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Abstract

We study the joint limit distribution of the k largest eigenvalues of a p × p sample covariance matrix
XXT based on a large p × n matrix X. The rows of X are given by independent copies of a linear
process, Xit =

∑
j c jZi,t− j, with regularly varying noise (Zit) with tail index α ∈ (0, 4). It is shown that

a point process based on the eigenvalues of XXT converges, as n → ∞ and p → ∞ at a suitable rate,
in distribution to a Poisson point process with an intensity measure depending on α and

∑
c2

j . This
result is extended to random coefficient models where the coefficients of the linear processes (Xit) are
given by c j(θi), for some ergodic sequence (θi), and thus vary in each row of X. As a by-product of our
techniques we obtain a proof of the corresponding result for matrices with iid entries in cases where
p/n goes to zero or infinity and α ∈ (0, 2).
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1. Introduction

Recently there has been increasing interest in studying large dimensional data sets that arise in
finance, wireless communications, genetics and other fields. Patterns in these data can often be sum-
marized by the sample covariance matrix, as done in multivariate regression and dimension reduction
via factor analysis. Therefore, our objective is to study the asymptotic behavior of the eigenvalues
λ(1) ≥ . . . ≥ λ(p) of a p × p sample covariance matrix XXT, where the data matrix X is obtained from
n observations of a high-dimensional stochastic process with values in Rp. Classical results in this
direction often assume that the entries of X are independent and identically distributed (iid) or satisfy
some moment conditions. For example, the Four Moment Theorem of Tao and Vu [39] shows that the
asymptotic behaviour of the eigenvalues of XXT is determined by the first four moments of the dis-
tribution of the iid matrix entries of X. Our goal is to weaken the moment conditions by allowing for
heavy-tails, and the assumption of independent entries by allowing for dependence within the rows
and columns. Potential applications arise in portfolio management in finance, where observations
typically have heavy-tails and dependence.

∗Corresponding author
Email addresses: rdavis@stat.columbia.edu (Richard A. Davis), o.pfaffel@gmx.de (Oliver Pfaffel),

robert.stelzer@uni-ulm.de (Robert Stelzer)



Assuming that the data comes from a multivariate normal distribution, one is able to compute the
joint distribution of the eigenvalues (λ(1), . . . , λ(p)), see [26]. Under the additional assumption that
the dimension p is fixed while the sample size n goes to infinity, Anderson [2] obtains a central limit
like theorem for the largest eigenvalue. Clearly, it is not possible to derive the joint distribution in a
general setting where the distribution of X is not invariant with respect to orthogonal transformations.
Furthermore, since in modern applications with large dimensional data sets, p might be of similar
or even larger order than n, it might be more suitable to assume that both p and n go to infinity,
so Anderson’s result may not be a good approximation in this setting. For example, considering a
financial index like the S&P 500, the number of stocks is p = 500, whereas, if daily returns of the
past 5 years are given, n is only around 1300. In genetic studies, the number of investigated genes p
might easily exceed the number of participating individuals n by several orders of magnitude. In this
large n, large p framework results differ dramatically from the corresponding fixed p, large n results
- with major consequences for the statistical analysis of large data sets [27].

Spectral properties of large dimensional random matrices is one of many topics that has become
known under the banner Random Matrix Theory (RMT). The original motivation for RMT comes
from mathematical physics [20], [42], where large random matrices serve as a finite-dimensional
approximation of infinite-dimensional operators. Its importance for statistics comes from the fact that
RMT may be used to correct traditional tests or estimators which fail in the ‘large n, large p’ setting.
For example, Bai et al. [4] gives corrections on some likelihood ratio tests that fail even for moderate p
(around 20), and El Karoui [21] consistently estimates the spectrum of a large dimensional covariance
matrix using RMT. Thus statistical considerations will be our motivation for a random matrix model
with heavy-tailed and dependent entries.

Before describing our results, we will give a brief overview of some of the key results from RMT
for real-valued sample covariance matrices XXT. A more detailed account on RMT can be found, for
instance, in the textbooks [1], [5], or [31]. Here X is a real p × n random matrix, and p and n go
to infinity simultaneously. Let us first assume that the entries of X are iid with variance 1. Results
on the global behavior of the eigenvalues of XXT mostly concern the spectral distribution, that is the
random probability measure of its eigenvalues p−1 ∑p

i=1 εn−1λ(i)
, where ε denotes the Dirac measure.

The spectral distribution converges, as n, p → ∞ with p/n → γ ∈ (0, 1], to a deterministic measure
with density function

1
2πxγ

√
(x+ − x)(x − x−)1(x−,x+)(x), x± B (1 ±

√
γ)2,

where 1 denotes the indicator function. This is the so called Marčenko–Pastur law [30], [41]. One
obtains a different result if XXT is perturbed via an affine transformation [30], [33]. Partially based
on these results, [6, 7, 35, 43] treat the case where the rows of X are given by independent copies of a
linear process (in a Gaussian setting this is a special case of results in [24]). [7] allows also for non-
linear time series models describing the entries. Apart from a few special cases, the limiting spectral
distribution is not known in a closed form if the entries of X are not independent.

Although the eigenvalues of XXT offer various interesting local properties to be studied, we will
only focus on the joint asymptotic behavior of the k largest eigenvalues (λ(1), . . . , λ(k)), k ∈ N. This
is motivated from a statistical point of view since the variances of the first k principal components
are given by the k largest eigenvalues of the covariance matrix. Geman [23] shows, assuming that the
entries of X are iid and have finite fourth moments, that n−1λ(1) converges to x+ = (1 +

√
γ)2 almost

surely if p/n → γ ∈ (0,∞). Moreover, if the entries of X are iid standard Gaussian, Johnstone [27]
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shows that
√

n +
√

p

3
√

1√
n

+ 1√
p

 λ(1)(√
n +
√

p
)2 − 1

 D
−→ ξ,

where ξ follows the Tracy–Widom distribution with β = 1. Soshnikov [37] extends this to more general
symmetric non-Gaussian distributions if the matrix X is nearly square, and obtains a similar result for
the joint convergence of the k largest eigenvalues. The Tracy–Widom distribution first appeared as the
limit of the largest eigenvalue of a Gaussian Wigner matrix [40]. Péché [34] shows that the assumption
of Gaussianity in Johnstone’s result can be replaced by the assumption that the entries of X have a
symmetric distribution with sub-Gaussian tails, and she allows for γ being zero or infinity.

There exist results on extreme eigenvalues of XXT which include dependence within the rows or
columns of X, but most of them are only valid if X has complex-valued entries such that its real as
well as its complex part have a non-zero variance. A notable exception, where the real-valued case is
considered, is [13]. They assume that the rows of X are normally distributed with a covariance matrix
which has exactly one eigenvalue not equal to one. To the best of our knowledge there are no results
in the literature for the extreme eigenvalues of a random matrix with (light-tailed) dependent entries
given by a general time series model.

In contrast to the light tailed case described above, there exist only a handful of articles deal-
ing with sample covariance matrices XXT obtained from heavy-tailed observations. Almost all these
results only apply to matrices X with iid entries. Cizeau and Bochaud [17] seems to be the first sys-
tematic investigation of the spectrum of heavy-tailed random matrices and Ben Arous and Guionnet
[9] rigorously proved the convergence of the spectrum, i.e. a Marčenko–Pastur type result. Belinschi
et al. [8] compute the limiting spectral distribution of sample covariance matrices based on obser-
vations with infinite variance, which is also investigated in Bordenave et al. [15]. Under a special
dependence assumption Bordenave et al. [14] obtain also a Marčenko–Pastur type of result. Regard-
ing the k-largest eigenvalues, Soshnikov [38] gives the weak limit in case the underlying distribution
of the matrix entries is Cauchy. Biroli et al. [12] argued, using heuristic arguments and numerical
simulations, that Soshnikov’s result extends to general distributions with regularly varying tails with
index 0 < α < 4. A mathematically rigorous proof of this claim followed by Auffinger et al. [3]. To
the best of our knowledge the first results on the limiting behaviour of the bulk of the spectrum in the
heavy-tailed case, where the entries are dependent and modelled via time series models, are given in
Banna and Merlevède [7] who still assume finite second moments though.

We extend the previous results on the extreme eigenvalues for 0 < α < 4 by allowing for dependent
entries. More specifically, the rows of X are given by independent copies of some linear process.
Their respective coefficients can either all be equal (Section 2.1) or, more generally, conditionally on
a latent process, vary in each row (Section 2.3). In the latter case the rows of X are not necessarily
independent. The limiting Poisson process of the eigenvalues of XXT depends on the tail index α as
well as the coefficients of the observed linear processes. As a by-product, we obtain an independent
proof of Soshnikov’s result for iid entries which also holds in cases where γ ∈ {0,∞}.

The paper is organized as follows. The main results will be presented in Section 2 while the
proofs will be given in Section 3. Results from the theory of point processes and regular variation are
required through most of this paper. A detailed account on both topics can be found in a number of
texts. We mainly adopt the setting, including notation and terminology, of Resnick [36].
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2. Main results on heavy-tailed random matrices with dependent entries

2.1. A first result on the largest eigenvalue

Let (Zit)i,t be an array of iid random variables with marginal distribution that is regularly varying
with tail index α > 0 and normalizing sequence an, i.e.,

lim
n→∞

nP(|Zit| > anx) = x−α, for each x > 0. (1)

Equivalently, this means that (|Zit|) is in the maximum domain of attraction of a Fréchet distribution
with parameter α > 0. The sequence an is then necessarily characterized by

an = n1/αL(n), (2)

for some slowly varying function L : R+ → R+, i.e., a function with the property that, for each x > 0,
limt→∞ L(tx)/L(t) = 1. In certain cases we also assume that Z11 satisfies the tail balancing condition,
i.e., the existence of the limits

lim
x→∞

P(Z11 > x)
P(|Z11| > x)

= q and lim
x→∞

P(Z11 ≤ −x)
P(|Z11| > x)

= 1 − q (3)

for some 0 ≤ q ≤ 1. For each p, n ∈ N, let X = (Xit) be the p × n data matrix, where, for each i,

Xit =

∞∑
j=−∞

c jZi,t− j (4)

is a stationary linear times series. To guarantee that the series in (4) converges almost surely, we
assume that

∞∑
j=−∞

|c j|
δ < ∞ for some δ < min{α, 1}. (5)

Thus in our model the rows of X are given by iid copies of a linear process. We denote by λ1, . . . , λp ≥

0 the eigenvalues of the p × p sample covariance matrix XXT. They are studied via the induced point
process

Nn =

p∑
i=1

εa−2
np(λi−nµX,α), (6)

where

µX,α =


0 for 0 < α < 2,
E

(
Z2

111{Z2
11≤a2

np}

)∑
j c2

j for α = 2 and EZ2
11 = ∞,

E
(
Z2

11

)∑
j c2

j else.
(7)

Since we are only interested in the largest eigenvalues, we consider Nn as a point process on (0,∞)
and only count eigenvalues λi which are positive. Observe that the centralization term nµX,α is equal
to the mean of the diagonal elements of XXT if the observations have a finite variance. In case the
observations have an infinite variance, we do not have to center, except when α = 2 and EZ2

11 = ∞,
where we use a truncated version of the mean. In the latter case µX,α also depends on p and n.
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We will always assume that p = pn is an integer-valued sequence in n that goes to infinity as
n → ∞ in order to obtain results in the ‘large n, large p’ setting. In the following we suppress the
dependence of p on n so as to simplify the notation wherever this does not cause any ambiguity. In
[3, 38] the iid case is considered, i.e., Xit = Zit, assuming that the condition (1) holds for 0 < α < 4.
They show, if p, n→ ∞ with

lim
n→∞

pn

n
= γ ∈ (0,∞), (8)

that
p∑

i=1

εa−2
npλi

D
−→
n→∞

N, (9)

where N is a Poisson process with intensity measure ν̂((x,∞]) = x−α/2. Our next theorem extends this
result by considering the case where X has dependent entries. More precisely, the rows of X are given
by independent copies of a linear process. It will turn out that the intensity measure of the limiting
Poisson process depends on the sum of the squared coefficients of the underlying linear process. In
contrast to [3], we necessarily have to center the eigenvalues λi by nµX,α when α ≥ 2, since in that
case we consider a regime where p ≈ nβ with β < 1 instead of (8).

Theorem 1. Define the matrix X = (Xit) as in equations (1), (4) and (5) with α ∈ (0, 4). Suppose
pn → ∞ and n→ ∞ such that

lim sup
n→∞

pn

nβ
< ∞ (10)

for some β > 0 satisfying

(i) β < ∞ if 0 < α ≤ 1, and
(ii) β < max

{
2−α
α−1 ,

1
2

}
if 1 < α < 2.

(iii) β < max
{

1
3 ,

4−α
4(α−1)

}
if 2 ≤ α < 3, or

(iv) β < 4−α
3α−4 if 3 ≤ α < 4.

Further assume, in the case α ∈ (5/3, 4), that Z11 has mean zero and satisfies the tail balancing
condition (3). Then the point process Nn, as defined in (6), converges in distribution to a Poisson
point process N with intensity measure ν which is given by

ν((x,∞]) = x−α/2

∣∣∣∣∣∣∣∣
∞∑

j=−∞

c2
j

∣∣∣∣∣∣∣∣
α/2

, x > 0.

Theorem 1 weakens the assumption of independent entries made so far in the literature on heavy-
tailed random matrices at the expense of assumption (10), which is more restrictive than the usual
assumption (8) if α ∈ [1.5, 4). It seems that this more restrictive assumption is necessary for our proof
to work, but it is not clear whether it is necessary for the results to hold. However, if α ∈ (0, 1.5), our
assumption (10) is more general than (8). This is important for statistical applications, because p and
n are usually fixed and there is no functional relationship between the two of them.

If we restrict ourselves to the iid case, then Theorem 2 shows that the point process convergence
result also holds in many cases where the limit γ from condition (8) is zero or infinity, for example,
by assuming that p is regularly varying in n. This slightly extends the known theory for the iid case.
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Theorem 2. Assume that Xit = Zit and equation (1) is satisfied with α ∈ (0, 2). Further, let either

(i) pn = nκl(n) for some κ ∈ [0,∞), where l is a slowly varying function which converges to infinity
if κ = 0, and is bounded away from zero if κ = 1, or

(ii) pn ∼ C exp(cnκ) for some κ, c,C > 0.

Then Nn converges in distribution to a Poisson point process with intensity measure ν̂((x,∞]) = x−α/2.

It is well known [36] that a Poisson process has an explicit representation as a transformation of a
homogeneous Poisson process. In our case, the limiting Poisson process N with intensity measure ν
from Theorem 1 can be written as

N D
=

∞∑
i=1

ε
Γ
−2/α
i

∑∞
j=−∞ c2

j
, (11)

where Γi =
∑i

k=1 Ek is the successive sum of iid exponential random variables Ek with mean one. The
points of N are labeled in decreasing order so that, by the continuous mapping theorem, we can easily
deduce the weak limit of the (centered) k largest eigenvalues of XXT.

Corollary 1. Denote by λ(1) ≥ . . . ≥ λ(p) the upper order statistics of the eigenvalues of XXT −

nµX,αIp. Under the assumptions of Theorem 1 we have, for each fixed integer k ≥ 1, that the k-largest
eigenvalues jointly converge,

a−2
np

(
λ(1), . . . , λ(k)

) D
−→
n→∞

(
Γ
−2/α
1 , . . . ,Γ−2/α

k

)  ∞∑
j=−∞

c2
j

 .
In particular, for each x > 0,

P
λ(k)

a2
np
≤ x

 −→
n→∞

P(N(x,∞) ≤ k − 1) = e−x−α/2
k−1∑
m=0

x−mα/2

m!

∑
j

c2
j


mα/2

.

This implies for the largest eigenvalue λ(1) of XXT − nµX,αIp that

λ(1)

a2
np

∑
j c2

j

D
−→
n→∞

V,

where V has a Fréchet distribution with parameter α/2, i.e., P(V ≤ x) = e−x−α/2 .

In a nutshell, the results in this section give the asymptotic behavior of the k largest eigenvalues
of a sample covariance matrix XXT when the rows of X are given by iid copies of some linear process
with infinite variance. Our results will be generalized further in Section 2.3, where, conditionally on
a latent process, the rows of X will be independent but not identically distributed.

2.2. Examples and discussion
Theorem 1 holds for any linear process which has regularly varying noise with infinite variance as

long as condition (5) is satisfied. Since the coefficients of a causal ARMA process decay exponentially,
(5) is trivially satisfied in this case. As two simple examples, consider an MA(1) process Xit =

Zit + θZi,t−1, which satisfies
∑

j c2
j = 1 + θ2; and a causal AR(1) process Xit − φXi,t−1 = Zit, |φ| < 1,

6



where
∑

j c2
j = (1 − φ2)−1. Yet another example of a linear process fitting in our framework is a

fractionally integrated ARMA(p, d, q) processes with d < 0 and regularly varying noise with index
α ∈ [1, 4), see, e.g., [16] for further details. In this case |c j| ≤ C jd−1 is summable and therefore
condition (5) is satisfied for α ≥ 1.

Regarding the normalization in (6), the sequence an is chosen such that the individual entries of
the matrix Z B (Zit)i,t satisfy (1). Replacing the iid sequence in the rows of Z with a linear process
to obtain the matrix X changes the tail behavior of its entries. Indeed, the result stated in Davis and
Resnick [19, eq. (2.7)] shows, under the assumption (3) and EZ11 = 0 if α > 1, that

nP

∣∣∣∣∑
j

c jZ1,t− j

∣∣∣∣ > anx

 −→n→∞
x−α

∑
j

|c j|
α.

In view of (1) this suggests the normalization X̃it =
(∑

j |c j|
α
)−1/α

Xit. Denote by λ̃1, . . . , λ̃p the eigen-

values of X̃X̃T, where X̃ = (X̃it)i,t, and let µX̃,α = EX̃2
11 =

(∑
j |c j|

α
)−2/α

µX,α. Since this is just a
multiplication by a constant, we immediately obtain, by Theorem 1, that

p∑
i=1

εa−2
np (λi−nµX̃,α)

D
−→
n→∞

Ñ,

where Ñ is a Poisson process with intensity measure ν̃ given by

ν̃((x,∞]) = x−α/2

∣∣∣∣∑ j c2
j

∣∣∣∣α/2∑
j |c j|

α
. (12)

Thus
∣∣∣∣∑ j c2

j

∣∣∣∣α/2(
∑

j |c j|
α)−1 quantifies the effect of the dependence on the point process of the eigen-

values when the tail behavior of each marginal Xit is equivalent to the iid case.
Assume for a moment that the dimension p is fixed for any n, and that 0 < α < 2. Then it

follows easily from [19, Theorem 4.1] and arguments of our paper that a−2
n λ(1) →

∑
j c2

j max1≤i≤p S i

in distribution as n → ∞, where (S i) are independent positive stable with index α/2. If p is large,
one would intuitively expect that max1≤i≤p S i ≈ p2/αΓ

−2/α
1 , where Γ1 is exponentially distributed with

mean 1. Corollary 1 not only makes this intuition precise but also gives the correct normalization a−2
np .

The distribution of the maximum of p independent stables is not known analytically, hence ‘large n,
large p’ in fact gives a simpler solution than the traditional ‘fixed p, large n’ setting.

2.3. Extension to random coefficient models
So far we have assumed that our observed process has independent components, each of which

are modelled by the same linear process. From now on we will allow for a different set of coefficients
in each row. To this end, let (θi)i∈N be a sequence of random variables independent of (Zit) with values
in some space Θ. Assume that there is a family of measurable functions (c j : Θ→ R) j∈N such that

sup
θ∈Θ
|c j(θ)| ≤ c̃ j, for some deterministic c̃ j satisfying condition (5). (13)

Our observed processes have the form

Xit =

∞∑
j=−∞

c j(θi)Zi,t− j (14)
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where (Zit) is given as in (1) with α ∈ (0, 4). Thus, conditionally on the latent process (θi), the rows
of X are independent linear processes with different coefficients. Unconditionally, the rows of X are
dependent if the sequence (θi) is dependent. Theorem 3 below covers three classes among which
(θi) may be chosen: stationary ergodic; stationary but not necessarily ergodic; and ergodic in the
Markov chain sense but not necessarily stationary. In the following we say that a sequence of point
processes Mn converges, conditionally on a sigma-algebraH , in distribution to a point process M , if
the conditional Laplace functionals converge almost surely, i.e., if there exists a measurable set B with
P(B) = 1 such that for all ω ∈ B and all nonnegative continuous functions f with compact support,

E
(
e−Mn( f )

∣∣∣H)
(ω) −→

n→∞
E

(
e−M( f )

∣∣∣H)
(ω) as n→ ∞. (15)

Theorem 3. Define X = (Xit) with Xit as given in (14). Suppose that (13) is satisfied, and p, n → ∞
such that (10) holds under the same conditions as in Theorem 1. Further assume, in case α ∈ (5/3, 4),
that Z11 has mean zero and satisfies the tail balancing condition (3).

(i) If (θi) is a stationary ergodic sequence, then, both conditionally on (θi) as well as uncondition-
ally, we have that

p∑
i=1

εa−2
np (λi−nµX,α)

D
−→
n→∞

∞∑
i=1

ε
Γ
−2/α
i

∥∥∥∥∑ j c2
j (θ1)

∥∥∥∥ α
2

, (16)

with the constant
∥∥∥∥∑ j c2

j(θ1)
∥∥∥∥ α

2

=

(
E

∣∣∣∣∑ j c2
j(θ1)

∣∣∣∣α/2)2/α
, and (Γi) as in (11).

(ii) If (θi) is stationary but not necessarily ergodic, then we have, conditionally on (θi), that

p∑
i=1

εa−2
np (λi−nµX,α)

D
−→
n→∞

∞∑
i=1

ε
Γ
−2/α
i Y2/α ,

with Y = E
(
|
∑

j c2
j(θ1)|α/2|G

)
, where G is the invariant σ-field generated by (θi). In particular,

Y is independent of (Γi).
(iii) Suppose (θi) is either an irreducible Markov chain on a countable state space Θ or a posi-

tive Harris chain in the sense of Meyn and Tweedie [32]. If (θi) has a stationary probability
distribution π then, conditionally on (θi) as well as unconditionally, (16) holds with∥∥∥∥∥∥∥∥

∑
j

c2
j(θ1)

∥∥∥∥∥∥∥∥ α
2

=

∫
Θ

∣∣∣∣∑
j

c2
j(θ)

∣∣∣∣α/2π(dθ)


2/α

.

One can view the assumptions (i) and (ii) of Theorem 3 in a Bayesian framework in which the
parameters of the observed process are drawn from an unknown prior distribution. As an example,
let (θi) be a stationary ergodic AR(1) process θi = φθi−1 + ξi, where |φ| , 1 and (ξi) is a sequence of
bounded iid random variables, and set Xit = Zit + θiZi,t−1. Then, by Theorem 3 (i), we would expect,
for n and p large enough, that

a−2
np(λ(1) − nµX,α) ≈ Γ

−α/2
1

(
E |1 + θ1|

α/2
)2/α

.

Models of this kind are referred to as random coefficient models and often used in times series analysis,
see, e.g., [29] for an overview. In the setting of Theorem 3 (iii) one might think of a Hidden Markov
Model where the latent Markov process (θi) evolves along the rows of X, each state θi defining another
univariate linear model.
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3. Proofs and auxiliary results

The first step is to show that the matrix XXT is well approximated by its diagonal, see Section 3.2.
In the second step we then derive the extremes of the diagonal of XXT in Section 3.3. Both steps
together yield the proofs of Theorem 1 and Theorem 2 in Section 3.4. The proof of Theorem 3 follows
then by an extension of the previous methods in Section 3.5. In the following we make frequent use
of a large deviation result which is presented in the upcoming section.

3.1. A large deviation result and its consequences

The next theorem gives the joint large deviations of the sum and the maximum of iid nonnegative
random variables with infinite variance. It suffices to deal with the case where 0 < α < 2 since later
on we mostly consider squared random variables that have tail index α/2 with 0 < α/2 < 2.

Proposition 3.1. Let (xn)n∈N and (yn)n∈N be sequences of nonnegative numbers with xn → ∞ such
that xn/yn → γ ∈ (0,∞]. Suppose (Yt)t∈N is an iid sequence of nonnegative random variables with
tail index α ∈ (0, 2) and normalizing sequence bn. If 1 ≤ α < 2, we assume that bnxn/n1+δ → ∞ for
some δ > 0. Then

lim
n→∞

P
(∑n

t=1 Yt > bnxn,max1≤t≤n Yt > bnyn
)

nP(Y1 > bn max{xn, yn})
= 1. (17)

Proof. Let us first assume that 0 < α < 1. Using standard arguments from the theory of regularly
varying functions, see e.g. [36], it can be easily seen that for any positive sequence zn → ∞ we have

lim
n→∞

P(max1≤t≤n Yt > bnzn)
nP(Y1 > bnzn)

= 1. (18)

Obviously the limit in (17) is greater or equal than one because
∑n

t=1 Yt ≥ max1≤t≤n Yt. Thus it is only
left to prove that it is also smaller. Denote by Y(1) ≥ . . . ≥ Y(n) the upper order statistics of Y1, . . . ,Yn.
By decomposing

∑
t Yt into the sum of maxt Yt and lower order terms we see that, for any θ ∈ (0, 1),

P
(∑n

t=1 Yt > bnxn,max1≤t≤n Yt > bnyn
)

nP(Y1 > bn max{xn, yn})
≤

P(max1≤t≤n Yt > bn max{θxn, yn})
nP(Y1 > bn max{xn, yn})

+
P

(∑n
t=2 Y(t) > bnxn(1 − θ)

)
nP(Y1 > bn max{xn, yn})

.

By an application of [36, Proposition 0.8 (iii)] one can show similarly as in the proof of (18) that

lim
θ→1

lim
n→∞

P(max1≤t≤n Yt > bn max{θxn, yn})
nP(Y1 > bn max{xn, yn})

= 1.

Hence, it is only left to show that the second summand vanishes as n → ∞. To this end we partition
the underlying probability space into {Y(2) ≤ εbnxn} ∪ {Y(2) > εbnxn}, ε > 0, to obtain

P
(∑n

t=2 Y(t) > bnxn(1 − θ)
)

nP(Y1 > bn max{xn, yn})
≤

P
(∑n

t=2 Y(t)1{Y(2)≤εbn xn} > bnxn(1 − θ)
)

nP(Y1 > bn max{xn, yn})

+
P

(
Y(2) > εbnxn

)
nP(Y1 > bn max{xn, yn})

= Σ1 + Σ2.

9



Denote by Mn = max1≤t≤n Yt and zn = max{xn, yn}. Then easy combinatorics and (18) yield

Σ2 =
1 − P

(
Y(2) ≤ εbnxn

)
nP(Y1 > bnzn)

=
1 − P (Mn ≤ εbnxn)

nP(Y1 > bnzn)
−

nP (Mn−1 ≤ εbnxn) P(Y1 > εbnxn)
nP(Y1 > bnzn)

=
P (Mn > εbnxn)
nP(Y1 > εbnxn)

P(Y1 > εbnxn)
P(Y1 > bnzn)

−
P(Y1 > εbnxn)
P(Y1 > bnzn)

P (Mn−1 ≤ εbnxn)

∼
P(Y1 > εbnxn)
P(Y1 > bnzn)

(1 − P (Mn−1 ≤ εbnxn)) −→
n→∞

0.

The convergence to zero follows from P (Mn−1 ≤ εbnxn) → 1 and, by [36, Proposition 0.8 (iii)],
P(Y1>εbn xn)
P(Y1>bnzn) → ε−α max{1, γ−α}. Thus it is only left to show that Σ1 goes to zero. By Markov’s inequal-

ity and Karamata’s Theorem [36, Theorem 0.6] we have that

Σ1 ≤
P

(∑n
t=1 Yt1{Yt≤εbn xn} > bnxn(1 − θ)

)
nP(Y1 > bn max{xn, yn})

≤
1

bnxn(1 − θ)
E(Y11{Y1≤εbn xn})

P(Y1 > bnzn)

∼
1

(1 − θ)
α

1 − α
εP(Y1 > εbnxn)

P(Y1 > bnzn)
−→
n→∞

1
(1 − θ)

α

1 − α
ε1−α max{1, γ−α},

which converges to zero as ε goes to zero, since α < 1. Thus for 0 < α < 1 the proof is complete.
If 1 ≤ α < 2, only Σ1 has to be treated differently. The truncated mean µn = E(Y11{Y1≤εbn xn}) either
converges to a constant or is a slowly varying function. In either case, we have that bnxn/(nµn) =

bnxnn−1−δ nδ/µn → ∞ by assumption. Thus, a mean-correction argument and Karamata’s Theorem
imply

lim sup
n→∞

Σ1 ≤ lim sup
n→∞

P
(∑n

t=1 Yt1{Yt≤εbn xn} − nµn > bnxn(1 − θ) − nµn
)

nP(Y1 > bnzn)

≤
1

(1 − θ)2 lim sup
n→∞

1
b2

nx2
n

Var(Y11{Y1≤εbn xn})
P(Y1 > bnzn)

≤
1

(1 − θ)2

α/2
1 − α/2

ε2−α max{1, γ−α} −→
ε→0

0,

since α < 2. This completes the proof. �

We finish this section with a few consequences of Proposition 3.1. Note that (1) implies

pnP(Z2
11 > a2

npx) −→
n→∞

x−α/2 for each x > 0. (19)

Choosing Yt = Z2
1t, bn = a2

n, xn = xa2
np/a

2
n and yn = ya2

np/a
2
n, we have from Proposition 3.1 and (19),

for α ∈ (0, 2), that

pP

 n∑
t=1

Z2
1t > a2

npx, max
1≤t≤n

Z2
1t > a2

npy

 −→n→∞
max{x, y}−α/2 for each x, y > 0.

Therefore, by [36, Proposition 3.21], we obtain the point process convergence

p∑
i=1

εa−2
np (

∑n
t=1 Z2

it ,max1≤t≤n Z2
it)

D
−→
n→∞

∞∑
i=1

ε
Γ
−2/α
i (1,1), (20)

10



with (Γi) as in (11). Note that Γ
−2/α
i (1, 1) is the point with both coordinates being Γ

−2/α
i , i.e. the

−2/αth power of the random variable Γi. For another application of Proposition 3.1, set Yt = |Z1t|,
bn = an, xn = xanp/an and yn = yanp/an. Under the additional assumption

lim inf
n→∞

p
n
∈ (0,∞]

we have bnxn/n1+γ → ∞ for some γ < (2 − α)/α, thus, for α ∈ (0, 2),

pP

 n∑
t=1

|Z1t| > anpx, max
1≤t≤n

|Z1t| > anpy

 −→n→∞
max{x, y}−α for each x, y > 0.

Therefore we obtain as before
p∑

i=1

εa−1
np (

∑n
t=1 |Zit |,max1≤t≤n |Zit |)

D
−→
n→∞

∞∑
i=1

ε
Γ
−1/α
i (1,1). (21)

The result of the following proposition is also a consequence of Proposition 3.1.

Proposition 3.2. Let (Zit) be as in (1) with 0 < α < 2. Suppose that (10) is satisfied for some
0 < β < ∞. Then

a−2
np max

1≤i< j≤p

n∑
t=1

|ZitZ jt|
P
−→
n→∞

0.

Proof. By [22], the iid random variables Yt = |Z1tZ2t| are regularly varying with tail index αwith some
normalizing sequence bn. Thus, there exists a slowly varying L1 such that P(Y1 > x) = x−αL1(x).
Using (2) this implies

p2nP(Y1 > a2
npε) = n−1ε−α L(np)−2α L1

(
(np)2/αL(np)2ε

)
.

By Potter’s bound, see, e.g., [36, Proposition 0.8 (ii)], for any slowly varying function L̃ and any δ > 0
there exist c1, c2 > 0 such that c1n−δ < L̃(n) < c2nδ for n large enough. An application of this bound
together with assumption (10) shows that

p2nP(Y1 > a2
npε) −→n→∞

0. (22)

Hence, using Proposition 3.1 with xn = a2
np/bnε and yn = 0 yields

P

 max
1≤i< j≤p

n∑
t=1

|ZitZ jt| > a2
npε

 ≤ p2P

 n∑
t=1

Yt > a2
npε

 −→n→∞
0,

since bnxn/n1+γ = a2
np/n

1+γ → ∞ for α < 2 and some γ < (2 − α)/α. �

3.2. Convergence in Operator Norm
Denote by D = diag(XXT) the diagonal of the matrix XXT, i.e., Dii = (XXT)ii and Di j = 0 for

i , j. In this section we show that a−2
np(XXT − D) converges in probability to 0 in operator norm.

This implies that the off-diagonal elements of a−2
np XXT do not contribute to the limiting eigenvalue

spectrum. Recall that, for a real p × n matrix A, the operator 2-norm ‖A‖2 is the square root of the
largest eigenvalue of AAT, and the infinity-norm is given by ‖A‖∞ = max1≤i≤p

∑n
t=1 |Ait|.

In the upcoming Proposition 3.3 we only deal with the case where 0 < α < 2. Note that Propo-
sition 3.3 holds under a much more general setting than assumed in Theorem 1 by allowing for an
arbitrary dependence structure within the rows of X.
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Proposition 3.3. Let X = (Xit)i,t be a p × n random matrix whose entries are identically distributed
with tail index α ∈ (0, 2) and normalizing sequence (an). Assume that the rows of X are independent.
Suppose that (10) holds for some β > 0. If 1 < α < 2, assume additionally that β < 2−α

α−1 . Then we
have

a−2
np

∥∥∥XXT − D
∥∥∥

2
P
−→
n→∞

0. (23)

Proof. Since
∥∥∥XXT − D

∥∥∥
2 ≤

∥∥∥XXT − D
∥∥∥
∞

, it is enough to show that for every ε ∈ (0, 1),

P

 max
i=1,...,p

p∑
j=1
j,i

∣∣∣∣∣∣∣
n∑

t=1

XitX jt

∣∣∣∣∣∣∣ > a2
npε

 ≤ pP

 p∑
j=2

n∑
t=1

|X1tX jt| > a2
npε

 −→n→∞
0.

By partitioning the underlying probability space into {max j,t |X1tX jt| ≤ a2
np} and its complement, we

obtain that

pP

 p∑
j=2

n∑
t=1

|X1tX jt| > a2
npε

 ≤pP

 p∑
j=2

n∑
t=1

|X1tX jt|1{|X1tX jt |≤a2
np}
> a2

npε


+ pP

(
max
2≤ j≤p

max
1≤t≤n

|X1tX jt| > a2
npε

)
= I + II.

The same argument used for (22) shows that II ≤ p2nP(|X11X21| > a2
np) −→

n→∞
0 by independence of

the rows of X. To deal with term I we first assume that α > 1 and choose some γ ∈ (α, 2). Hölder’s
inequality shows that  p∑

j=2

n∑
t=1

|X1tX jt|


γ

≤

 p∑
j=2

n∑
t=1

|X1tX jt|
γ

 (np)γ−1,

and therefore

I ≤ pP

 p∑
j=2

n∑
t=1

|X1tX jt|
γ1{|X1tX jt |≤a2

np}
>

a2γ
np

(np)γ−1 ε

 .
Note that |X1tX jt|

γ has regularly varying tails with index α/γ < 1. Hence we can apply Markov’s
Inequality and Karamata’s Theorem to infer that

I ≤ c1
p2n(np)γ−1

a2γ
np

E
(
|X11X21|

γ1{|X11X21 |≤a2
np}

)
∼ c2 p2n(np)γ−1P(|X11X21| > a2

np). (24)

Therefore, the proof of Proposition 3.2 shows that the term in (24) goes to zero if (np)γ−1/n does.
In view of assumption (10) this is true for β < (2 − γ)/(γ − 1). Since we can choose γ arbitrary
close to α it suffices that β < (2 − α)/(α − 1). If α < 1 we do not need Hölder’s inequality since the
above argument can be applied with γ = 1, thus it suffices that (10) holds for some β < ∞. For the
remaining case α = 1, observe that, for any given β < ∞, we choose γ arbitrarily close to 1 so that
(np)γ−1/n→ 0. �

The next proposition improves the previous Proposition 3.3 for 5/3 < α < 2 by relaxing the
condition β < 2−α

α−1 at the expense of the additional assumption that the rows of X are realizations of a
linear process. Furthermore, Proposition 3.4 also covers the case where 2 ≤ α < 4.
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Proposition 3.4. The assumptions of Theorem 1 imply (23).

Proof. Considering the result from Proposition 3.3, we only have to deal with the case α ∈ (5/3, 4)
here. In this proof, c denotes a positive constant that may vary from expression to expression. Define

ZL
it = Zit1{|Zit |≤anp}, XL

it =
∑

k

ckZL
i,t−k,

ZU
it = Zit1{|Zit |>anp}, XU

it =
∑

k

ckZU
i,t−k.

Using
∥∥∥XXT − D

∥∥∥
2 ≤

∥∥∥XXT − D
∥∥∥
∞

as before we have

P
(∥∥∥XXT − D

∥∥∥
2 > a2

npε
)
≤pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

X1tX jt

∣∣∣∣∣∣∣ > a2
npε


≤pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XL
1tX

L
jt

∣∣∣∣∣∣∣ > a2
np

4
ε

 + pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XL
1tX

U
jt

∣∣∣∣∣∣∣ > a2
np

4
ε


+ pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XU
1t X

L
jt

∣∣∣∣∣∣∣ > a2
np

4
ε

 + pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XU
1t X

U
jt

∣∣∣∣∣∣∣ > a2
np

4
ε


=I + II + III + IV.

We will show that each of theses terms converges to zero. To this end, note that E|ZL
11| converges to a

constant, and, by Karamata’s Theorem,

E|ZU
11| ∼ canpP(|Z11| > anp) ∼ canp(np)−1, n→ ∞.

Therefore, by Markov’s inequality, we have

II ≤
4p

a2
npε

p∑
j=2

n∑
t=1

∑
k,l

|ckcl| E|ZL
1,t−k| E|Z

U
j,t−l| ∼ c

∑
k

|ck|

2
p2n
a2

np
anp(np)−1 = c

p
anp

,

and, by (2), we obtain that this is equal to c L(np)−1 p1−1/αn−1/α → 0 as n→ ∞. By symmetry, III can
be handled the same way. It is easy to see that term IV is of even lower order, namely

c
p2n
a2

np
(anp(np)−1)2 = cn−1 → 0.

Thus it is only left to show that I converges to zero. To this end, we use Karamata’s Theorem to obtain

E
[
(ZL

11)2
]

= E
[
Z2

111{|Z11 |≤anp}

]
∼ ca2

npP(|Z11| > anp) ∼ ca2
np(np)−1.

Since Z11 satisfies the tail balancing condition (3), and EZ11 = 0, we can apply Karamata’s Theorem
to the positive and the negative tail of ZL

11, thus, for q < {0, 1
2 , 1},

ξn BE[ZL
11] = E[Z111{|Z11 |≤anp}] = −E[Z111{|Z11 |>anp}] = −E[Z111{Z11>anp}] + E[−Z111{−Z11>anp}]

∼ − q
α

α − 1
anpP(|Z11| > anp) + (1 − q)

α

α − 1
anpP(|Z11| > anp) ∼ (1 − 2q)

α

α − 1
anp(np)−1.
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Clearly, for any 0 ≤ q ≤ 1, one therefore has

npξn

anp
→ (1 − 2q)

α

α − 1
.

As a consequence we obtain for µn = E(XL
11XL

21) = (EXL
11)2 = ξ2

n that

µn pn
a2

np
= (np)−1

(
npξn

anp

)2
∑

k

ck

2

→ 0.

Therefore we obtain for summand I that

I = pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XL
1tX

L
jt

∣∣∣∣∣∣∣ > a2
np

4
ε

 ≤p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t

∣∣∣∣∣∣∣ > a2
np

4p
ε

 ∼ p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε

 .
Therefore, it is only left to show that

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε

→ 0, (25)

with

µn = (EXL
11)2 =

∑
k

ck

2

(EZL
11)2 = O

 a2
np

(np)2

 .
Now we have to treat the cases α < 2, 2 ≤ α < 3, and 3 ≤ α < 4 separately.

Let α < 2. By Proposition 3.3 it suffices to show that, for α ∈ (5/3, 2), the assumption

lim
n→∞

p
√

n
= 0 (26)

implies convergence in operator norm in the sense of (23). Since we correct by the mean, Markov’s
inequality yields

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε

 ≤ 16p4

a4
npε2

Var

 n∑
t=1

XL
1tX

L
2t


=

16p4

a4
npε2

n∑
t,t′=1

∑
k,k′,l,l′

ckck′clcl′Cov
(
ZL

1,t−kZL
2,t−l,Z

L
1,t′−k′Z

L
2,t′−l′

)
. (27)

Due to the independence of the Z’s, the covariance in the last expression is non-zero iff t − k = t′ − k′

or t − l = t′ − l′. This gives us three distinct cases we deal with separately. First, assume that both
t − k = t′ − k′ and t − l = t′ − l′. Then the covariance in (27) is equal to Var(ZL

11ZL
2,1) and so bounded

by

E[(ZL
11)2(ZL

21)2] = (E(ZL
11)2)2 ∼ (ca2

np(np)−1)2 ∼ ca4
np(np)−2.

Second, let t − k = t′ − k′ but t − l , t′ − l′. Then the covariance becomes

Cov(ZL
1,t−kZL

2,t−l,Z
L
1,t′−k′Z

L
2,t′−l′) =E((ZL

1,t−k)2ZL
2,t−lZ

L
2,t′−l′) − ξ

4
n

=E((ZL
1,t−k)2)ξ2

n − ξ
4
n

∼ca2
np(np)−1(±c anp(np)−1)2 − (±c anp(np)−1)4

∼ca4
np(np)−3 − ca4

np(np)−4 ∼ ca4
np(np)−3,

14



which is of lower order than in the case considered before. By symmetry, the third case, where
t− l = t′− l′ but t−k , t′−k′, can be dealt with in exactly the same way. In all cases t′ can be assumed
to be fixed, thus we can bound (27) by

c
p4

a4
np

∑
k

|ck|

4 n∑
t=1

a4
np(np)−2 = c

p2

n
→ 0, n→ ∞.

This completes the proof in case α < 2.
If α > 2, the covariance in (27) converges to a constant. If α = 2 with EZ2

11 = ∞, then it is a
slowly varying function. In either case (27) is of order

O
 p4

a4
np

n s(np)
 ≤ O

(
nβ(4−4/α)n1−4/αs(np)

)
→ 0,

since β < 4−α
4(α−1) , where s(·) is some slowly varying function. For a more general result we distinguish

the sub-cases α ∈ (2, 3) and α ∈ [3, 4) in the following.
Let us now assume that α ∈ (2, 3). By Markov’s inequality applied to (25) we have

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε


≤

64
ε3

p5

a6
np

n∑
t1,t2,t3=1

E

 3∏
i=1

(
XL

1,ti X
L
2,ti − µn

)
=

64
ε3

p5

a6
np

n∑
t1,t2,t3=1

∑
k1,k2,k3

∑
l1,l2,l3

3∏
j=1

(ck jcl j)E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) , (28)

where

ξ2
n =

µn(∑
k ck

)2 = (EZL
11)2 = O

 a2
np

(np)2

 . (29)

To determine the order of the expectation in (28) we have to distinguish various cases. In the following
we say that two index pairs (a, b) and (c, d) overlap if a = c or b = d. If there exists a j = 1, 2, 3 such
that the index pair (t j − k j, t j − l j) does not overlap with both the other two, then, due to independence,
we are able to factor out the corresponding term and obtain

E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) = E

∏
i, j

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) E
(
ZL

1,t j−k j
ZL

2,t j−l j
− ξ2

n

)
= 0,

since ξ2
n = (EZL

11)2 = E
(
ZL

1,t j−k j
ZL

2,t j−l j

)
. Thus, in any non-trivial case, each index pair does overlap

with (at least) one of the other two. Therefore we have at least two equalities of the form ti − ki =

t(i+1)mod 3 − k(i+1)mod 3 or ti − li = t(i+1)mod 3 − l(i+1)mod 3 for i = 1, 2, 3. Hence t2 and t3 are immediately
determined by some linear combination of t = t1 and the k′i s or l′i s. Therefore the triple sum

∑n
t1,t2,t3=1

is, if we only count terms where the covariance is non-zero, in fact a simple sum
∑n

t=1 and so only has
a contribution of order n. Now we have to determine the order of the products E

(∏3
i=1 ZL

1,ti−ki
ZL

2,ti−li

)
.

If we only have a single power then, by (29), this gives us

E
(
ZL

1,ti−ki
ZL

2,ti−li

)
= ξ2

n = o(1).
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Since α > 2, powers of order two converge to a constant,

E
((

ZL
1,ti−ki

ZL
2,ti−li

)2
)
→ Var(Z11)2.

An application of Karamata’s theorem yields that

E
((

ZL
1,ti−ki

ZL
2,ti−li

)3
)
∼ a6

np(np)−2.

Using the above facts, it is easy to see that

E

 3∏
i=1

ZL
1,ti−ki

ZL
2,ti−li

 = O
(
a6

np(np)−2
)
. (30)

Thus we have, using (29) and (30), for the expectation in (28) that

E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) =

3∑
k=0

(−1)k
∑

J⊆{1,2,3},|J|=k

E

 ∏
i∈{1,2,3}\J

ZL
1,ti−ki

ZL
2,ti−li

 ξ2|J|
n

=O

a6
np(np)−2 −

a2
np

(np)2 −
a6

np

(np)6


=O

(
a6

np(np)−2
)
.

The last calculation shows that the expectation in (28) is equal to E
(∏3

i=1 ZL
1,ti−ki

ZL
2,ti−li

)
plus lower

order terms, and that the leading term is of order a6
np(np)−2. With this observation we can finally

conclude for (28) that

64
ε3

p5

a6
np

n∑
t1,t2,t3=1

∑
k1,k2,k3

∑
l1,l2,l3

3∏
j=1

(ck jcl j)E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

)
= O

64
ε3

p5

a6
np

na6
np(np)−2

 =
64
ε3 O

(
p3

n

)
→ 0,

which goes to zero by assumption. This completes the proof for α ∈ [2, 3).
The method to deal with α ∈ [3, 4) is similar to the one before and thus only described briefly. We

use Markov’s inequality with power four to obtain that the term in (25) is bounded by

256
ε4

p6

a8
np

n∑
t1,t2,t3,t4=1

∑
k1,k2,k3,k4

∑
l1,l2,l3,l4

4∏
j=1

(ck jcl j)E

 4∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) . (31)

Observe that the expectation in (31) is only non-zero if either

(i) all index pairs {(ti − ki, ti − li)}i=1,2,3,4 overlap, or
(ii) there exist exactly two sets of overlapping index pairs, such that no index pair from one set

overlaps with an index pair from the other set. We call these two sets disjoint.

Case (i) is similar to the previous case, so that one can see that

E

 4∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) = O
(
(E((ZL

11)4))2
)

= O

 a8
np

(np)2

 ,
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and that the contribution of
∑n

t1,t2,t3,t4=1 is of order n. Therefore, in this case, the term in (31) is of the
order

256
ε4

p6

a8
np

O

n a8
np

(np)2

 =
256
ε4 O

(
p4

n

)
→ 0.

Thus, we only have to determine the contribution in case (ii). Since the two sets of overlapping index
pairs are disjoint, we obtain that

E

 4∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) = E
((

ZL
11ZL

21 − ξ
2
n

)2
)2
.

Since α > 2 this converges to a constant. In contrast to case (i), the contribution of
∑n

t1,t2,t3,t4=1 is of
order n2. This is due to the fact that the two sets of overlapping index pairs are disjoint, hence only
two out of the four indices t1, . . . , t4 are given by linear combinations of the other two and the k′s and
l′s. Therefore (31) is of the order

256
ε4

p6

a8
np

O
(
n2

)
→ 0.

The convergence to zero is justified by

p6

a8
np

n2 = n2−8/αp6−8/αL(np)−8 ≤ O
(
n2−8/α+β(6−8/α)L(nβ+1)−8

)
→ 0,

since β < 4−α
3α−4 . This completes the proof of Proposition 3.4. �

3.3. Extremes on the diagonal
In this section we analyze the extremes of the diagonal entries of XXT , which are partial sums of

squares of linear processes. To this end, we start with two auxiliary results. While Lemma 3.1 is only
valid for α < 2, Lemma 3.2 covers the case where 2 ≤ α < 4. Subsequently, these two lemmas help us
to establish a general limit theorem for the diagonal entries of XXT for 0 < α < 4 in Proposition 3.5,
the major result of this section.

Lemma 3.1. Let (Zt) be an iid sequence such that nP(|Z1| > anx) → x−α with α ∈ (0, 2). For any
sequence (c j) satisfying (5) we have, if p and n go to infinity, that

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

→
 ∞∑

j=−∞

c2
j


α
2

x−α/2

Proof. Fix some x > 0. Observe that Proposition 3.1 and (19) imply for n → ∞ that pP(
∑n

t=1 Z2
t >

a2
npx) → x−α/2. We begin by showing the claim for a linear process of finite order. For any η > 0 we

have

P


∣∣∣∣∣∣∣∣

m∑
j=−m

c2
j

n∑
t=1

Z2
t −

n∑
t=1

m∑
j=−m

c2
jZ

2
t− j

∣∣∣∣∣∣∣∣ > a2
npη

 ≤P

 m∑
j=−m

c2
j

j∑
t=1− j

Z2
t > a2

npη

 −→n→∞
0.

Consequently,

lim
n→∞

pP

 n∑
t=1

m∑
j=−m

c2
jZ

2
t− j > a2

npx

 = x−α/2
 m∑

j=−m

c2
j


α
2

. (32)
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This and the positivity of the summands implies

lim inf
n→∞

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 ≥ x−α/2
 ∞∑

j=−∞

c2
j


α
2

. (33)

Thus it is only left to show that the limsup is bounded by the right hand side of (33). Using Markov’s
inequality yields

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 ≤ ∞∑
j=−∞

pnP
(
c2

jZ
2
1 > a2

npx
)

+

∞∑
j=−∞

c2
j

pn
a2

npx
E

(
Z2

11{c2
j Z

2
1≤a2

np x}

)
.

Since E
(
Z2

11{Z2
1≤·}

)
is a regularly varying function with index α/2 − 1 we obtain, by Potter’s bound,

Karamata’s Theorem and (5), that, for some constant C1 > 0,

c2
j

pn
a2

npx
E

(
Z2

11{c2
j Z

2
1≤a2

np x}

)
=

c2
j

x

E
(
Z2

11{c2
j Z

2
1≤a2

np x}

)
E

(
Z2

11{Z2
1≤a2

np x}

) pn
a2

np
E

(
Z2

11{Z2
1≤a2

np x}

)
≤C1

c2
j

x

(
c−2

j

)1−α/2+(α/2−δ/2)
x1−α/2 = C1x−α/2|c j|

δ.

Likewise, pnP(a−2
npZ2

1 > ·) is a regularly varying function with index α/2, thus we obtain, by the same
arguments as before, that

pnP
(
c2

jZ
2
1 > a2

npx
)
≤ C2x−α/2|c j|

δ.

With C = C1 + C2 this therefore implies

lim sup
n→∞

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 ≤ C
∞∑

j=−∞

|c j|
δx−α/2. (34)

Hence, by (32) and (34), we finally have, for some ε ∈ (0, 1), that

lim sup
n→∞

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 ≤ lim sup
n→∞

pP

 n∑
t=1

m∑
j=−m

c2
jZ

2
t− j > (1 − 2ε)a2

npx


+ lim sup

n→∞
pP

 n∑
t=1

∞∑
j=m+1

c2
jZ

2
t− j > εa

2
npx

 + lim sup
n→∞

pP

 n∑
t=1

−m−1∑
j=−∞

c2
jZ

2
t− j > εa

2
npx


≤ x−α/2

(1 − 2ε)−α/2
 m∑

j=−m

c2
j


α
2

+ Cε−α/2
∞∑

j=m+1

|c j|
δ + Cε−α/2

−m−1∑
j=−∞

|c j|
δ

 . (35)

Assumption (5) shows that the last two terms in (35) vanish for m → ∞. Letting ε → 0 thereafter
completes the proof. �

For 2 ≤ α < 4 and m-dependence, we state the upcoming lemma.
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Lemma 3.2. Assume that there exists an m ∈ N such that c j = 0 if | j| > m. Then we have, for
2 ≤ α < 4 and p, n going to infinity, that

p∑
i=1

εa−2
np(∑n

t=1 X2
it−nµX,α) →

∞∑
i=1

ε
Γ
−2/α
i

∑m
j=−m c2

j
. (36)

Proof. Note that we replace µX,α by µX in the following to simplify the notation. For any iid sequence
(Zt) with tail index 2 < α < 4 we have that

pP

 n∑
t=1

Z2
t − nµZ > a2

npx

→ x−α/2 (37)

where µZ = EZ2
1 . Indeed, [25], and in greater generality also [18], show that, for any x > 0,

P
(∑n

t=1 Z2
t − nµZ > a2

npx
)

nP
(
Z2

1 − µZ > a2
npx

) → 1. (38)

With P
(
Z2

1 − µZ > a2
npx

)
∼ P

(
Z2

1 > a2
npx

)
∼ p−1x−α/2, the result follows. Note that (38) also holds

for α = 2 if EZ2
11 < ∞. In case EZ2

11 = ∞ (which can only happen if α = 2), one has to replace
µZ by the sequence of truncated means µn

z = E(Z2
111{Z2

11≤a2
np}

). For notational simplicity, we exclude
infinite variance case in the following. It is treated analogously to the finite variance case, except that
everywhere µZ has to be replaced by µn

Z , µX by µn
X =

∑
k c2

kµ
n
Z , and finally µX,m by µn

X,m =
∑
|k|≤m c2

kµ
n
Z .

By the stationarity of the Z’s we have that

P


∣∣∣∣∣∣∣∣

m∑
j=−m

c2
j

n∑
t=1

(Z2
1,t − µZ) −

n∑
t=1

m∑
j=−m

c2
j(Z

2
1,t− j − µZ)

∣∣∣∣∣∣∣∣ > a2
npη


≤ P

 m∑
j=−m

c2
j

j∑
t=1− j

Z2
1,t > a2

npη

→ 0.

Hence, using (37), this yields

pP

 n∑
t=1

m∑
j=−m

c2
j(Z

2
1,t− j − µZ) > a2

npx

→ x−α/2

∣∣∣∣∣∣∣∣
m∑

j=−m

c2
j

∣∣∣∣∣∣∣∣
α/2

. (39)

This immediately implies that

p∑
i=1

εa−2
np

(∑n
t=1

∑m
j=−m c2

j (Z
2
i,t− j−µZ )

) → ∞∑
i=1

ε
Γ
−2/α
i

∣∣∣∣∑m
j=−m c2

j

∣∣∣∣α/2 .
Thus it is only left to show that, for any continuous f : R+ → R+ with compact support,

lim
n→∞

P

 p∑
i=1

∣∣∣∣∣∣∣∣ f
a−2

np

( n∑
t=1

X2
it − nµX

) − f

a−2
np

n∑
t=1

m∑
j=−m

c2
j(Z

2
i,t− j − µZ)


∣∣∣∣∣∣∣∣ > η

 = 0.
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For convenience, we define f (x) = 0 if x ≤ 0. Clearly, we have that∣∣∣∣∣∣∣∣
n∑

t=1

X2
it − nµX −

n∑
t=1

m∑
j=−m

c2
j(Z

2
i,t− j − µZ)

∣∣∣∣∣∣∣∣ ≤ 2
m−1∑
j=−m

m∑
k= j+1

|c jck|

∣∣∣∣∣∣∣
n∑

t=1

Zi,t− jZi,t−k

∣∣∣∣∣∣∣ .
Hence, it suffices to show that

a−2
np max

1≤i≤p

∣∣∣∣∣∣∣∣
∑
t∈Js

Zi,t− jZi,t−k

∣∣∣∣∣∣∣∣→ 0

for each fixed j ∈ {−m, . . . ,m−1}, k ∈ { j+1, . . . ,m} and s ∈ {0, . . . , k− j}, where Js B s+(k− j+1)N0.
Note that (Zi,t− jZi,t−k)t∈Js is a sequence of iid random variables with mean zero. Therefore we have,
by Markov’s inequality,

P

max
1≤i≤p

∣∣∣∣∣∣∣∣
∑
t∈Js

Zi,t− jZi,t−k

∣∣∣∣∣∣∣∣ > a2
npη

 ≤pP


∣∣∣∣∣∣∣∣
∑
t∈Js

Z1,t− jZ1,t−k

∣∣∣∣∣∣∣∣ > a2
npη


≤

p
η2a4

np

∑
t∈Js

Var(Z1,t− jZ1,t−k)

≤
pn

η2a4
np

(EZ2
11)2

=O
 pn

a4
np

 = O
(
(pn)1−4/αL(pn)−4

)
→ 0

since α < 4. �

Now we prove the major result of this section, that is, the point process convergence of the diago-
nal elements of the sample covariance XXT (or its centered version). This indirectly characterizes the
extremal behavior of the k-largest diagonal entries of XXT. Note that Proposition 3.5 holds for any
0 < β < ∞ in (10) independently of α ∈ (0, 4).

Proposition 3.5. Let 0 < α < 4 and suppose that (10) holds for some β > 0. Then we have that

p∑
i=1

εa−2
np(∑n

t=1 X2
it−nµX,α) →

∞∑
i=1

ε
Γ
−2/α
i

∑∞
j=−∞ c2

j
(40)

with µX,α and (Γi) as given in (7) and (11), respectively.

Proof. For notational simplicity we assume without loss of generality that Xit =
∑∞

j=0 c jZi,t− j, and
write µX = µX,α. The extension to the non-causal case is obvious.

We begin with the case of 0 < α < 2. First we prove the claim for finite linear processes Xit,m =∑m
j=0 c jZi,t− j. From Lemma 3.1 we already have that

p∑
i=1

εa−2
np

∑n
t=1

∑m
j=0 c2

j Z
2
i,t− j

D
−→
n→∞

∞∑
i=1

ε
Γ
−2/α
i

∑m
j=0 c2

j
. (41)
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Thus it is only left to show that all terms involving cross products are negligible. By [28, Theorem
4.2] it suffices to show, for any η > 0, that

lim
n→∞

P

 p∑
i=1

∣∣∣∣∣∣∣∣ f
a−2

np

n∑
t=1

X2
it,m

 − f

a−2
np

n∑
t=1

m∑
j=0

c2
jZ

2
i,t− j


∣∣∣∣∣∣∣∣ > η

 = 0 (42)

for any continuous function f : R+ → R+ with compact support supp( f ) ⊂ [c,∞] and c > 0. Choose
some 0 < γ < c and let K = [c − γ,∞]. On the set

Aγn =

max
1≤i≤p

∣∣∣∣∣∣∣∣
n∑

t=1

X2
it,m −

n∑
t=1

m∑
j=0

c2
jZ

2
i,t− j

∣∣∣∣∣∣∣∣ ≤ a2
npγ


the following is true: if a−2

np
∑n

t=1
∑m

j=0 c2
jZ

2
i,t− j < K, then the absolute difference in (42) is zero, else it

is bounded by the modulus of continuity ω(γ) = sup{| f (x)− f (y)| : |x− y| ≤ γ}. Hence, the probability
in (42) is bounded by

P

ω(γ)
p∑

i=1

εa−2
np

∑n
t=1

∑m
j=0 c2

j Z
2
i,t− j

(K) > η

 + P
((

Aγn
)c)

.

By (41), the first summand converges to

P

ω(γ)
∞∑

i=1

ε∑m
j=0 c2

j Γ
−2/α
i

(K) > η

 .
Since

∑∞
i=1 ε

∑m
j=0 c2

j Γ
−2/α
i

(K) < ∞ and ω(γ)→ 0 as γ → 0, this probability approaches zero as γ tends to

zero. To show that

P
((

Aγn
)c)
≤ P

2 m−1∑
j=0

m∑
k= j+1

|c jck|max
i=1:p

n∑
t=1

|Zi,t− jZi,t−k| > a2
npγ

 −→n→∞
0 (43)

we use the following observation for fixed j ∈ {0, . . . ,m − 1} and k ∈ { j + 1, . . . ,m}: the product
Zi,t− jZi,t−k has, because of independence, tail index α, and Zi,t− jZi,t−k and Zi,s− jZi,s−k are independent
if and only if |s − t| , k − j. Thus, we partition the natural numbers N into k − j + 1 pairwise disjoint
sets s + (k − j + 1)N0, s ∈ {0, . . . , k − j}. Then we have, by Proposition 3.2 and the independence of
the summands, that

a−2
np max

1≤i≤p

∑
t∈s+(k− j+1)N0

|Zi,t− jZi,t−k|
P
−→
n→∞

0,

for each s ∈ {0, . . . , k − j}. Since j, k only vary over finite sets this implies (43). Therefore we have
shown (40) for a finite order moving average Xit,m.

Now we let m go to infinity. Clearly, we have that

∞∑
i=1

ε
Γ
−2/α
i

∑m
j=0 c2

j

D
−→

m→∞

∞∑
i=1

ε
Γ
−2/α
i

∑∞
j=0 c2

j
. (44)

Thus, by [11, Theorem 3.2], it is only left to show that

lim
m→∞

lim sup
n→∞

P

 p∑
i=1

∣∣∣∣∣∣∣ f
a−2

np

n∑
t=1

X2
it

 − f

a−2
np

n∑
t=1

X2
it,m


∣∣∣∣∣∣∣ > η

 = 0. (45)
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By repeating the previous arguments, it suffices to show

lim sup
n→∞

P

a−2
np max

1≤i≤p

n∑
t=1

|X2
it − X2

it,m| > γ

 ≤ lim sup
n→∞

pP

a−2
np

n∑
t=1

|X2
1t − X2

1t,m| > γ

→ 0,

as m→ ∞. Clearly, we have that

X2
1t − X2

1t,m =

∞∑
j=m+1

c2
jZ

2
1,t− j + 2

∞∑
j=m+1

m∑
k=0

c jckZ1,t− jZ1,t−k +

∞∑
j=m+1

∞∑
k=m+1

k, j

c jckZ1,t− jZ1,t−k. (46)

For the first summand on the right hand side of equation (46) we have, by Lemma 3.1, that

pP

 n∑
t=1

∞∑
j=m+1

c2
jZ

2
1,t− j > ηa2

np

 −→n→∞

 ∞∑
j=m+1

c2
j


α/2

η−α/2 −→
m→∞

0.

Using Lemma 3.1 and the elementary inequality 2|ab| ≤ a2 + b2, we obtain for the second term in
equation (46) that

pP

2 n∑
t=1

∞∑
j=m+1

m∑
k=0

|c jckZ1,t− jZ1,t−k| > ηa2
np

 ≤ pP

 n∑
t=1

∞∑
j=m+1

m∑
k=0

|c jck|Z2
1,t− j >

η

2
a2

np


+ pP

 n∑
t=1

∞∑
j=m+1

m∑
k=0

|c jck|Z2
1,t−k >

η

2
a2

np

 ∼ 2
η

4

−α/2
 m∑

k=0

|ck|

α/2
 ∞∑

j=m+1

|c j|


α/2

,

and since
∑∞

j=0 |c j| < ∞, this term converges to zero as m → ∞. The third term in equation (46) can
be handled similarly. Thus the proof is complete for 0 < α < 2.

For 2 ≤ α < 4, Lemma 3.2 gives us the result for a finite moving average. Thus it is only left to
show that to show that

lim
m→∞

lim sup
n→∞

P

 p∑
i=1

∣∣∣∣∣∣∣ f (a−2
np

n∑
t=1

(X2
it − µX)

)
− f

(
a−2

np

n∑
t=1

(X2
it,m − µX,m)

)∣∣∣∣∣∣∣ > γ
 = 0

for any continuous f with compact support and γ > 0. By the arguments given before it suffices to
show that

lim
m→∞

lim sup
n→∞

pP


∣∣∣∣∣∣∣

n∑
t=1

(X2
1t − X2

1t,m − (µX − µX,m))

∣∣∣∣∣∣∣ > a2
npγ

 = 0.

Clearly, we have that

pP


∣∣∣∣∣∣∣

n∑
t=1

(X2
1t − X2

1t,m − (µX − µX,m))

∣∣∣∣∣∣∣ > a2
npγ


≤pP


∣∣∣∣∣∣∣
∞∑

k=m+1

c2
k

n∑
t=1

(Z2
1,t−k − µZ)

∣∣∣∣∣∣∣ > a2
np
γ

3


+ pP

2
∣∣∣∣∣∣∣
∞∑

k=m+1

m∑
l=0

ckcl

n∑
t=1

Z1,t−kZ1,t−l

∣∣∣∣∣∣∣ > a2
np
γ

3


+ pP

2
∣∣∣∣∣∣∣
∞∑

k=m+1

∞∑
l=k+1

ckcl

n∑
t=1

Z1,t−kZ1,t−l

∣∣∣∣∣∣∣ > a2
np
γ

3


= I + II + III
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We will show in turn that I, II, III → 0. We begin with I. Clearly, there either exist a t and a k such
that |ckZ1,t−k > anp|, or |ckZ1,t−k ≤ anp| for all t, k. This simple fact and Chebyshev’s inequality yield

I =pP


∣∣∣∣∣∣∣
∞∑

k=m+1

c2
k

n∑
t=1

(Z2
1,t−k − µZ)

∣∣∣∣∣∣∣ > a2
np
γ

3


≤
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k=m+1 c2
knE
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111{|ckZ1,t−k |>anp}
)
>a2
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γ
3

} = I1 + I2 + I3

For the first term we have by Karamata’s theorem that

lim
m→∞

lim sup
n→∞

I1 = lim
m→∞

∞∑
k=m+1

cαk = 0.

Another application of Karamata’s theorem shows that
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)
∼ |ck|

α/2−1 a2
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,

therefore

lim
n→∞

p1{∑∞
k=m+1 cα/2+1

k >p γ
3

}
I3

= 1.

However, p1{∑∞
k=m+1 cα/2+1

k >p γ
3

} = 0 for n sufficiently large, since p = pn → ∞ and

∞∑
k=m+1

cα/2+1
k < ∞.

As a consequence, I3 → 0. Regarding I2, observe that the covariance in
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is zero if t − k , t′ − k′. In the case of equality, t − k = t′ − k′, we have that
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)
Using Karamata’s theorem and Potter’s bound we obtain that there exists a C > 0 and an ε > 0 such
that pn

a4
np

E
(
Z4

1,1−k1{|min{ck ,ck′ }Z1,1−k |≤anp}

)
≤ C min{ck, ck′}

α/4−ε−1.

For m sufficiently large the coefficients become smaller than one, thus

min{ck, ck′}
α/4−ε−1 ≤ cα/4−ε−1

k cα/4−ε−1
k′ .
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All in all we obtain

lim
m→∞

lim sup
n→∞

I2 ≤
3C
γ
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k

2

= 0,

since
∑∞

k=0 ck < ∞. For the second term observe that it follows, using Chebyshev’s inequality, EZ11 =

0 and the independence of the Z’s, that
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2  m∑
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cl

2
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a4

np

 −→n→∞
0,

since 2 < α < 4. The remaining term III can be dealt with similarly to the previous term II. Hence the
proof is complete. �

3.4. Proofs of Theorem 1 and Theorem 2

In this section we use the foregoing results from Section 3.1, Section 3.2 and Section 3.3 to
complete the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. Denote by S k = (XXT)kk =
∑n

t=1 X2
kt the diagonal entries of XXT. Recall that

λ(1) ≥ . . . ≥ λ(p) are the upper order statistics of the eigenvalues of XXT−nµX,αIp with µX,α as given in
(7). Similarly we denote by S (1) ≥ . . . ≥ S (p) the upper order statistics of S k−nµX,α =

∑n
t=1 X2

kt−nµX,α.
Weyl’s Inequality, cf. [10, Corollary III.2.6], and Proposition 3.4 imply that

a−2
np max

1≤k≤p
|λ(k) − S (k)| = a−2

np max
1≤k≤p

|λk − S k| ≤ a−2
np

∥∥∥XXT − D
∥∥∥

2
P
−→
n→∞

0, (47)

where D = diag(XXT). From Proposition 3.5 we have

N̂n =

p∑
i=1

εa−2
np (S i−nµX,α) =

p∑
i=1

εa−2
npS (i)

D
−→
n→∞

N. (48)

Thus, by [28, Theorem 4.2], it suffices to show that

P(|N̂n( f ) − Nn( f )| > η) ≤ P

 p∑
i=1

∣∣∣∣∣∣ f
S (i)

a2
np

 − f
λ(i)

a2
np

∣∣∣∣∣∣ > η
 −→n→∞

0

for a nonnegative continuous function f with compact support supp( f ) ⊂ [c,∞], for some c > 0.
For convenience we set f (x) = 0 if x ≤ 0. Since N((c/2,∞]) < ∞ almost surely, we can choose
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some i ∈ N large enough such that the probability P(N((c/2,∞]) ≥ i) < δ/2. By (48), it follows
that P(a−2

npS (i) > c/2) = P(N̂n((c/2,∞]) ≥ i) → P(N((c/2,∞]) ≥ i) and thus, for n large enough,
P(a−2

npS (i) > c/2) < δ. Consequently, by (47), it follows that P(a−2
npλ(i) ≥ c) < 2δ. Since a−2

npS (i) ≤ c/2
and a−2

npλ(i) < c imply that both f (a−2
np M(k)) = 0 and f (a−2

npλ(k)) = 0 for all k ≥ i, we obtain
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c
2
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npλ(i) < c


≤3δ + P
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j=1
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S ( j)

a2
np

 − f
λ( j)

a2
np

∣∣∣∣∣∣ > η
 ,

which becomes arbitrarily small due to equation (47) and the fact that f is uniformly continuous. �

In the case when the entries of X are iid and have tail index α < 2, we can refine our techniques to
weaken the assumptions on the growth of p = pn, cf. Theorem 2.

Proof of Theorem 2. By assumption X = (Zit). First we consider the case (i) and assume that κ ≥ 1.
We will show that, for any fixed positive integer k,

λ(k)

S (k)

P
−→
n→∞

1. (49)

Equations (20) and (49) then imply∣∣∣∣∣∣S (k)

a2
np
−
λ(k)

a2
np
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∣∣∣∣∣∣1 − λ(k)

S (k)

∣∣∣∣∣∣ S (k)

a2
np

P
−→
n→∞

0,

and hence Nn → N as in the proof of Theorem 1. Define Mi = max1≤t≤n X2
it and denote by M(1) ≥

. . . ≥ M(p) the upper order statistics of M1, . . . ,Mp. Observe that the continuous mapping theorem
applied to (20) and (21) yields, for any fixed k,

S (k)

M(k)

P
−→
n→∞

1, and
‖X‖2∞
M(1)

P
−→
n→∞

1,

because κ ≥ 1. Now we start showing (49) by induction. For k = 1 we have, on the one hand, that

λ(1)

S (1)
=

∥∥∥XnXT
n
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2

S (1)
≤
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2
2
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∞

S (1)
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2
∞

M(1)

M(1)

S (1)

P
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1.

Let us denote by e1, . . . , ep the standard Euclidean orthonormal basis in Rp and by i1 the (random)
index that satisfies S i1 = S (1). Then we have, on the other hand, by the Minimax Principle [10,
Corollary III.1.2], that

λ(1)

S (1)
=

maxv∈Rp

〈
v, XXTv

〉
S (1)

≥

〈
ei1 , XXTei1

〉
S (1)

=
S i1

S (1)
= 1.
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This shows (49) for k = 1. To keep the notation simple, we describe the induction step only for k = 2.
The arguments for the general case are exactly the same. Denote by i2 the random index such that
S i2 = S (2). Let X(2) be the (p − 1) × n matrix which is obtained from removing row i1 from Xn and
denote by %(1) the largest eigenvalue of X(2)(X(2))T. Since we have already shown the claim for the
largest eigenvalue, it follows that %(1)/S (2) → 1 in probability. By the Cauchy Interlacing Theorem
[10, Corollary III.1.5] this implies λ(2)/S (2) ≤ %(1)/S (2) → 1. Another application of the Minimax
Principle yields

λ(2) = max
M⊂Rp

dim(M)=2

min
v∈M
‖v‖=1

vTXXTv ≥ min
v∈span{ei1 ,ei2 }

‖v‖=1

vTXXTv

= min
µ1,µ2∈R

(µ2
1 + µ2

2)−1
(
µ2

1S (1) + µ2
2S (2) + 2µ1µ2(XXT)i1i2

)
.

Since, by Proposition 3.2 and equation (20),∣∣∣∣∣ 2µ1µ2

µ2
1+µ2

2
(XXT)i1i2

∣∣∣∣∣
S (2)

≤
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np max1≤i< j≤p
∑n

t=1 |ZitZ jt|

a−2
npS (2)

P
−→
n→∞

0.

uniformly in µ1, µ2 ∈ R, an application of the the continuous mapping theorem finally yields that
λ(2)/S (2) ≥ 1 + oP(1), where oP(1) → 0 in probability as n → ∞. Thus the proof for κ ≥ 1 is
complete. Now let κ ∈ (0, 1). Since XTX and XXT have the same non-trivial eigenvalues, we consider
the transpose XT of X. This inverts the roles of p and n. Therefore, using Potter’s bounds and 1/κ > 1,
the result follows from the same arguments as before. Note that we are in a special case of Theorem 1
if κ = 0.

In case (ii) we have that n ∼ (1/c log(p/C))1/κ is a slowly varying function in p, thus an application
of Theorem 2 (i) to XT gives the result. �

3.5. Proof of Theorem 3
As we shall see, the proof of Theorem 3 will more or less follow the same lines of argument as

given for Theorem 1. We focus on the setting of Theorem 3 (i) here and mention (ii) and (iii) later.
The next result is a generalization of Proposition 3.5 allowing for random coefficients.

Proposition 3.6. Define X = (Xit) with Xit satisfying (13) and (14). Suppose (10) holds for some
β > 0. If (θi) is a stationary ergodic sequence, then, conditionally on (θi) as well as unconditionally,
we have

p∑
i=1

εa−2
np (

∑n
t=1 X2

it−nµX,α)
D
−→
n→∞

∞∑
i=1

ε
Γ
−2/α
i

(
E
∣∣∣∣∑∞j=−∞ c2

j (θ1)
∣∣∣∣α/2)2/α (50)

with µX,α and (Γi) as given in (7) and (11).

Proof. We prove the cases 0 < α < 2 and 2 ≤ α < 4 separately.
Let 0 < α < 2. We first prove that, conditionally on (θi),

p∑
i=1

εa−2
np

∑n
t=1

∑
j c2

j (θi)Z2
i,t− j

D
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ε
Γ
−2/α
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(
E
∣∣∣∣∑ j c2

j (θ1)
∣∣∣∣α/2)2/α (51)

by showing a.s. convergence of the Laplace functionals. By arguments from the proof of [36, Proposi-
tion 3.17] it suffices to show (15) only for a countable subset of the space of all nonnegative continuous
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functions with compact support. Thus we fix one nonnegative continuous function f with compact
support supp( f ) ⊂ [c,∞], c > 0. Conditionally on the process (θm), the points of the point process are
independent, and thus

E
(
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∑p
i=1 f (a−2

np
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t=1
∑

j c2
j (θi)Z2
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1
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)
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where Bi,p =
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with ν given by ν((x,∞]) B x−α/2E
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1
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Both claims will be justified later. By assumption (13), we have, using Lemma 3.1, almost surely
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,

and hence there exists a C > 0 such that Bi,p ≤ C for all i, p ∈ N a.s. The elementary inequality

e
−x
1−x ≤ 1 − x ≤ e−x ∀x ∈ [0, 1], equivalently e

−x2
1−x ≤ (1 − x)ex ≤ 1 ∀x ∈ [0, 1], implies together with

(54), for some c1 > 0, that
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As a consequence we have that the product in (52) is asymptotically equivalent to
p∏

i=1

e−
1
p Bi,p = e−

1
p
∑p

i=1 Bi,p a.s.
−→
n→∞

e−B = e−
∫

(1−e− f (x))ν(dx),

where the convergence follows from (53). This implies the almost sure convergence of the conditional
Laplace functionals, therefore (51) holds conditionally on (θi). Using (13) one shows similarly as in
the proof of Proposition 3.5, conditionally on (θi), that (51) implies (50). Taking the expectation yields
that (50) also holds unconditionally.

Proof of (53) and (54). As a function in x, pP(
∑n

t=1 Z2
1t > a2

npx) is decreasing and converges
pointwise to the continuous function x−α/2 as n → ∞. Therefore this convergence is uniform on
compact intervals of the form [x0,∞] with x0 > 0. Now fix x > 0 and let di =
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Since (di) is an instantaneous function of the ergodic sequence (θi), it is also ergodic and thus

1
p

p∑
i=1

dα/2i
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−→
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E|d1|
α/2. (56)

As a consequence of (55) and (56) we obtain∣∣∣∣∣∣∣1p
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Then it is straightforward to show, as in the proof of Lemma 3.1, using (13), that

1
p

p∑
i=1

pP

 n∑
t=1

∑
j

c j(θi)Z2
1,t− j > a2

npx
∣∣∣∣θi

 a.s.
−→
n→∞

x−α/2E|d1|
α/2.

The vague convergence of above sequence of measures implies p−1 ∑p
i=1 Bi,p → B almost surely. In

exactly the same way one can show that p−1 ∑p
i=1 B2

i,p converges, thus p−2 ∑p
i=1 B2

i,p → 0 a.s., which
establishes (53) and (54) as claimed.

Let 2 ≤ α < 4. As before one can show, for any m < ∞, that
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where dm
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j(θ1). Hence, an adaptation of the proof of Lemma 3.2 yields, for the truncated
process
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that, conditionally on the sequence (θi),
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It is only left to show that this result extends to the more general setting where m = ∞. By Proposi-
tion 3.5 it suffices to show that

lim
m→∞

lim sup
n→∞

p∑
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npγ
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To proof this claim, follow the string of arguments of Proposition 3.5 and make use of the fact that∣∣∣∣∣∣∣
p∑

i=1

c j(θi)

∣∣∣∣∣∣∣ ≤ pc̃ j.

�

28



Proof of Theorem 3. Proof of (i). If we condition on (θi), the proofs of Propositions 3.3 and 3.4
easily carry over to this more general setting when we make use of assumption (13). Taking the
expectation then yields convergence in operator norm unconditionally. A combination of this together
with Proposition 3.6 completes the proof.

Proof of (ii). Note that (56) is the only step in the proof of Proposition 3.6 where we use the
ergodicity of the sequence (θi). But also if (θi) is just stationary, the ergodic theorem implies that the
average in (56) converges to the random variable Y = E

(
|d1|

α/2|G
)
, where G is the invariant σ-field

generated by (θi). By construction, Y depends on α and c j(·), but it is independent of (Γi), since (θi) is
independent of (Zit).

Proof of (iii). In this setting (θi) is a Markov chain which may not be stationary. But since we
derive all results in the proof of Theorem 3 (i) conditionally on (θi) and then take the expectation,
stationarity is in fact not needed. The theory on Markov chains, see [32], in particular their Theorem
17.1.7 for Markov chains on uncountable state spaces, shows that (56) holds if the expectation is taken
with respect to the stationary distribution of the Markov chain. �
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