The results in Corollaries 3.31 and 3.32 should pave the way for an analysis of
the asymptotic normality of the GMM estimator defined in [47] using arguments similar
to [26]. For example, when m = 1, in the finite variation case and when all moments
exist, we can apply our results to short-range dependent MSTOU processes with α > 4.

3.8 Example of non-influenced MMAF: Lévy-driven CARMA
fields

We conclude the section by applying our developed asymptotic theory to the class of
Lévy-driven CARMA fields defined on Rm.

CARMA (continuous autoregressive moving average) fields are an extension of the
well-known CARMA processes (see e.g. [21] for a comprehensive introduction) and have
been introduced in [16, 22, 42, 51].

In [22], the authors define CARMA fields as isotropic random fields

Y (t) =
∫
Rm
g(t− s)dL(s), t ∈ Rm, (3.39)

where g is a radially symmetric kernel and L a real-valued Lévy basis on R
m. When

the Lévy basis L has a finite second order structure, the CARMA fields generates a rich
family of isotropic covariance functions on Rm which are not necessarily non-negative or
monotone.

On the other hand, in [51], the author defines CARMA(p,q) fields based on a system
of stochastic partial differential equations. For 0 ≤ q < p, the mild solution of the system
is called a causal CARMA field and is given by

Y (t) = bT
∫ t1

−∞
· · ·

∫ tm

−∞
eA1(t1−s1) · · · eAm(tm−sm)c dL(s), (t1, . . . , tm) ∈ Rm, (3.40)
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where A1, . . . , Am are companion matrices, L is a real-valued Lévy basis on R
m, b =

(b0, . . . , bp−1)T ∈ Rp with bq 6= 0 and bi = 0 for i > q and c = (0, . . . , 0, 1)T ∈ Rp, see [51,
Definition 3.3].
In [16], the author shows the existence of a mild solution for the CARMA stochastic
partial differential equation, c.f. [16, equation (1.7)], in [16, Theorem 5.3]. The causal
CARMA fields presented in [51] can be seen as a special case of the CARMA random
fields defined in [16]. A more subtle relationship exists between the definition of CARMA
field in [16] and [22] just when m is odd, see [16, Section 7].

In general, our framework can be applied to the class of CARMA fields introduced
in [16] and [22] when the conditions of the below theorem are satisfied.

Theorem 3.36. Let L be an Rd-valued Lévy basis with characteristic quadruplet (γ,Σ, ν, π)
such that

∫
‖x‖>1‖x‖2ν(dx) < ∞ and γ +

∫
‖x‖>1 xν(dx) = 0. Let g : Rm → Mn×d(R) such

that g is exponentially bounded in norm, i.e. there exists M,K ∈ R+ such that

‖g(t)‖2 ≤Me−K‖t‖, for all t ∈ Rm. (3.41)

Then, the moving average field Xt =
∫
Rm
g(t− s)L(ds), t ∈ Rm is an η-weakly dependent

field with exponentially decaying η-coefficients. Due to the equivalence of norms the result
does not depend on a specific choice of norms.

Proof. See Section 5.

Remark 3.37. Since the kernels in (3.39) and (3.40) satisfy equation (3.41), for example,
we can show that these fields are η-weakly dependent by applying Theorem 3.36.

4 Ambit fields
In the following we will briefly introduce stationary ambit fields. We discuss weak depen-
dence properties of such fields and give sufficient conditions for the applicability of the
results in Section 2.2.

4.1 The ambit framework
Let At(x) ⊂ R×Rm for (t, x) ∈ R×Rm be an ambit set as defined in (3.36). By P ′ we denote
the usual predictable σ-algebra on R, i.e. the σ-algebra generated by all left-continuous
adapted processes. Then, a random field X : Ω× R× Rm → R is called predictable if it is
measurable with respect to the σ-algebra P defined by P = P ′ ⊗ B(Rm).

Definition 4.1. Let Λ be a real-valued Lévy basis on R×Rm with characteristic quadruplet
(γ,Σ, ν, π), σ a predictable stationary random field on R×Rm independent of Λ. Further-
more, let l : Rm × R → R be a measurable function and At(x) an ambit set. We assume
that f(ξ, s) = 1At(x)(ξ, s)l(ξ, s)σs(ξ) satisfies (3.6), (3.7) and (3.8) almost surely. Then,
the random field

Yt(x) =
∫
At(x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds), (t, x) ∈ R× Rm, (4.1)
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is called an ambit field and it is stationary (see p. 185 [6]).

Remark 4.2. Ambit fields require us to define integrals with respect to Lévy bases where
the integrand is stochastic. Although the integration theory from Rajput and Rosinski just
enables us to define stochastic integrals with respect to deterministic integrands [52], one
can extend this theory to stochastic integrands which are predictable and independent of
the Lévy basis. In fact, we can condition on the σ-algebra generated by the field σ and
use again the integration theory introduced in [52]. Then, such integrals are well defined
if the kernel function satisfy the sufficient conditions (3.6), (3.7) and (3.8) almost surely.
Allowing for dependence between the volatility field and the Lévy basis demands the use of
a different integration theory as presented in Section 1.2.1 [2], Proposition 39 [6], Theorem
3.2 [13] and [25].

We conclude this section by giving explicit formulas for the first and second moment
of an ambit field.

Proposition 4.3. Let Y be an ambit field as defined in (4.1) driven by a real-valued Lévy
basis with characteristic quadruplet (γ,Σ, ν, π) and Λ-integrable kernel function f(ξ, s) =
1At(x)(ξ, s)l(ξ, s)σs(ξ), where σ is predictable, stationary and independent of Λ.

(i) If E[|Yt(x)|] <∞ the first moment of Y is given by

E[Yt(x)] = µΛE[σt(x)]
∫
At(x)

l(x− ξ, t− s)dξds,

where µΛ = γ +
∫
|x|≥1 xν(dx).

(ii) If E[Yt(x)2] <∞ it holds

V ar(Yt(x)) =ΣΛE[σt(x)2]
∫
At(x)

l(x− ξ, t− s)2dξds

+ µ2
Λ

∫
At(x)

∫
At(x)

l(x− ξ, t− s)l(x− ξ̃, t− s̃)ρ(s, s̃, ξ, ξ̃)dξdsdξ̃ds̃ and

Cov(Yt(x), Yt̃(x̃)) =ΣΛE[σt(x)2]
∫
At(x)∩At̃(x̃)

l(x− ξ, t− s)l(x̃− ξ, t̃− s)dξds

+ µ2
Λ

∫
At(x)

∫
At̃(x̃)

l(x− ξ, t− s)l(x̃− ξ̃, t̃− s̃)ρ(s, s̃, ξ, ξ̃)dξdsdξ̃ds̃,

where ΣΛ = Σ +
∫
R
x2ν(dx) and ρ(s, s̃, ξ, ξ̃) = E[σs(ξ)σs̃(ξ̃)]− E[σs(ξ)]E[σs̃(ξ̃)].

Proof. Immediate from [6, Proposition 41].

4.2 Weak dependence properties of ambit fields
Let us consider a stationary ambit field Y = (Yt(x))(t,x)∈R×Rm as defined in (4.1). In order
to analyze the covariance structure of Y , it becomes necessary to specify a model for σ. In
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[4] the authors proposed to model σ by kernel-smoothing of a homogeneous Lévy basis,
i.e. a moving average random field

σt(x) =
∫
Aσt (x)

j(x− ξ, t− s)Λσ(dξ, ds), (4.2)

where Λσ is a real valued Lévy basis independent of Λ with characteristic quadruplet
(µσ,Σσ, νσ, πσ), Aσ = (Aσt (x))(t,x)∈R×Rm an ambit set as defined in (3.36) and j a real
valued Λσ-integrable function. In the following we extend this model and assume σ to be
an (Aσ,Λσ)-influenced MMAF, i.e.

σt(x) =
∫
S

∫
Aσt (x)

j(A, x− ξ, t− s)Λσ(dA, dξ, ds). (4.3)

Proposition 4.4. Let Y = (Yt(x))(t,x)∈R×Rm be an ambit field as defined in (4.1) with σ =
(σt(x))(t,x)∈R×Rm being a predictable (Aσ,Λσ)-influenced MMAF as defined in (4.3) and
such that A0(0) and Aσ0 (0) satisfy (3.13), j ∈ L1(S×R×Rm, π⊗λ)∩L2(S×Rm×R, π⊗λ),
where λ indicates the Lebesgue measure on Rm+1, and

∫
|x|>1 |x|2νσ(dx) <∞.

(i) If l ∈ L2(R × Rm),
∫
|x|>1 |x|2ν(dx) < ∞ and γ +

∫
|x|>1 xν(dx) = 0, then Y is θ-lex-

weakly dependent with θ-lex-coefficients θY (h) satisfying

θY (h) ≤2
(

ΣΛE[σ0(0)2]
∫
A0(0)∩V ψ(h)

(0,0)

l(−ξ,−s)2dξds
) 1

2

+ 2
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)2dξdsπ(dA)

+ µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2 

× ΣΛ

∫
A0(0)\V ψ(h)

(0,0)

l(−ξ,−s)2dξds

 1
2

.

(4.4)

(ii) If l ∈ L1(R×Rm)∩L2(R×Rm),
∫
|x|>1 |x|2ν(dx) <∞, then Y is θ-lex-weakly dependent

with θ-lex-coefficients θY (h) satisfying

θY (h) ≤2
(ΣΛE[σ0(0)2]

∫
A0(0)∩V ψ(h)

(0,0)

l(−ξ,−s)2dξds

+ µΛE[σ0(0)2]
( ∫

A0(0)∩V ψ(h)
(0,0)

l(−ξ,−s)dξds
)2
 1

2

(4.5)

+ 2
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)2dξdsπ(dA)
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+ µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2

×

ΣΛ

∫
A0(0)\V ψ(h)

(0,0)

l(−ξ,−s)2dξds

+ µΛ

( ∫
A0(0)\V ψ(h)

(0,0)

l(−ξ,−s)dξds
)2
 1

2

.

(iii) If l ∈ L1(R × R
m),

∫
R
|x|ν(dx) < ∞ and Σ = 0, then Y is θ-lex-weakly dependent

with θ-lex-coefficients θY (h) satisfying

θY (h) ≤2Σσ

(
|γ0|+

∫
R

|x|ν(dx)
)( ∫

A0(0)∩V ψ(h)
(0,0)

|l(−ξ,−s)|dξds
)

+ 2
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)2dξdsπ(dA)

+ µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2

×
(
|γ0|+

∫
R

|x|ν(dx)
)( ∫

A0(0)\V ψ(h)
(0,0)

|l(−ξ,−s)|dξds
)
,

(4.6)

for all h > 0, with ψ(h) = −bh
2
√
m+1 and b as defined in (3.15), µΛ = γ +

∫
|x|≥1 xν(dx),

ΣΛ = Σ +
∫
R
x2ν(dx), µΛσ = γσ +

∫
|x|≥1 xνσ(dx) and ΣΛσ = Σσ +

∫
R
x2νσ(dx).

Proof. See Section 5.6.

We now analyze the case in which σ is a p-dependent random field for p ∈ N.

Proposition 4.5. Let Y = (Yt(x))(t,x)∈R×Rm be an ambit field as defined in (4.1) with
a predictable p-dependent stationary random field σt(x) for p ∈ N. Assume that A0(0)
satisfies (3.13). Additionally assume that l ∈ L2(Rm × R),

∫
|x|>1 |x|2ν(dx) < ∞ and γ +∫

|x|>1 xν(dx) = 0. Then, for sufficiently big h, Y is θ-lex-weakly dependent with θ-lex-
coefficients θY (h) satisfying

θY (h) ≤ 2
(

ΣΛE[σ0(0)2]
∫
A0(0)∩V ψ(h)

(0,0)

l(−ξ,−s)2dξds
) 1

2
, (4.7)

with ψ(h) = −bh
2
√
m+1 and b as defined in (3.15), ΣΛ = Σ +

∫
R
x2ν(dx).

Proof. See Section 5.6.
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4.2.1 Volatility fields

If σ is a (Aσ,Λσ)-influenced MMAF as defined in (4.2), j is a non-negative kernel function
and the following assumptions hold

(H) :
{

The Lévy basis Λσ has generating quadruple (γσ, 0, νσ, πσ) such that∫
R
|x|νσ(dx) <∞, γσ −

∫
|x|≤1 xνσ(dx) ≥ 0 and νσ(R−) = 0,

then σ has values in R
+ and we call it volatility or intermittency field. Note that

Assumption (H) imply that Λσ satisfies the finite variation case. This model is used in
several applications of the ambit fields, see [6].

By assuming additionally that j ∈ L1(S × R × Rm, π ⊗ λ) ∩ L2(S × Rm × R, π ⊗ λ)
and

∫
|x|>1 |x|2νσ(dx) < ∞, the results in Proposition 4.4 (i) and (ii) hold. On the other

hand, the results in Proposition 4.4(iii) can be improved.
Corollary 4.6. Let Y = (Yt(x))(t,x)∈R×Rm be an ambit field as defined in (4.1) with
predictable volatility field σt(x) being an (Aσ,Λσ)-influenced MMAF such that A0(0) and
Aσ0 (0) satisfy (3.13), j ∈ L1(S × R × R

m, π ⊗ λ), l ∈ L1(R × R
m) and Assumption (H)

holds. Let γ0 with respect to Λ and γ0,σ with respect to Λσ be defined as in (3.5). Then, Y
is θ-lex-weakly dependent with θ-lex-coefficients θY (h) satisfying

θY (h) ≤2
(
|γ0,σ|+

∫
R

|x|νσ(dx)
)(
|γ0|+

∫
R

|x|ν(dx)
)

×
( ∫

S

∫
A0(0)
|j(A,−ξ,−s)|dξdsπ(dA)

)( ∫
A0(0)∩V ψ(h)

(0,0)

|l(−ξ,−s)|dξds
)

+ 2
(
|γ0,σ|+

∫
R

|x|νσ(dx)
)(
|γ0|+

∫
R

|x|ν(dx)
)

×
( ∫

A0(0)\V ψ(h)
(0,0)

|l(−ξ,−s)|dξds
)( ∫

S

∫
A0(0)∩V ψ(h)

(0,0)

|j(A,−ξ,−s)|dξdsπ(dA)
)
,

(4.8)

for all h > 0, with ψ(h) = −bh
2
√
m+1 and b as defined in (3.15).

Proof. Analogous to Proposition 4.4.

4.3 Sample moments of ambit fields
In this section we study the asymptotic distribution of sample moments of Y . As in Section
3.2 we assume that we observe Y on a sequence of finite sampling sets Dn ⊂ Z×Zm, such
that (3.24) holds.
Theorem 4.7. Let Y = (Yt(x))(t,x)∈Z×Zm be an ambit field as defined in (4.1) such that
E[Yt(x)] = 0, E[|Yt(x)|2+δ] < ∞ for some δ > 0. Additionally assume that Y is θ-lex-
weakly dependent with θ-lex-coefficients satisfying θY (h) = O(h−α), where α > m(1 + 1

δ
).

Then

σ2 =
∑

(ut,ux)∈Z×Zm
E[Y0(0)Yut(ux)|I],
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with I from Theorem 2.5, is finite, non-negative and

1
|Dn|

1
2

∑
(ut,ux)∈Dn

Yut(ux)
d−−−→

n→∞
εσ, (4.9)

where ε is a standard normally distributed random variable which is independent of σ2.

Proof. The result follows from Theorem 2.5.

Corollary 4.8. Let Y = (Yt(x))(t,x)∈Z×Zm be an ambit field as defined in (4.1) such
that E[|Yt(x)|2p+δ] < ∞ for p ≥ 1 and some δ > 0. Additionally, let us assume that Y
is θ-lex-weakly dependent with θ-lex-coefficients satisfying θY (h) = O(h−α), where α >

m
(
1 + 1

δ

)
(2p−1+δ

p+δ ). Then

Σ =
∑

(ut,ux)∈Z×Zm
Cov(Y0(0)p, Yut(ux)p|I),

with I from Theorem 2.5, is finite, non-negative and

1
|Dn|

1
2

∑
(ut,ux)∈Dn

Yut(ux)p − E[Y0(0)p] d−−−→
n→∞

εσ, (4.10)

where ε is a standard normally distributed random variable which is independent of σ2.

Proof. Analogous to Corollary 3.17.

Remark 4.9. Theorem 4.7 and Corollary 4.8 are important first steps to develop statis-
tical inference for the class of ambit fields. However, we note that the limits in (4.9) and
(4.10) are of mixed Gaussian type. Conditions which ensure the ergodicity of an ambit
field with a deterministic kernel can be found in Theorem 3.6 [49] whereas for the case of
a non-deterministic kernel this remains an open problem.

5 Proofs

5.1 Proofs of Section 2.2
We establish Theorem 2.5 by extending results from [29] to higher dimensions. This en-
ables us to connect the conditions on the asymptotic result stated in [27] with our defini-
tion of the θ-lex-coefficients.
Define the space of bounded, Lipschitz continuous functions L1 = {g : R → R, bounded
and Lipschitz continuous with Lip(g) ≤ 1}.
For a σ-algebra M and an Rn-valued integrable random field X = (Xt)t∈Zm we define the
following two mixingale-type measures of dependence

(i) γ(M , X) = ||E[X|M ]− E[X]||1 and
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(ii) θ(M , X) = supg∈L1 ||E[g(X)|M ]− E[g(X)]||1.

Using the above measures of dependence we define the following dependence coefficients

γh = sup
j∈Zm

γ
(
FV hj , Xj

)
and

θh = sup
j∈Zm

θ
(
FV hj , Xj

)
,

(5.1)

for h ∈ N
∗. Obviously, it holds γ(M , X) ≤ 2‖X‖1 and γ(M , X) ≤ θ(M , X) such that

γh ≤ θh for all h ∈ N∗. If X is stationary we can write γh and θh from (5.1) as

γh = γ
(
FV h0 , X0

)
and

θh = θ
(
FV h0 , X0

)
,

(5.2)

h ∈ N∗. First, we extend Proposition 2.3 from [30] and connect the θ-lex-coefficients θ(h)
from Definition 2.2 with the mixingale-type coefficient θh defined above.

Lemma 5.1. Let X = (Xt)t∈Zm be a real-valued random field. Then it holds that

θ(h) = θh, h ∈ N∗.

Proof. Fix u, h ∈ N∗. We first show θu(h) ≤ θh. Let F ∈ F∗, G ∈ F , j ∈ Rm, k ≤ u and
Γ = {i1, . . . , ik} with i1, . . . , ik ∈ V h

j . Now∣∣∣∣∣Cov
(
F (XΓ)
||F ||∞

,
G(Xj)
Lip(G)

)∣∣∣∣∣ =
∣∣∣∣∣E
[
F (XΓ)
||F ||∞

G(Xj)
Lip(G) − E

[
F (XΓ)
||F ||∞

]
E

[
G(Xj)
Lip(G)

]]∣∣∣∣∣
=
∣∣∣∣∣E
[
E

[
F (XΓ)
||F ||∞

G(Xj)
Lip(G)

∣∣∣∣∣FV hj
]
− F (XΓ)
||f ||∞

E

[
G(Xj)
Lip(G)

]]∣∣∣∣∣
≤ E

[∣∣∣∣∣F (XΓ)
||F ||∞

∣∣∣∣∣
∣∣∣∣∣E
[
G(Xj)
Lip(G)

∣∣∣∣∣FV hj
]
− E

[
G(Xj)
Lip(G)

]∣∣∣∣∣
]
≤
∣∣∣∣∣
∣∣∣∣∣E
[
G(Xj)
Lip(G)

∣∣∣∣∣FV hj
]
− E

[
G(Xj)
Lip(G)

]∣∣∣∣∣
∣∣∣∣∣
1

= θ(FV hj , Xj) ≤ θh.

Taking the supremum on the left hand side we obtain θu(h) ≤ θh and finally θ(h) ≤ θh.
To prove the converse inequality, we first remark that by the martingale convergence
theorem

θ(FV hj , Xj) = lim
k→∞

θ(FV hj \V kj , Xj), (5.3)

Now, let G ∈ L1, i.e. G ∈ F with Lip(G) ≤ 1 and j ∈ Rm. We first define Xh
j (k) = {Xi :

i ∈ V h
j \V k

j } and F (Xh
j (k)) = sign(E[G(Xj)|FV hj \V kj ]−E[g(Xj)]) for k > h. Then F ∈ F∗

with ‖F‖∞ = 1 and it holds

E
[∣∣∣E[g(Xj)|FV hj \V kj ]− E[g(Xj)]

∣∣∣] = E
[(
E[g(Xj)|FV hj \V kj ]− E[g(Xj)]

)
F
(
Xh
j (k)

)]
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= E
[
E
[
F
(
Xh
j (k)

)
g(Xj)|FV hj \V kj

]
− E

[
F
(
Xh
j (k)

)]
E [g(Xj)]

]
= Cov

(
F
(
Xh
j (k)

)
, g(Xj)

)
≤ θ(h).

Using (5.3) we can deduce the stated equality.

We define QX as the generalized inverse of the tail function x 7→ P (|X| > x) and GX

as the inverse of x 7→
∫ x

0 QX(u)du.

Lemma 5.2. Let X = (Xt)t∈Zm be a stationary centered real-valued random field such
that ‖X0‖2 <∞ and assume that∫ ||X0||1

0
θ̃(u)QX0 ◦GX0(u)du <∞, (5.4)

with QX and GX as defined above and θ̃(u) = ∑
k∈V0 1{u<θ|k|}. Then∑

k∈V0

|E[XkE|k|[X0]]| <∞, (5.5)

where E|k|[X0] = E[X0|FV |k|0
].

Proof. First, let us observe that Xk is F
V
|k|

0
measurable, since k ∈ V

|k|
0 . Then define

εk = sign(E|k|[X0]) such that∑
k∈V0

|E[XkE|k|[X0]]| ≤
∑
k∈V0

E[|Xk||E|k|[X0]|] =
∑
k∈V0

E[|Xk|εkE|k|[X0]] =
∑
k∈V0

E[E|k|[|Xk|εkX0]]

=
∑
k∈V0

Cov(|Xk|εk, X0).

We use Equation (4.2) of [29, Proposition 1] to get

≤ 2
∑
k∈V0

∫ γ

(
F
V
|k|
0

,X0

)
/2

0
Qεk|Xk| ◦GX0(u)du = 2

∫ ‖X0‖1

0

∑
k∈V0

1{
u<γ

(
F
V
|k|
0

,X0

)
/2
}QXk ◦GX0(u)du

≤ 2
∫ ‖X0‖1

0

∑
k∈V0

1{
u<θ

(
F
V
|k|
0

,X0

)
/2
}QXk ◦GX0(u)du ≤ 2

∫ ‖X0‖1

0

∑
k∈V0

1{u<θ|k|/2}QXk ◦GX0(u)du.

Now let θ̃(u) = ∑
k∈V0 1{u<θ|k|} and note that QXk = QX0 , such that

≤ 2
∫ ||X0||1

0
θ̃(u)QX0 ◦GX0(u)du.

This shows that (5.5) holds if (5.4) is satisfied.
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We now derive sufficient criteria such that (5.4) holds similar to [29, Lemma 2].

Lemma 5.3. Let X = (Xt)t∈Zm be a stationary real-valued random field and θh defined as
above. Then (5.4) holds if ‖X‖r <∞ for some r > p > 1 and ∑∞h=0(h+1)m(p−1) (r−1)

(r−p)−1θh <
∞. In particular for p = 2 and r = 2 + δ with δ > 0 the above condition holds if
θh ∈ O(h−α) for α > m(1 + 1

δ
).

Proof. As stated in [29, Proof of Lemma 2] we note that
∫ ‖X‖1

0 Qr−1
X ◦GX(u)du =

∫ 1
0 Q

r
X(u)du =

E[|X|r]. Applying Hölder’s inequality with q = r−1
r−p and q′ = r−1

p−1 gives
(∫ ‖X‖1

0
θ̃(u)p−1Qp−1

X ◦GX(u)du
)(r−1)

≤
(∫ ‖X‖1

0
θ̃(u)(p−1) (r−1)

(r−p)du

)(r−p) (∫ ‖X‖1

0
Qr−1
X ◦GX(u)du

)(p−1)

=
(∫ ‖X‖1

0
θ̃(u)(p−1) (r−1)

(r−p)du

)(r−p)

‖X‖(rp−r)
r .

Let us note that θh as defined in (5.2) is non-increasing. Then, for any function f we have

f(θ̃(u)) = f

∑
k∈V0

1{u<θ|k|}

 =
∞∑
h=0

f

∑
k∈V0

1{u<θ|k|}

 1{θh+1≤u<θh}

=
∞∑
h=0

f

 ∑
k∈V0:|k|≤h

1
 1{θh+1≤u<θh}

Note that ∑k∈V0:|k|≤h 1 = ∑m−1
i=0 h(2h+ 1)i = 1

2 ((2h+ 1)m − 1) such that

=
∞∑
h=0

f
(1

2

(
(2h+ 1)m − 1

))
1{θh+1≤u<θh}.

Let us assume that f is monotonically increasing, sub-multiplicative and f(0) = 0 such
that f

(
1
2

(
(2h+ 1)m − 1

))
≤ f(2m−1)f((h+1)m) = ∑h

k=0 f(2m−1) (f ((k + 1)m)− f (km)).
Finally we can deduce

≤
∞∑
h=0

f(2m−1)f ((h+ 1)m) 1{θh+1≤u<θh} = f(2m−1)
∞∑
h=0

(f ((h+ 1)m)− f (hm)) 1{u<θh}.

Applying the above result for f(x) = xv with v = (p−1) (r−1)
(r−p) and noting that (h+1)vm−

hvm ≤ vm(h+ 1)vm−1 for vm ≥ 1 and (h+ 1)vm − hvm ≤ vm hvm−1 for vm < 1, h > 0 by
the mean value theorem, we get that for a constant C = 2v(m−1)θ1 > 0∫ ‖X‖1

0
(θ̃(u))(p−1) (r−1)

(r−p)du

(r−p)
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≤


(
C +

∫ ‖X‖1
0 2v(m−1)vm

∑∞
h=0(h+ 1)vm−1

1{u<θh}du
)(r−p)

, if vm ≥ 1(
C +

∫ ‖X‖1
0 2v(m−1)vm

∑∞
h=1 h

vm−1
1{u<θh}du

)(r−p)
, if vm < 1

=


(
C + 2v(m−1)vm

∑∞
h=0(h+ 1)vm−1θh

)(r−p)
, if vm ≥ 1(

C + 2v(m−1)vm
∑∞
h=1 h

vm−1θh
)(r−p)

, if vm < 1

≤ max
(
1, 2r−p−1

)Cr−p +
(

(vm)2v(m−1)
( ∞∑

h=0
(h+ 1)vm−1θh

))(r−p)
 ,

which concludes the proof.

Proof of Theorem 2.5. In order to use [27, Theorem 1] we need to show that∑
k∈V0

|E[XkE|k|[Xk]]| <∞.

By Lemma 5.2 and Lemma 5.3 the result is proven if θh ∈ O(h−α) with α > m(1 + 1
δ
).

Finally, since X is stationary an application of Lemma 5.1 concludes.

5.2 Proofs of Section 3.3
Proof of Proposition 3.11.

(i) Let t ∈ R
m, ψ > 0. We restrict the MMAF X to a finite support and define the

truncated sequence

X
(ψ)
t =

∫
S

∫
At\V ψt

f(A, t− s)Λ(dA, ds). (5.6)

Note that the kernel function f is square integrable such that (3.6), (3.7) and (3.8)
hold. Therefore, f is Λ-integrable. Since E[XtX

′
t] <∞ for all t ∈ Rm by Proposition

3.6 we can derive an upper bound of the expectation

E
[
‖Xt −X(ψ)

t ‖
]

= E

[∥∥∥∥ ∫
S

∫
At∩V ψt

f(A, t− s)Λ(dA, ds)
∥∥∥∥
]

≤ E

[∥∥∥∥ ∫
S

∫
At∩V ψt

f(A, t− s)Λ(dA, ds)
∥∥∥∥2
] 1

2

=
 n∑
κ=1

E

(( ∫
S

∫
At∩V ψt

f(A, t− s)Λ(dA, ds)
)(κ)

)2
 1

2

.

Using Proposition 3.7 and the translation invariance of At and V ψ
t this is equal to

( ∫
S

∫
A0∩V ψ0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
.
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Now let G ∈ F and F ∈ F∗, i.e. F,G are bounded with ‖F‖∞, ‖G‖∞ ≤ 1 and G
is additionally Lipschitz-continuous, u ∈ N∗, h ∈ R+,Γ = {i1, . . . , iu} ∈ (Rm)u and
j ∈ Rm as in Definition 2.2 such that i1, . . . , iu ∈ V h

j . For a ∈ {1, . . . , u} define

Xia =
∫
S

∫
Aia

f(A, ia − s)Λ(dA, ds) and

X
(ψ)
j =

∫
S

∫
Aj\V ψj

f(A, j − s)Λ(dA, ds).

W.l.o.g. we assume that ia ≤lex iu for all a ∈ {1, . . . , u}. If there exists a ψ such that
Aiu ∩ Aj\V

ψ
j = ∅, then Aia ∩ Aj\V

ψ
j = ∅.

Now, A is translation invariant with initial sphere of influence A0. Furthermore, A0
satisfies (3.13). Then, for ψ(h) as defined in (3.16) it holds Aiu ∩ Aj\V

ψ
j = ∅.

From now on we set ψ = ψ(h). We then get that Ia = S×Aia and J = S×Aj\V ψ
j are

disjoint or have intersection on a set S ×O, where O ⊂ R
m and dim(O) < m. Since

(π×λ)(S×O) = 0, by the definition of a Lévy basisXia andX
(ψ)
j are independent for

all a ∈ {1, . . . , u}. Finally, we get that XΓ and X(ψ)
j are independent and therefore

also F (XΓ) and G(X(ψ)
j ). Now

|Cov(F (XΓ), G(Xj))|
≤ |Cov(F (XΓ), G(X(ψ)

j ))|+ |Cov(F (XΓ), G(Xj)−G(X(ψ)
j ))|

= |E[(G(Xj)−G(X(ψ)
j ))F (XΓ)]− E[G(Xj)−G(X(ψ)

j )]E[F (XΓ)]|
≤ 2‖F‖∞E

[
|G(Xj)−G(X(ψ)

j )|
]
≤ 2Lip(G)‖F‖∞E[‖Xj −X(ψ)

j ‖],

and using the above inequality for E[‖Xt − X
(ψ)
t ‖] with ψ as described above we

conclude

≤ 2Lip(G)‖F‖∞
( ∫

S

∫
A0∩V ψ0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
.

Therefore X is θ-lex weakly dependent with θ-lex-coefficients

θX(h) ≤ 2
( ∫

S

∫
A0∩V ψ0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
,

which converge to zero as h goes to infinity by applying the dominated convergence
theorem.

(ii) Let t ∈ Rm, ψ > 0. As in Proposition 3.11 we define X(ψ)
t . For the upper bound of

the expectation we can derive with the help of Proposition 3.7

E
[
‖Xt −X(ψ)

t ‖
]
≤
(∫

S

∫
A0∩V ψt

tr(f(A, t− s)ΣΛf(A, t− s)′)dsπ(dA)

+
∥∥∥∥ ∫

S

∫
A0∩V ψt

f(A, t− s)µΛdsπ(dA)
∥∥∥∥2
) 1

2

.
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Finally, we can proceed as in the proof of Proposition 3.11 and we obtain a bound
for the θ-lex-coefficients.

(iii) Since the kernel function f is in L1 the Equations (3.9) and (3.10) hold and f is
Λ-integrable and E[Xt] <∞ by Proposition 3.6. In the following we use the notation
of Proposition 3.11. Let t ∈ R

m and ψ > 0. Then, we can derive with the help of
Proposition 3.7

E
[
‖Xt −X(ψ)

t ‖
]

≤
( ∫

S

∫
A0∩V ψ0

∥∥∥f(A,−s)γ0

∥∥∥dsπ(dA) +
∫
S

∫
A0∩V ψ0

∫
Rd

∥∥∥f(A,−s)y
∥∥∥ν(dy)dsπ(dA)

)
,

where we used that E[
∫
E f(t)dµ(t)] =

∫
E f(t)dν(t) for a Poisson random measure µ

with corresponding intensity measure ν and arbitrary set E.
Now for F , G, XΓ, Xj and ψ = ψ(h) and as described in the proof of Proposition
3.11 we get

|Cov(F (XΓ), G(Xj))| ≤ 2Lip(G)‖F‖∞
( ∫

S

∫
A0∩V ψ(h)

0

∥∥∥f(A,−s)γ0

∥∥∥dsπ(dA)

+
∫
S

∫
A0∩V ψ(h)

0

∫
Rd

∥∥∥f(A,−s)y
∥∥∥ν(dy)dsπ(dA)

)

Therefore X is θ-lex weakly dependent with θ-lex-coefficients

θX(h) ≤ 2
( ∫

S

∫
A0∩V ψ(h)

0

∥∥∥f(A,−s)γ0

∥∥∥dsπ(dA)

+
∫
S

∫
A0∩V ψ(h)

0

∫
Rd

∥∥∥f(A,−s)y
∥∥∥ν(dy)dsπ(dA)

)
,

which converge to zero as h goes to infinity by applying the dominated convergence
theorem.

(iv) We use the notation of Proposition 3.11 and realize Λ in distribution as the sum
of two Rd-valued independent Lévy bases Λ1 and Λ2 with characteristic quadruplets
(γ,Σ, ν

∣∣∣
‖x‖≤1

, π) and (0, 0, ν
∣∣∣
‖x‖>1

, π). Since f ∈ L1∩L2 we know that both integrals

X
(Λ1)
t =

∫
S

∫
Rm
f(A, t − s)Λ1(dA, ds) and X(Λ2)

t =
∫
S

∫
Rm
f(A, t − s)Λ2(dA, ds) exist

and additionally it holds
∫
S

∫
Rm
f(A, t − s)Λ(dA, ds) = X

(Λ1)
t + X

(Λ2)
t . Let us note

that

E
[
‖Xt −X(ψ)

t ‖
]
≤ E

[
‖X(Λ1)

t − (X(Λ1)
t )(ψ)‖

]
+ E

[
‖X(Λ2)

t − (X(Λ2)
t )(ψ)‖

]
≤ E

[∥∥∥∥X(Λ1)
t − (X(Λ1)

t )(ψ)
∥∥∥∥2
] 1

2

+ E

[∥∥∥∥X(Λ2)
t − (X(Λ2)

t )(ψ)
∥∥∥∥
]
.

Following the proof of (ii) (for the first summand) and (iii) (for the second summand)
we obtain the stated bound for the θ-lex-coefficients.
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Proof of Proposition 3.12. In order to show that the MMAF Z is well defined we
need to show that g(A, s) is Λ-integrable as described in Theorem 3.3, i.e. g(A, s) satisfies
the conditions (3.6), (3.7) and (3.8). Let us consider an induction over k. For the sake
of brevity we will consider the norm ‖(x1, . . . , xm)‖ = ‖x1‖ + · · · + ‖xm‖ for xi ∈ R for
i = 1, . . . ,m. Then, for k = 1 we consider

g(A, s) =
(
f
(
A, s

)
, f
(
A, s− s1, . . . , f

(
A, s− s|Sk|

)′
, where |Sk| = 2 · 3m−1.

Note that for x ∈ Rd

1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s)x‖),
1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s− s1)x‖),

. . .

1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s− s|Sk|)x‖),

such that ∫
S

∫
Rm

∥∥∥g(A, s)γ+
∫
Rd

g(A, s)x
(
1[0,1](‖g(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA)

≤
∫

S

∫
Rm

∥∥∥f(A, s)γ+
∫
Rd

f(A, s)x
(
1[0,1](‖f(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA)

+
∫

S

∫
Rm

∥∥∥f(A, s− s1)γ +
∫
Rd

f(A, s− s1)x
(
1[0,1](‖f(A, s− s1)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA)

+ · · ·+
∫

S

∫
Rm

∥∥∥f(A, s− s|Sk|)γ+
∫
Rd

f(A, s− s|Sk|)x
(
1[0,1](‖f(A, s− s|Sk|)‖− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA).

Since f is Λ-integrable we can conclude that the above expression is finite and (3.6)
holds. Now ∫

S

∫
Rm
‖g(A, s)Σg(A, s)′‖dsπ(dA)

=
∫
S

∫
Rm
‖f(A, s)Σf(A, s)′‖dsπ(dA)+

∫
S

∫
Rm
‖f(A, s− s1)Σf(A, s− s1)′‖dsπ(dA)

+ . . .+
∫
S

∫
Rm
‖f(A, s− s|Sk|)Σf(A, s− s|Sk|)′‖dsπ(dA),

is finite since f is Λ-integrable and (3.7) holds. Since (∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i we have

‖g(A, s)‖2 ≤ |Sk|
(
‖f(A, s)‖2 + ‖f(A, s− s1)‖2 + . . .+ ‖f(A, s− s|Sk|)‖2

)
,

and finally ∫
S

∫
Rm

∫
Rd

(
1 ∧ ‖g(A, s)x‖2

)
ν(dx)dsπ(dA)

≤ |Sk|
(∫

S

∫
Rm

∫
Rd

(
1 ∧ ‖f(A, s)‖2

)
ν(dx)dsπ(dA) +

∫
S

∫
Rm

∫
Rd

(
1 ∧ ‖f(A, s− s1)‖2

)
ν(dx)dsπ(dA)

+ . . .+
∫
S

∫
Rm

∫
Rd

(
1 ∧ ‖f(A, s− s|Sk|)‖2

)
ν(dx)dsπ(dA)

)
,
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which is finite since f satisfies (3.8). Thus, g is Λ-integrable and Z is an (A,Λ)-influenced
MMAF.
Assume X satisfies the assumptions of Proposition (i) 3.11 and consider ψ(h) as defined
in (3.16). Then

θ
(i)
Z (h) ≤2

∫
S

∫
A0∩V ψ(h)

0

tr
(
g(A,−s)ΣΛg(A,−s)′

)
dsπ(dA)

 1
2

=2
∫

S

∫
A0∩V ψ(h)

0

tr
(
f(A,−s)ΣΛf(A,−s)′

)
dsπ(dA)

+
∫
S

∫
A0∩V ψ(h)

0

tr
(
f(A, s1 − s)ΣΛf(A, s1 − s)′

)
dsπ(dA)

+ . . .+
∫
S

∫
A0∩V ψ(h)

0

tr
(
f(A, s|Sk| − s)ΣΛf(A, s|Sk| − s

)′
)dsπ(dA)

 1
2

≤2|Sk|
m
2

∫
S

∫
A0∩V ψ(h)−k

0

tr
(
f
(
A,−s

)
ΣΛf

(
A,−s

)′)
dsπ(dA)

 1
2

=|Sk|
m
2 θ̂

(i)
X (h− ψ−1(k)).

where ψ−1 denotes the inverse of ψ, for all ψ(h) > k. Thus, Z is a (k + 1)(2k + 1)m−1-
dimensional θ-lex-weakly dependent MMAF. Similar calculations lead to the other state-
ments in (3.22).

5.3 Proof of Section 3.4
Proof of Theorem 3.14. Let us first consider X to be univariate. In order to use [27,
Theorem 1] we need to show ∑

k∈V0

|XkE|k|[X0]| ∈ L1. (5.7)

The Hölder inequality implies

‖XkE|k|(X0)‖1 ≤ ‖Xk‖2‖E[X0|FV |k|0
]‖2,

where ‖Xk‖2 < C for all k and a constant C. Furthermore, we note that ‖E[X|F ]‖2 =
‖E[E[X|G]|F ]‖2 ≤ ‖E[X|G]‖2 holds for a σ-algebra G, a sub σ-algebra F and an L2

random variable X, as the conditional expectation is the orthogonal projection in L2.
Now, using (3.12)

‖E[X0|FV |k|0
]‖2 =

∥∥∥∥E [∫
S

∫
V0
1A0(s)f(A,−s)Λ(dA, ds)

∣∣∣∣σ(Xl : l ∈ V |k|0 )
]∥∥∥∥

2

≤
∥∥∥∥E [∫

S

∫
V0
1A0(s)f(A,−s)Λ(dA, ds)

∣∣∣∣σ(Λ(B) : B ∈ B(V |k|0 ))
]∥∥∥∥

2
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=

∥∥∥∥∥∥E
 ∫

S

∫
V0∩V |k|0

1A0(s)f(A,−s)Λ(dA, ds)

+
∫
S

∫
V0\V |k|0

1A0(s)f(A,−s)Λ(dA, ds)
∣∣∣∣σ(Λ(B) : B ∈ B(V |k|0 ))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥E
[∫

S

∫
V
|k|

0

1A0(s)f(A,−s)Λ(dA, ds)
∣∣∣∣σ(Λ(B) : B ∈ B(V |k|0 ))

]

+ E

[∫
S

∫
V0\V |k|0

1A0(s)f(A,−s)Λ(dA, ds)
∣∣∣∣σ(Λ(B) : B ∈ B(V |k|0 ))

] ∥∥∥∥∥∥
2

.

We note that
∫
S

∫
V
|k|

0
1A0(s)f(A,−s)Λ(dA, ds) is measurable with respect to σ(Λ(B) : B ∈

B(V |k|0 )). Since Λ is a Lévy basis (in particular independent for disjoint sets) we get that∫
S

∫
V0\V |k|0

1A0(s)f(A,−s) Λ(dA, ds) is independent of σ(Λ(B) : B ∈ B(V |k|0 )), such that
the above equation is equal to

=

∥∥∥∥∥∥
∫
S

∫
V
|k|

0

1A0(s)f(A,−s)Λ(dA, ds) + E

[∫
S

∫
V0\V |k|0

1A0(s)f(A,−s)Λ(dA, ds)
] ∥∥∥∥∥∥

2

.

Since γ +
∫
‖x‖>1 xν(dx) = 0 the second summand is equal to zero and we arrive at

=

∥∥∥∥∥∥
∫
S

∫
V
|k|

0

1A0(s)f(A,−s)f(A,−s)Λ(dA, ds)

∥∥∥∥∥∥
2

=
( ∫

S

∫
A0∩V |k|0

tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
= θX(|k|),

using Proposition 3.7.
The stated result then follows from [27, Theorem 1] using the dominated convergence
theorem. The Cramér-Wold device establishes the multivariate case straightforwardly.

5.4 Proofs of Section 3.5
Proof of Proposition 3.19.

(i) Let t ∈ Rm and ψ > 0. We truncate the MMAF to a finite support, i.e.

X
(ψ)
t =

∫
S

∫
Rm
f(A, t− s)1(−ψ,ψ)m(t− s)Λ(dA, ds)=

∫
S

∫
(t−ψ,t+ψ)m

f(A, t− s)Λ(dA, ds).

(5.8)

Note that the kernel function f is square integrable such that (3.6), (3.7) and (3.8)
hold. Therefore, f is Λ-integrable. Since E[XtX

′
t] <∞ for all t ∈ Rm by Proposition

3.6 we can derive an upper bound of the expectation

E
[
‖Xt −X(ψ)

t ‖
]
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= E

[∥∥∥∥ ∫
S

∫(
(t−ψ,t+ψ)m

)c f(A, t− s)Λ(dA, ds)
∥∥∥∥
]
≤ E

[∥∥∥∥ ∫
S

∫(
(t−ψ,t+ψ)m

)c f(A, t− s)Λ(dA, ds)
∥∥∥∥2
] 1

2

=
 n∑
κ=1

E

(( ∫
S

∫(
(t−ψ,t+ψ)m

)c f(A, t− s)Λ(dA, ds)
)(κ)

)2
 1

2

,

where x(κ) denotes the κth coordinate of x ∈ R
n. Using Proposition 3.7 and the

stationarity of X this is equal to( ∫
S

∫(
(ψ,ψ)m

)c tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
.

Now let F,G ∈ F , i.e. bounded and additionally Lipschitz-continuous, (u, v) ∈
N
∗ × N

∗, h ∈ R
+,Γi = {i1, . . . , iu} ∈ (Rm)u and Γj = {j1, . . . , jv} ∈ (Rm)v as in

Definition 2.1 such that dist(Γi,Γj) ≥ h. For a ∈ {1, . . . , u} and b ∈ {1, . . . , v}
define

X
(ψ)
ia =

∫
S

∫
(ia−ψ,ia+ψ)m

f(A, ia − s)Λ(dA, ds) and

X
(ψ)
jb

=
∫
S

∫
(jb−ψ,jb+ψ)m

f(A, jb − s)Λ(dA, ds).

Now consider a ∈ {1, . . . , u} and b ∈ {1, . . . , v} such that inf1≤x≤u,1≤y≤v‖ix−jy‖∞ =
‖ia−jb‖∞. Define the two sets Ia = S×(ia−ψ, ia+ψ)m and Jb = S×(jb−ψ, jb+ψ)m.
Furthermore, consider ψ = h

2 and since ‖ia − jb‖∞ ≥ h it holds that Ia and Jb are
disjoint as well as Iã and Jb̃ for all ã = 1, . . . , u and b̃ = 1, . . . , v. By the definition of
a Lévy basis X(ψ)

ia and X(ψ)
jb

are independent for all a ∈ {1, . . . , u} and b ∈ {1, . . . , v}.
Finally, we get that X(ψ)

Γi and X(ψ)
Γj are independent and therefore also F (X(ψ)

Γi ) and
G(X(ψ)

Γj ).
Now

|Cov(F (XΓi), G(XΓj))|
≤ |Cov(F (XΓi)− F (X(ψ)

Γi ), G(XΓj))|+ |Cov(F (X(ψ)
Γi ), G(XΓj)−G(X(ψ)

Γi ))|
= |E[(F (XΓi)− F (X(ψ)

Γi ))G(XΓj)]− E[F (XΓi)− F (X(ψ)
Γi )]E[G(XΓj)]|

+ |E[(G(XΓj)−G(X(ψ)
Γj ))F (X(ψ)

Γi )]− E[G(XΓj)−G(X(ψ)
Γj )]E[F (X(ψ)

Γi )]|

≤ 2
(
‖G‖∞E

[
|F (XΓi)− F (X(ψ)

Γi )|
]

+ ‖F‖∞E
[
|G(XΓj)−G(X(ψ)

Γi )|
])

≤ 2
(
‖G‖∞Lip(F )

u∑
l=1

E[‖Xil −X
(ψ)
il
‖] + ‖F‖∞Lip(G)

v∑
k=1

E[‖Xjk −X
(ψ)
jk
‖]
)
,

and using the above inequality for E[‖Xt−X(ψ)
t ‖] with ψ chosen as described above

we conclude

≤ 2(u‖G‖∞Lip(F ) + v‖F‖∞Lip(G))
( ∫

S

∫((
−h2 ,

h
2

)m)c tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
.
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Therefore X is η-weakly dependent with η-coefficients

ηX(h) ≤ 2
( ∫

S

∫((
−h2 ,

h
2

)m)c tr(f(A,−s)ΣΛf(A,−s)′)dsπ(dA)
) 1

2
,

which converge to zero as h goes to infinity by applying the dominated convergence
theorem.

(iii) Since the kernel function f is in L1 the Equations (3.9) and (3.10) hold and f is Λ-
integrable. Let t ∈ Rm, ψ > 0 and X(ψ)

t as in Proposition 3.19. Moreover, Proposition
3.6 implies that E[Xt] <∞. Then, using Proposition 3.7 we arrive at

E
[
‖Xt −X(ψ)

t ‖
]

≤
( ∫

S

∫(
(t−ψ,t+ψ)m

)c ∥∥∥f(A,−s)γ0

∥∥∥dsπ(dA) +
∫
S

∫(
(t−ψ,t+ψ)m

)c ∫
Rd

∥∥∥f(A,−s)x
∥∥∥ν(dx)dsπ(dA)

)
.

Now for F , G, XΓi and XΓj and ψ as described in the proof of Proposition 3.11 we
get

|Cov(F (XΓi), G(XΓj))| ≤ 2(u‖G‖∞Lip(F ) + v‖F‖∞Lip(G))∫
S

∫((
−h2 ,

h
2

)m)c ∥∥∥f(A,−s)γ0

∥∥∥dsπ(dA) +
∫
S

∫((
−h2 ,

h
2

)m)c ∫
Rd

∥∥∥f(A,−s)x
∥∥∥ν(dx)dsπ(dA)

.
Therefore, X is η weakly dependent with η-coefficients

ηX(h) ≤ 2
∫

S

∫((
−h2 ,

h
2

)m)c ∥∥∥f(A,−s)γ0

∥∥∥dsπ(dA)+
∫
S

∫((
−h2 ,

h
2

)m)c ∫
Rd

∥∥∥f(A,−s)x
∥∥∥ν(dx)dsπ(dA)

,
which converge to zero as h goes to infinity by applying the dominated convergence
theorem.

5.5 Proofs of Section 3.8
Proof of Theorem 3.36. Let ‖A‖F =

√
tr(AA′) for A ∈Mn×d(R) denote the Frobenius

norm and ‖x‖1 = ∑m
ν=1 |x(ν)| for x ∈ R

m. From Proposition 3.19 it follows that X is
η-weakly dependent with η-coefficients

ηX(h) =
∫

((−h2 ,h2 )m)c
tr(g(−s)ΣLg(−s)′)ds

 1
2

=
∫

((−h2 ,h2 )m)c
‖g(−s)Σ 1

2‖2
Fds

 1
2

≤

‖Σ 1
2‖2

F

∫
((−h2 ,h2 )m)c

‖g(−s)‖2
Fds

 1
2

≤

‖Σ 1
2‖2

FM
∫
((−h2 ,h2 )m)c

e−K‖s‖1ds

 1
2
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= ‖Σ 1
2‖FM

1
2

∫
Rm
e−K‖s‖1ds−

∫
(−h2 ,h2 )m

e−K‖s‖1ds

 1
2

= ‖Σ 1
2‖FM

1
2

( 1
2K

)m
−

 1
2K −

e−
K
2 h

2K

m 1
2

= ‖Σ
1
2‖FM

1
2

(2K)m2

1−
(
1− e−K2 h

)m 1
2

≤ m‖Σ 1
2‖FM

1
2

(2K)m2
e−

K
4 h,

where the last inequality follows from Bernoulli’s inequality.

5.6 Proofs of Section 4.2
Proof of Proposition 4.4.

(i) Let (t, x) ∈ R× Rm, ψ > 0. We define the two truncated sequences

Ỹ
(ψ)
t (x) =

∫
At(x)\V ψ(t,x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds) and

Y
(ψ)
t (x) =

∫
At(x)\V ψ(t,x)

l(x− ξ, t− s)σ(ψ)
s (ξ)Λ(dξ, ds),

(5.9)

where

σ
(ψ)
t (x) =

∫
S

∫
Aσ(t,x)(x)\V ψ(t,x)

j(x− ξ, t− s)Λσ(dA, dξ, ds).

Since the kernel function j is square integrable we have that (3.6), (3.7) and (3.8)
hold. Therefore, j is Λσ-integrable and σ is well-defined and stationary. Now, by
Proposition 3.6 it holds that σt(x) ∈ L2(Ω). Since additionally l ∈ L2(Rm × R) and
σ is stationary it holds that lσ ∈ L2(Ω × R

m × R). This implies lσ ∈ L2(Rm × R)
almost surely. Then, lσ satisfies (3.6), (3.7) and (3.8) almost surely and the ambit
field Y is well-defined. Analogous to Proposition 3.11 we derive an upper bound of
the expectation using Proposition 4.3

E
[
|Yt(x)− Y (ψ)

t (x)|
]
≤ E

[
|Yt(x)− Ỹ (ψ)

t (x)|
]

+ E
[
|Ỹ (ψ)
t (x)− Y (ψ)

t (x)|
]

=

= E

[∣∣∣∣ ∫
At(x)∩V ψ(t,x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds)
∣∣∣∣
]

+E
[∣∣∣∣ ∫

At(x)\V ψ(t,x)

l(x− ξ, t− s)(σs(ξ)− σ(ψ)
s (ξ))Λ(dξ, ds)

∣∣∣∣
]

≤ E

( ∫
At(x)∩V ψ(t,x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds)
)2
 1

2

+E
( ∫

At(x)\V ψ(t,x)

l(x− ξ, t− s)(σs(ξ)− σ(ψ)
s (ξ))Λ(dξ, ds))

)2
 1

2

.
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Using Proposition 4.3 and the translation invariance of At(x) and V ψ
(t,x) this is equal

to (
ΣΛE[σ0(0)2]

∫
A0(0)∩V ψ(0,0)

l(−ξ,−s)2dξds
) 1

2

+
E

(∫
S

∫
Aσ0 (0)∩V ψ(0,0)

j(A,−ξ,−s)Λσ(dA, dξ, ds)
)2
ΣΛ

∫
A0(0)\V ψ(0,0)

l(−ξ,−s)2dξds

 1
2

=
(

ΣΛE[σ0(0)2]
∫
A0(0)∩V ψ(0,0)

l(−ξ,−s)2dξds
) 1

2

+
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(0,0)

j(A,−ξ,−s)2dξdsπ(dA)

+µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2 × ΣΛ

∫
A0(0)\V ψ(0,0)

l(−ξ,−s)2dξds

 1
2

.

Now let G ∈ F and F ∈ F∗, i.e. F,G are bounded with ‖F‖∞, ‖G‖∞ ≤ 1 and
G additionally Lipschitz-continuous, u ∈ N∗, h ∈ R+,Γ = {(ti1 , xi1), . . . , (tiu , xiu)} ∈
(R×Rm)u and (tj, xj) ∈ R×Rm as in Definition 2.2 such that (ti1 , xi1), . . . , (tiu , xiu) ∈
V h

(tj ,xj). For a ∈ {1, . . . , u} define

Ytia (xia) =
∫
Atia (xia )

l(xia − ξ, tia − s)σs(ξ)Λ(dξ, ds) and

Y
(ψ)
tj (xj) =

∫
Atj (xj)\V ψ(h)

(tj ,xj)

l(xj − ξ, tj − s)σ(ψ)
s (ξ)Λ(dξ, ds).

W.l.o.g. we assume that (tia , xia) ≤lex (tiu , xiu) for all a ∈ {1, . . . , u}. Since A0(0) ∪
Aσ0 (0) satisfy (3.13) we find analogous to (3.16) a function ψ(h) = −hb

2
√
m+1 , such

that Aσs1(ξ1) and Aσs2(ξ2)\V ψ(h)
(s2,ξ2) are disjoint for all (s1, ξ1) ∈ A(tiu ,xiu ) and (s2, ξ2) ∈

A(tj ,xj)\V
ψ(h)

(tj ,xj) or have intersection with zero Lebesgue measure. Then, by the defini-
tion of a Lévy basis we get that σs1(ξ1) and σψ(h)

s2 (ξ2) are independent. Furthermore,
it holds that Atiu (xiu) and Atj(xj)\V

ψ(h)
(tj ,xj) are disjoint. We set ψ = ψ(h). Finally, we

get that Ytia (xia) and Y
(ψ(h))
tj (xj) are independent for all a ∈ {1, . . . , u} and therefore

also F (YΓ) and G(Y (ψ(h))
tj (xj)). Now

|Cov(F (YΓ), G(Ytj(xj)))|
≤ |Cov(F (XΓ), G(Y (ψ(h))

tj (xj)))|+ |Cov(F (YΓ), G(Ytj(xj))−G(Y (ψ(h))
tj (xj)))|

= |E[(G(Ytj(xj))−G(Y (ψ(h))
tj (xj)))F (XΓ)]− E[G(Ytj(xj))−G(Y (ψ(h))

tj (xj))]E[F (XΓ)]|
≤ 2‖F‖∞E

[
|(G(Ytj(xj))−G(Y (ψ(h))

tj (xj)))|
]
≤ 2Lip(G)‖F‖∞E[‖Ytj(xj)− Y

(ψ(h))
tj (xj)‖],
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and using the above inequality for E
[
|Yt(x)− Y (ψ(h))

t (x)|
]
we conclude

≤ 2Lip(G)‖F‖∞

(ΣΛE[σ0(0)2]
∫
A0(0)∩V ψ(h)

(0,0)

l(−ξ,−s)2dξds
) 1

2

+
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)2dξdsπ(dA)

+µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2ΣΛ

∫
A0(0)\V ψ(h)

(0,0)

l(−ξ,−s)2dξds

 1
2
.

Therefore Y is θ-lex weakly dependent with θ-lex-coefficients

θY (h) ≤ 2
(ΣΛE[σ0(0)2]

∫
A0(0)∩V ψ(h)

(0,0)

l(−ξ,−s)2dξds
) 1

2

+
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)2dξdsπ(dA)

+µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(h)

(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2× ΣΛ

∫
A0(0)\V ψ(h)

(0,0)

l(−ξ,−s)2dξds

 1
2
,

which converges to zero as h goes to infinity by applying the dominated convergence
theorem.

(ii) Let (t, x) ∈ R×Rm, ψ > 0. As in the proof of part (i) we define Y (ψ)
t (x) and Ỹ (ψ)

t (x).
For the upper bound of the expectation we can derive with the help of Proposition
4.3

E
[
|Yt(x)− Ỹ (ψ)

t (x)|
]

+ E
[
|Ỹ (ψ)
t (x)− Y (ψ)

t (x)|
]

≤

(ΣΛE[σ0(0)2]
∫
At(x)∩V ψ(t,x)

l(x− ξ, t− s)2dξds

+µΛE[σ0(0)2]
( ∫

At(x)∩V ψ(t,x)

l(x− ξ, t− s)dξds
)2
 1

2

+
ΣΛσ

∫
S

∫
Aσ0 (0)∩V ψ(0,0)

j(A,−ξ,−s)2dξdsπ(dA)

+µ2
Λσ

∫
S

∫
Aσ0 (0)∩V ψ(0,0)

j(A,−ξ,−s)dξdsπ(dA)
2

ΣΛ

∫
At(x)\V ψ(t,x)

l(x− ξ, t− s)2dξds+ µΛ

( ∫
At(x)\V ψ(t,x)

l(x− ξ, t− s)dξds
)2
 1

2

,

49



Finally, we can proceed as in the proof of part (i) to obtain the stated bound for the
θ-lex-coefficients.

(iii) Note that the kernel function j is square integrable such that σ is well defined and
stationary. Now, by Proposition 3.6 it holds that σ ∈ L1(Ω). Since additionally
l ∈ L1(Rm × R) and σ is stationary it holds that lσ ∈ L1(Ω× Rm × R). This implies
lσ ∈ L1(Rm × R) almost surely. Then lσ satisfies (3.9) and (3.10) almost surely and
the ambit field Y is well defined. In the following we use the notation of part (i).
Let (t, x) ∈ R×Rm and ψ > 0. Then, we can derive with the help of Proposition 4.3

E
[
|Yt(x)− Ỹ (ψ)

t (x)|
]

+ E
[
|Ỹ (ψ)
t (x)− Y (ψ)

t (x)|
]

≤ E[|σ0(0)|]
(
|γ0|+

∫
Rd
|y|ν(dy)

)( ∫
A0(0)∩V ψ(0,0)

|l(−ξ,−s)|dξds
)

+E[|σ0(0)− σ(ψ)
0 (0)|]

(
|γ0|+

∫
Rd
|y|ν(dy)

)( ∫
A0(0)\V ψ(0,0)

|l(−ξ,−s)|dξds
)
.

Finally, we can proceed as in the proof of Proposition 4.4 and we obtain a bound
for the θ-lex-coefficients.

Proof of Proposition 4.5. Let (t, x) ∈ R × R
m, ψ > 0. We define the truncated

sequence

Y
(ψ)
t (x) =

∫
At(x)\V ψ(t,x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds).

Since l ∈ L2(Rm × R), σ ∈ L2(Ω) and σ is stationary it holds that lσ ∈ L2(Ω× Rm × R).
This implies lσ ∈ L2(Rm×R) almost surely. Then lσ satisfies (3.6), (3.7) and (3.8) almost
surely and the ambit field Y is well defined. Finally, analogous to Proposition 3.11 we
derive an upper bound of the expectation using Proposition 4.3

E
[
|Yt(x)− Y (ψ)

t (x)|
]

= E

[∣∣∣∣ ∫
At(x)∩V ψ(t,x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds)
∣∣∣∣
]

≤ E

( ∫
At(x)∩V ψ(t,x)

l(x− ξ, t− s)σs(ξ)Λ(dξ, ds)
)2
 1

2

Using Proposition 4.3 and the translation invariance of At(x) and V ψ
(t,x) this is equal to(

ΣΛE[σ0(0)]
∫
A0(0)∩V ψ(0,0)

l(−ξ,−s)2dξds
) 1

2
.

Define Γ ∈ (R×Rm)u, (tj, xj) ∈ R×Rm and ψ(h) as in the proof of Proposition 4.4. Since
σ is p-dependent we get that YΓ and Y

ψ(h)
tj (xj) are independent for a sufficiently big h.

Then, for these sufficiently big h, Y is θ-lex weakly dependent with θ-lex-coefficients

θY (h) ≤ 2
(

ΣΛE[σ0(0)2]
∫
A0(0)∩V ψ(h)

(0,0)

l(−ξ,−s)2dξds
) 1

2
,
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which converges to zero as h goes to infinity by applying the dominated convergence the-
orem.
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