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A spectral representation for regularly varying Lévy processes with index between one
and two is established and the properties of the resulting random noise are discussed
in detail giving also new insight in the L2-case where the noise is a random orthogonal
measure.

This allows a spectral definition of multivariate regularly varying Lévy-driven con-
tinuous time autoregressive moving average (CARMA) processes. It is shown that they
extend the well-studied case with finite second moments and coincide with definitions
previously used in the infinite variance case when they apply.
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1. Introduction

Being the continuous time analog of the well-known ARMA processes (see e.g. [7]), continuous
time ARMA (CARMA) processes have been extensively studied over the recent years (see e.g. [5,
6, 8, 33] and references therein) and widely used in various areas of application like engineering and
finance (e.g. [21, 33]). The advantage of continuous time modeling is that it allows handling irregularly
spaced time series and in particular high frequency data often appearing in finance. Originally, driving
processes of CARMA models were restricted to Brownian motion; however, [5] allowed for Lévy
processes which have a finite r-th moment for some r > 0.

In practice multivariate models are necessary in many applications in order to take account of the
joint behavior of several times series. The multivariate version of the CARMA process (MCARMA)
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has been introduced in [24] where an explicit construction using a state space representation and a
spectral representation of the driving Lévy process in the L2-case is given.

For the analysis of many statistical and probabilistic problems in conjunction with various stochas-
tic processes, a significant tool is often provided by the spectral representations of these processes.
For instance, the spectral representations of symmetric stable processes have successfully been used
to solve prediction and interpolation problems (see e.g. [11, 17]) and to study structural and path
properties for certain subclasses of these processes (see e.g. [9, 28]).

However, in [24] a spectral representation of MCARMA processes is only obtained under the as-
sumption that the driving Lévy process has finite second moments. On the contrary, there are impor-
tant applications where it seems to be adequate to relax that assumption, see e.g. [16], where a stable
CARMA(2,1) model is fitted to spot prices from the Singapore New Electricity Market.

The aim of this paper is to introduce multivariate CARMA processes that are driven by a regularly
varying Lévy process and to establish a spectral representation for them. The latter will be derived
from a spectral representation of the underlying Lévy process which is, apart from the fact that we
deal with regularly varying processes which are a generalization of α-stable processes, a main differ-
ence to the works by Cambanis, Houdré, Makagon, Mandrekar and Soltani (see [10, 12, 23]) where
spectral representations are deduced directly for moving averages of the underlying stable process.
Furthermore, we study in detail properties of the corresponding random noise for which so far only
existence has been addressed in the literature to the best of our knowledge. In this connection we are
going to prove that the increments of the noise are neither independently nor stationarily scattered
giving also new insight in the L2-case where the corresponding random orthogonal measure has hence
always (except in the purely Brownian setting) uncorrelated but dependent increments. Moreover, it
is shown that the random noise inherits moments exactly and always has a Lévy measure around zero
with infinite activity. Finally, if the underlying Lévy process has a moment generating function in a
neighborhood of zero then so does its corresponding noise.

The remainder of this paper is organized as follows. In Section 2 we start with a brief overview of
notation and then give a summary of the concept of multivariate regular variation. The third section
derives a spectral representation of regularly varying Lévy processes followed by a detailed discussion
of the properties of the resulting random noise. Thereafter, a spectral definiton of multivariate regularly
varying CARMA processes is given in the fourth section. We explain that in a sense this spectral
representation (in the summability sense) is optimal, i.e. it cannot be improved in general to a bona fide
spectral representation. The last section shows consistency of our definition with the so-called causal
MCARMA processes, introduced in [24]. A brief summary of some results for Fourier transforms on
the real line necessary for our proofs can be found in the appendix.

2. Preliminaries

2.1. Notation

Given the real numbers R we use the convention R+ := (0,∞). For the minimum of two real numbers
a,b ∈ R we write shortly a∧ b. The real and imaginary part of a complex number z ∈ C is written
as Re(z) and Im(z), respectively. The set of n× d matrices over the field K is denoted by Mn×d(K),
where K ∈ {R,C}. We set Md(K) := Md×d(K) and define Sd(K) as the linear subspace of symmetric
and Hermitian matrices in the real and complex case, respectively. The positive semidefinite cone is
denoted by S+d (K), the transpose of A ∈Mn×d(R) is written as A′, the complex conjugate transpose of
A ∈Mn×d(C) as A∗ and the identity matrix in Md(K) shall be denoted by Id .
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On K ∈ {R,C} the Euclidean norm is denoted by | · | whereas on Kd it will be usually written as
‖ ·‖. Recall the fact that two norms on a finite dimensional linear space are always equivalent which
is why our results remain true if we replace the Euclidean norm by any other norm. A scalar product
on linear spaces is written as 〈 · , · 〉; in Rd and Cd , we again usually take the Euclidean one. If X
and Y are normed linear spaces, let B(X ,Y ) be the set of bounded linear operators from X into Y . On
B(X ,Y ) we will usually use the operator norm which, in the case of Y being a Banach space, turns
B(X ,Y ) itself into a Banach space. In particular we always equip Mn×d(K) = B(Kd ,Kn) with the
corresponding operator norm if not stated otherwise. If X is a topological space, we denote by B(X)
the Borel σ -algebra on X , that is the smallest σ -algebra on X containing all open subsets of X . The
Lebesgue measure on (Rd ,B(Rd)) is written as λ d .

The collection of all Kd-valued, K ∈ {R,C}, random variables defined on some probability space

(Ω,F ,P) is written as L0(Ω,F ,P;Kd). For two random variables X and Y the notation X D
=Y means

equality in distribution. For X ∈ L0(Ω,F ,P;Kd) we say that X ∈ Lp(Ω,F ,P;Kd), 1 ≤ p < ∞, if
E[‖X‖p] is finite. If we define the norm ‖X‖Lp := (E[‖X‖p])1/p and, as usual, do not distinguish
between random variables and equivalence classes of random variables, Lp(Ω,F ,P;Kd) becomes a
Banach space. If we consider a sequence of random variables (Xn)n∈N, we shall denote convergence

in probability of the sequence to some random variable X by Xn
P→ X and convergence in distribution

by Xn
w→ X .

2.2. Multivariate Regular Variation

For the analysis of the tail behavior of stochastic processes, the concept of regular variation is well
established. For detailed introductions into the different approaches of multivariate regular variation,
we refer the reader to [22] and [27].

We start with a definition from [18]. Let therefore v→ denote vague convergence. It is defined on the
one-point uncompactification Rd\{0} (where R := [−∞,∞]), which assures that the Borel sets of Rd

that are bounded away form the origin can be referred to as the relatively compact sets in the vague
topology.

Definition 2.1 (Multivariate Regular Variation).

(i) An Rd-valued random vector X is called regularly varying with index α > 0, if there exist a
function l : R→ R which is slowly varying at infinity and a non-zero Radon measure κ defined
on B(Rd\{0}) with κ(Rd\Rd) = 0 such that, as u→ ∞,

uα l(u)P(u−1X ∈ · ) v→ κ( · )

on B(Rd\{0}). We write X ∈ RV (α, l,κ).

(ii) Similarly, we call a Radon measure ν regularly varying, if α , l and κ exist as above such that
uα l(u)ν(u · ) v→ κ( · ) on B(Rd\{0}) as u→ ∞ and we write ν ∈ RV (α, l,κ).

(iii) We say that a complex random vector X = (X1, . . . ,Xd) is regularly varying if and only if the real
random vector (Re(X1), Im(X1), . . . , Re(Xd), Im(Xd)) is regularly varying.

(iv) A d-dimensional stochastic process (Xt)t∈R is called regularly varying with index α if all its
finite dimensional distributions are regularly varying with index α .
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Since we consider Lévy-driven CARMA processes, we recall that a two-sided Lévy process L =
(Lt)t∈R in Rd is determined by its characteristic function in the Lévy-Khintchine form E

[
ei〈z,Lt〉

]
=

exp{|t| ·ψL(sgn(t)z)}, t ∈ R, with

ψL(z) = i〈γ,z〉− 1
2
〈z,Σz〉+

∫
Rd

(
ei〈z,x〉−1− i〈z,x〉1[0,1](‖x‖)

)
ν(dx), z ∈ Rd , (2.1)

where γ ∈Rd , Σ∈ S+d (R) and ν is a measure on (Rd ,B(Rd)) satisfying
∫
Rd

(
1∧‖x‖2 )

ν(dx)< ∞ and
ν({0}) = 0. The triplet (γ,Σ,ν) is referred to as the generating triplet of the Lévy process, ν is said to
be the Lévy measure of L and 1[0,1](‖x‖) is called truncation function. The same representation is true
for the characteristic function of any infinitely divisible distribution. A general introduction to Lévy
processes and infinitely divisible distributions can be found in [31].

The following very useful connection between regular variation of an infinitely divisible random
variable and its Lévy measure exists.

Theorem 2.2 (cf. [18], Proposition 3.1).
Let X be an infinitely divisible Rd-valued random vector with Lévy measure ν . Then X ∈ RV (α, l,κ)
if and only if ν ∈ RV (α, l,κ).

It is then easy to show that analogously a d-dimensional Lévy process L = (Lt)t∈R is regularly varying
of index α if and only if its Lévy measure ν is regularly varying of index α . Strictly speaking the Lévy
process L is not regularly varying since L0 ≡ 0 a.s., but, as all other finite dimensional margins are
regularly varying, we neglect that inaccuracy.

3. Multivariate Regularly Varying Lévy Processes

In this section we discuss multivariate Lévy processes which are regularly varying with index between
one and two. We shall derive a spectral representation and discuss properties of the associated random
noise.

3.1. Spectral Representation of Regularly Varying Lévy Processes

Let E (R) denote the collection of all elementary subsets of R, i.e. the ring generated by the semi-ring
of half-open bounded intervals [a,b) with −∞ < a < b < ∞. Since we derive a spectral representation
in the summability sense, it will be sufficient to define the associated random noise on E (R). We
call the arising dependently scattered, additive random noises “random contents” in order to place
emphasis on the fact that we do not necessarily have σ -additive set functions.

Definition 3.1 (Regularly Varying Random Content). For α ∈ (1,2] a d-dimensional regularly
varying random content with index α is a set function M : E (R)→ L0(Ω,F ,P;Cd) satisfying

(i) M(A) is a complex d-dimensional random vector that is regularly varying with index α for all
A ∈ E (R),

(ii) M(
⋃n

i=1 Ai) = ∑
n
i=1 M(Ai) a.s. whenever A1, . . . , An ∈ E (R) are pairwise disjoint (i.e. M is addi-

tive).

4



Integration of simple functions f = ∑
n
i=1 fi1Ai (with fi ∈Md(C), i = 1, . . . ,n, n ∈N, and Ai ∈ E (R)

mutually disjoint) with respect to M is defined by∫
R

f dM :=
n

∑
i=1

fi M(Ai)

which is obviously a complex d-dimensional random vector. The integral is linear for simple functions
and it is well-defined due to the additivity of M.

In order to extend integration to a more general class of integrands the following theorem will be
crucial. Therefore, we define the set

Lδ (Mk×d(R)) :=
{

f : R→Mk×d(R) measurable,
∫
R
‖ f (t)‖δ dt < ∞

}
.

Theorem 3.2. Let L = (Lt)t∈R be a d-dimensional Lévy process with E[L1] = 0 and generating triplet
(γ,Σ,ν) where ν is regularly varying with index α ∈ (1,2]. Let f : R→Mk×d(R) be measurable and
fn : R→Mk×d(R) be a sequence of measurable functions such that fn→ f as n→ ∞ in Lδ (Mk×d(R))
for some δ < α . Moreover, assume that ‖ fn(s)− f (s)‖+ ‖ f (s)‖ ≤C for all n ∈ N, s ∈ R and some
constant C > 0. Then the sequence of integrals

∫
R fn dL converges in probability to

∫
R f dL as n→ ∞.

Note that this continuity result for integrals with respect to Lévy processes is of general interest of its
own. Before we pass on to the proof, we recall a result regarding the existence of these integrals.

Theorem 3.3 (cf. [25], Theorem 2.5).
Let L = (Lt)t∈R be a d-dimensional Lévy process with generating triplet (γ,Σ,ν), let ν be regularly
varying with index α ∈ (1,2] and let f : R→Mk×d(R) be measurable. Then f is L-integrable in the
sense of Rajput and Rosiński [26] if it is bounded, E[L1] = 0 and f ∈ Lδ (Mk×d(R)) for some δ < α .

Proof of Theorem 3.2.
Note first that the integrals

∫
R fn dL and

∫
R f dL are well-defined due to Theorem 3.3. Letting gn :=

fn− f , we have to show that
∫
R gn dL P→ 0 which is equivalent to

∫
R gn dL w→ 0.

Now the distribution of every
∫
R gn dL is infinitely divisible and possesses the generating triplet

(γn,Σn,νn) given by (cf. [26, Theorem 2.7] and [25, Theorem 2.4] for a multivariate extension)

γn =
∫
R

(
gn(s)γ +

∫
Rd

gn(s)x
(
1[0,1](‖gn(s)x‖)−1[0,1](‖x‖)

)
ν(dx)

)
ds,

Σn =
∫
R

gn(s)Σgn(s)′ds and νn(B) =
∫
R

∫
Rd
1B(gn(s)x)ν(dx)ds, B ∈B(Rk

∗),

where Rk
∗ := Rk\{0} denotes the punctured Euclidean space.

In order to use [31, Theorem 8.7], we change the truncation function in (2.1) from 1[0,1](‖x‖) to
the continuous truncation function c(x) := 1[0,1](‖x‖)+1(1,2](‖x‖)(2−‖x‖). Consequently (cf. [31,
Remark 8.4]) the generating triplet of

∫
R gn dL changes to (γn,c,Σn,νn)c where

γn,c = γn +
∫
Rk

x
(
c(x)−1[0,1](‖x‖)

)
νn(dx) = γn +

∫
{‖x‖∈(1,2]}

x(2−‖x‖)νn(dx).

The remainder of the proof is dedicated to the verification of conditions (1) - (3) in [31, Theorem 8.7].
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To this end we first show that∫
R

∫
Rd

(
1∧‖gn(s)x‖2

)
ν(dx)ds n→∞→ 0. (3.1)

We get ∫
R

∫
Rd

(
1∧‖gn(s)x‖2

)
ν(dx)ds

=
∫
R

∫
Rd
1{‖gn(s)x‖>1} ν(dx)ds+

∫
R

∫
Rd
‖gn(s)x‖2

1{‖gn(s)x‖≤1} ν(dx)ds. (3.2)

Arguing in an analogous manner as in the proof of [25, Theorem 2.5] and using the assumption that gn

converges to 0 in Lδ (Mk×d(R)) we deduce that the first term on the right-hand side of (3.2) converges
to 0 as n→ ∞. The second term on the right hand side of (3.2) can be bounded by∫

R

∫
Rd
‖gn(s)x‖2

1{‖gn(s)x‖≤1} ν(dx)ds

≤
∫
R
‖gn(s)‖2 ds

∫
{‖x‖<1}

‖x‖2
ν(dx)+

∫
R
‖gn(s)‖δ ds

∫
{‖x‖≥1}

‖x‖δ
ν(dx) n→∞→ 0

where we used the fact that the boundedness of the sequence gn together with the convergence to 0
in Lδ (Mk×d(R)) implies that gn converges to 0 also in L2(Mk×d(R)). Moreover, note that the integral∫
{‖x‖≥1} ‖x‖

δ
ν(dx)< ∞ due to [31, Corollary 25.8], since 0 < δ < α and hence the Lévy process has

a finite δ -th moment. Thus (3.1) is shown.
Let us now verify condition (1) of [31, Theorem 8.7]. Therefore, we show that νn converges in

total variation to the zero measure outside of any fixed neighborhood of 0. Indeed, we obtain for any
Uε =

{
x ∈ Rk : ‖x‖< ε

}
with ε > 0

νn(Rk\Uε) = λ
1⊗ν

({
(s,x) ∈ R×Rd : ‖gn(s)x‖ ≥ ε

})
≤ 1

1∧ ε2

∫
R

∫
Rd

(
1∧‖gn(s)x‖2

)
ν(dx)ds

where the right-hand side converges to 0 by virtue of (3.1).
As to condition (2), note first that ‖Σn‖ ≤ ‖Σ‖ ·

∫
R ‖gn(s)‖2 ds n→∞→ 0 since gn converges to 0 in

L2(Mk×d(R)) as previously noted. Hence, using again (3.1) we obtain for any ε ∈ (0,1),

|〈z,Σn,εz〉| ≤ |〈z,Σnz〉|+
∫
{‖y‖≤ε}

〈z,y〉2 νn(dy)

= |〈z,Σnz〉|+
∫
{(s,x)∈R×Rd :‖gn(s)x‖≤ε}

〈z,gn(s)x〉2 (λ 1⊗ν)(d(s,x))

≤ ‖z‖2
(
‖Σn‖+

∫
R

∫
Rd

(
1∧‖gn(s)x‖2

)
ν(dx)ds

)
n→∞→ 0.

This in particular yields lim
ε↘0

limsup
n→∞

|〈z,Σn,εz〉|= 0 for all z ∈ Rk.

Finally we show condition (3), i.e. γn,c→ 0 as n→ ∞. We immediately obtain that∫
{‖x‖∈(1,2]}

‖x‖(2−‖x‖)νn(dx)≤ νn ({‖x‖ ∈ (1,2]}) n→∞→ 0

since νn converges in total variation to the zero measure outside of any fixed neighborhood of 0. The
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assumption E[L1] = 0 implies γ = −
∫
{‖x‖>1} xν(dx) (cf. [31, Example 25.12]). Thus we can choose

any ξ ∈ (δ ,α), ξ > 1 and get

‖γn‖ ≤
∫
R

∥∥∥∥gn(s)γ +
∫
{‖x‖>1}

gn(s)x1{‖gn(s)x‖≤1} ν(dx)−
∫
{‖x‖≤1}

gn(s)x1{‖gn(s)x‖>1} ν(dx)
∥∥∥∥ds

≤
∫
R

∫
Rd
‖gn(s)x‖1{‖gn(s)x‖>1} ν(dx)ds≤

∫
R

∫
Rd
‖gn(s)x‖ξ

1{‖x‖≥ 1
C} ν(dx)ds

≤Cξ−δ

∫
R
‖gn(s)‖δ ds

∫
{‖x‖≥ 1

C}
‖x‖ξ

ν(dx) n→∞→ 0

since gn → 0 in Lδ (Mk×d(R)). Note again that
∫
{‖x‖≥ 1

C} ‖x‖
ξ

ν(dx) is finite since 0 < ξ < α and
hence the underlying Lévy process has a finite ξ -th moment. Together this shows γn,c→ 0 as n→ ∞.

Now to conclude the proof we can use [31, Theorem 8.7] which yields
∫
R gn dL w→ 0.

The following theorem is our first main result establishing a spectral representation in the summa-
bility sense of regularly varying Lévy processes.

Theorem 3.4. Let L = (Lt)t∈R be a Lévy process in Rd , regularly varying of index α ∈ (1,2] and
suppose E[L1] = 0. Then there is a regularly varying random content M : E (R)→ L0(Ω,F ,P;Cd)
with index α such that

Lt = P− lim
λ→∞

∫
λ

−λ

eitµ −1
iµ

·
(

1− |µ|
λ

)
M(dµ), t ∈ R,

where P− lim denotes the limit in probability. The random content M is given by

M(A) =
1√
2π

∫
∞

−∞

1̂A(µ)L(dµ), A ∈ E (R),

where 1̂A is the Fourier transform of 1A (see appendix).

Proof.
Step 1: We first show that M is well-defined and a regularly varying random content on E (R). For
−∞ < a < b < ∞ we obtain

1̂[a,b)(µ) =
1√
2π
· e
−iaµ − e−ibµ

iµ
=

1√
2π

(
sin(bµ)− sin(aµ)

µ
+ i · cos(bµ)− cos(aµ)

µ

)
, µ ∈ R,

which is obviously a bounded element of Lδ (C) for arbitrary δ > 1. This implies that, for any A ∈
E (R) and any δ > 1, the Fourier transform 1̂A is bounded and in Lδ (C) and hence M is well-defined
by virtue of Theorem 3.3. A simple application of [25, Theorem 3.2] shows that M is a regularly
varying random content with index α .
Step 2: Next we want to study integration of more general than simple functions with respect to M.
For simple functions f = ∑

n
i=1 fi1Ai we deduce, using the linearity of the Fourier transformation, the

identity ∫
∞

−∞

f dM =
n

∑
i=1

fi M(Ai) =
1√
2π

∫
∞

−∞

n

∑
i=1

fi1̂Ai dL =
1√
2π

∫
∞

−∞

f̂ dL. (3.3)

If now f : R→Md(C) is an element of Lp(Md(C)) for some p ∈ [1,2] such that there is a sequence
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of E (R)-simple functions fn satisfying

f̂n
Lδ (Md(C))→ f̂ as n→ ∞ for some δ < α and (3.4)∥∥ f̂n(µ)− f̂ (µ)

∥∥+∥∥ f̂ (µ)
∥∥≤C for all n ∈ N, µ ∈ R and some constant C > 0

(recall that for almost all µ ∈ R the Fourier transform f̂ (µ) is equal to limk→∞
1√
2π

∫ nk
−nk

e−ixµ f (x)dx

for a suitably chosen subsequence (nk)k∈N, otherwise we use the convention f̂ (µ) = 0), then we define
the integral

∫
∞

−∞
f dM as the limit in probability of the sequence of simple integrals

∫
∞

−∞
fn dM.

Note that this sequence of integrals is well-defined since every fn is E (R)-simple. Since we can
always identify C with R2 and Cd with

(
R2
)d and since the multiplication of two complex numbers

x = x1 + ix2 and y = y1 + iy2 can be regarded as the (real) matrix-vector multiplication(
x1 −x2
x2 x1

)
·
(

y1
y2

)
,

it is easy to see that Theorem 3.2 holds with functions that take values in the complex k×d matrices
as well. Thus we have ∫

∞

−∞

f̂n dL P→
∫

∞

−∞

f̂ dL (3.5)

as n→ ∞. Using (3.3), we know that
∫

∞

−∞
fn dM = 1√

2π

∫
∞

−∞
f̂n dL and hence the sequence of simple

integrals
∫

∞

−∞
fn dM converges in probability which shows that

∫
∞

−∞
f dM is well-defined. Moreover,

(3.5) immediately yields ∫
∞

−∞

f dM =
1√
2π

∫
∞

−∞

f̂ dL. (3.6)

We shall call such functions M-integrable.
Step 3: Let us now define, for any −∞ < a < b < ∞,

f (µ) :=
eibµ − eiaµ

iµ
and Φλ (µ) :=

(
1− |µ|

λ

)
1[−λ ,λ ](µ), µ ∈ R.

Then f ·Φλ : R → C is continuous with compact support on R. Moreover, note that f Φλ is M-
integrable. For, writing

f (µ) ·Φλ (µ) =

(
sin(bµ)− sin(aµ)

µ
− i · cos(bµ)− cos(aµ)

µ

)
·
(

1− |µ|
λ

)
1[−λ ,λ ](µ), µ ∈ R,

one immediately verifies that there is a lower sequence of E (R)-simple functions such that

| fn| ≤ | f Φλ | , Var( fn)≤ Var( f Φλ )< ∞ and fn
L1(C)→ f Φλ as n→ ∞

where Var( · ) denotes the total variation (cf. [10, proof of Theorem 3.1]). We show that f̂n→ f̂ Φλ in
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Lδ (C) as n→ ∞ for any δ ∈ (1,α). We have

∥∥ f̂n− f̂ Φλ

∥∥δ

Lδ =
∫ 1

−1

∣∣ f̂n(µ)− f̂ Φλ (µ)
∣∣δ dµ +

∫
{|µ|>1}

∣∣ f̂n(µ)− f̂ Φλ (µ)
∣∣δ dµ

≤ 2 · ‖ fn− f Φλ‖δ

L1 +
∫
{|µ|>1}

∣∣ f̂n(µ)− f̂ Φλ (µ)
∣∣δ dµ (3.7)

where the first addend vanishes as n→ ∞. Integration by parts yields∣∣ f̂n(µ)
∣∣≤ ∣∣∣∫

R
fn(s)e−iµs ds

∣∣∣= ∣∣∣∫
R

fn(s)d
(
− 1

iµ
e−iµs

)
(s)
∣∣∣≤ 1
|µ|

(
2sup

s
| fn(s)|+Var( fn)

)
≤ 1
|µ|

(
2sup

s
| f (s)Φλ (s)|+Var( f Φλ )

)
and since

∣∣ f̂n(µ)− f̂ Φλ (µ)
∣∣ ≤ ‖ fn− f Φλ‖L1

n→∞→ 0 for all µ ∈ R, we obtain, due to the Dominated
Convergence Theorem, that the second term in (3.7) vanishes as well as n→ ∞. The additional bound-
edness condition is obvious and hence f Φλ is indeed M-integrable.
Step 4: We set g(µ) :=

√
2π1[a,b)(µ) and h(µ) := g(−µ), µ ∈ R. Then ĥ = f and hence, due to the

“inversion formula” (see [19, p. 158]) and Theorem A.1,

f̂ Φλ = Φ̂λ ĥ
(A.1)
=

(A.2)

̂̂Fλ ∗h = (Fλ ∗h)(−· ) = Fλ ∗g
Lδ (C)→ g as λ → ∞

for any 1≤ δ < α . Thus, applying again Theorem 3.2, we deduce∫
∞

−∞

f Φλ dM
(3.6)
=

1√
2π

∫
∞

−∞

f̂ Φλ dL =
1√
2π

∫
∞

−∞

(Fλ ∗g)dL P→ 1√
2π

∫
∞

−∞

gdL = Lb−La as λ → ∞

and the claimed spectral representation for regularly varying Lévy processes is shown.

Remark 3.5.

(i) If the Lévy process is even symmetric α-stable with α ∈ (1,2), then the limit in probability
which occurs in the spectral representation of the Lévy process in Theorem 3.4 can be replaced
by a limit in Lp(Ω,F ,P;Cd) for any p < α . For more details and a comprehensive treatment of
α-stable concepts we refer to [30].

(ii) The assumption (3.4), which has been used in the second step in order to extend integration with
respect to M to more general integrands, is strong. However, as one can observe from Step 3
in the preceding proof, it holds for any continuous function f with compact support on R if f
is in addition of bounded variation. All the functions appearing in connection with multivariate
regularly varying CARMA processes shall be of this type (cf. upcoming Proposition 4.1 and
Lemma 4.2).

3.2. Properties of the Resulting Random Content

Now we discuss distributional and moment properties of the resulting random content M defined in
Theorem 3.4. Moreover, we study characteristics of its increments and its corresponding Lévy mea-
sure. Regarding the associated noise M there is, apart from a brief treatment of the Fourier transform
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of a compensated Poisson process in [13, Example 8.4], to the best of our knowledge hardly anything
in the literature.

Let us first characterize the distribution of the random content M by applying its definition and [26,
Theorem 2.7].

Proposition 3.6. Let the driving Lévy process L have generating triplet (γ,Σ,ν), then the distribution
of M(A) is infinitely divisible for any A ∈ E (R) and its generating triplet is (γM(A),ΣM(A),νM(A)),
where

γM(A) =
1√
2π

∫
R

(
1̂A(s)γ +

∫
Rd
1̂A(s)x

(
1[0,
√

2π](‖1̂A(s)x‖)−1[0,1](‖x‖)
)

ν(dx)
)

ds,

ΣM(A) =
1

2π

∫
R
1̂A(s)Σ 1̂A(s)∗ds and νM(A)(B) =

∫
R

∫
Rd
1B

(
1√
2π

1̂A(s)x
)

ν(dx)ds, B ∈B(Cd
∗).

The next question we cover is whether the increments of M are independently or stationarily scat-
tered.

Theorem 3.7. Let L = (Lt)t∈R be a two-sided Lévy process in Rd with E[L1] = 0 and generating
triplet (γ,Σ,ν). Assume moreover that ν is regularly varying with index α ∈ (1,2] and let M be the
associated regularly varying random content of Theorem 3.4. Then M is neither independently nor
stationarily scattered.

Proof. Assume that the increments of M =
(
M(1), . . . , M(d)

)
were independent such that, in partic-

ular, ReM(1)([a1,b1)) and ReM(1)([a2,b2)) have to be independent for disjoint intervals [a1,b1) and
[a2,b2). Since ν is regularly varying, it is by definition non-trivial and thus w.l.o.g. the Lévy measure
of the first component L(1) of L, denoted by ν(1), has to be non-trivial. The Lévy measure of(

ReM(1)([a1,b1))

ReM(1)([a2,b2))

)
=

1√
2π

∫
R

(
Re 1̂[a1,b1)

Re 1̂[a2,b2)

)
dL(1) =:

∫
R

gdL(1)

is given by (see again [26, Theorem 2.7]) ν̃(B) =
∫
R
∫
R1B(g(s)x)ν(1)(dx)ds for any B ∈ B(R2

∗).
Then, under our independence assumption, [31, Exercise 12.8] implies that ν̃ has to be concentrated
on D :=

{
(x,y) ∈ R2 : x = 0 or y = 0

}
.

But, letting N := {s ∈ R : sin(b1s) = sin(a1s)}∪{s ∈ R : sin(b2s) = sin(a2s)}, we have

ν̃
(
R2\D

)
=
∫
R

∫
R
1R2\D(g(s)x)ν

(1)(dx)ds≥ λ
1⊗ν

(1)((R\N)× (R\{0})
)
= ∞,

since N is a Lebesgue null set. This obviously gives a contradiction and hence the increments of M
cannot be independent.

We still have to show that the increments are not stationarily scattered either. On the contrary if

{M(A) : A ∈ E (R)} D
= {Mτ(A) = M(A+ τ) : A ∈ E (R)}

10



for all τ ∈ R, then{∫
λ

−λ

eitµ −1
iµ

·
(

1− |µ|
λ

)
M(dµ) : λ > 0, t ∈ R

}
D
=

{∫
λ

−λ

eitµ −1
iµ

·
(

1− |µ|
λ

)
Mτ(dµ) : λ > 0, t ∈ R

}
.

With ft(µ) := eitµ−1
iµ , gt(µ) =

√
2π1[0,t)(µ) and the same notations as in the proof of Theorem 3.4,

we have∫
∞

−∞

ftΦλ (µ)Mτ(dµ) =
∫

∞

−∞

ftΦλ (µ− τ)M(dµ) =
1√
2π

∫
∞

−∞

e−iτξ f̂tΦλ (ξ )L(dξ )

=
1√
2π

∫
∞

−∞

e−iτξ · (Fλ ∗gt)(ξ )L(dξ )
P→
∫

∞

−∞

e−iτξ1[0,t)(ξ )L(dξ )

as λ → ∞. Thus, for all τ ∈ R, {Lt : t ∈ R} D
=
{∫

∞

−∞
e−iτξ1[0,t)(ξ )L(dξ ) : t ∈ R

}
. In particular we

obtain L1
D
=
∫

∞

−∞
e−iπξ1[0,1)(ξ )L(dξ ) and hence

ν
(
Rd\{0}

)
=
∫
R

∫
Rd
1Rd\{0}

(
e−iπs1[0,1)(s)x

)
ν(dx)ds = λ

1⊗ν
(
{0}×Rd\{0}

)
= 0,

a contradiction, since ν was supposed to be regularly varying and thus by definition non-trivial.

Remark 3.8.

(i) Our proof shows in addition that the corresponding random measures of arbitrary disjoint half-
open bounded intervals are always dependent. With a slight modification one can even show that
the same is true for arbitrary disjoint elementary sets.

(ii) Note that the proof is still correct if we replace the assumption that L is regularly varying by
E[‖L1‖2] < ∞ and ν(Rd) 6= 0. In this case the underlying Lévy process has finite second mo-
ments and a bona fide spectral representation has been derived in [24]. It is well-known that
the corresponding random noise is then defined for all bounded Borel sets and one obtains a
so-called random orthogonal measure (see [14, 29] for comprehensive treatments) with uncor-
related but dependent increments.

(iii) The assumption that ν is regularly varying is not explicitly used in the proof, it however assures
that ν 6≡ 0. If this non-triviality is not guaranteed, the result of the proposition becomes incorrect
since it is well-known that the corresponding random noise in the standard Brownian case has
orthogonal and stationary increments (see e.g. [2, Section 2.1, Lemma 5]).

In addition the following properties about moments and the local behavior of the Lévy measure of
the random content at zero can be shown. For a definition of the notion of δ -variation see for instance
[4].

Proposition 3.9. Let L = (Lt)t∈R be a two-sided Lévy process in Rd with E[L1] = 0 and generating
triplet (γ,Σ,ν). Assume moreover that ν ∈RV (α, l,κν) for some α ∈ (1,2] and let M be the associated
regularly varying random content of Theorem 3.4. Then the process

Zt := M ([0, t)) =
∫

∞

−∞

1− e−itµ

2πiµ
L(dµ), t ∈ R+,
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is regularly varying with index α .
Furthermore we have, for any t ∈ R+, the following results for Zt and its corresponding Lévy

measure νZt :

(i)
∫
{‖x‖≤1} ‖x‖νZt (dx) = ∞ and thus νZt is in particular infinite.

(ii) E[‖Zt‖p]< ∞ for any 0 < p < α and E[‖Zt‖p] = ∞ for any p > α .

(iii) For any δ ∈ (1,α) the integral
∫
{‖x‖≤1} ‖x‖

δ
ν(dx) is finite iff

∫
{‖x‖≤1} ‖x‖

δ
νZt (dx) is finite, i.e.

the Lévy process L has a.s. finite δ -variation if and only if Σ = 0 and
∫
{‖x‖≤1} ‖x‖

δ
νZt (dx)< ∞.

Moreover, if the Lévy process satisfies in addition E[‖L1‖α ]< ∞, then the statement is also true
for δ = α .

(iv) The implication ∫
{‖x‖≤1}

‖x‖δ
νZt (dx)< ∞⇒

∫
{‖x‖≤1}

‖x‖δ
ν(dx)< ∞

is valid for every δ ∈ (1,2).

Proof. We first show that (Zt)t∈R+ is regularly varying with index α , i.e. all finite dimensional margins
are regularly varying with index α . Let (t1, . . . , tm)′ ∈ Rm

+ and observe thatZt1
...

Ztm

=
1√
2π


∫

∞

−∞
1̂[0,t1)(µ)L(dµ)

...∫
∞

−∞
1̂[0,tm)(µ)L(dµ)

=
1√
2π

∫
∞

−∞

gt1,...,tm(µ)L(dµ)

where gt1,...,tm : R→Mmd×d(C) is defined by

gt1,...,tm(µ) :=

1̂[0,t1)(µ)Id
...

1̂[0,tm)(µ)Id

 .

Since we obviously have gt1,...,tm ∈ Lα(Mmd×d(C)) and κν

(
g−1

t1,...,tm(µ)(C
md\{0})∩Rd

)
= 0 does not

hold for almost every µ , a simple application of [25, Theorem 3.2] shows that the process (Zt)t∈R+ is
regularly varying of index α . This also implies (ii).

Recall that the Lévy measure of Zt , identifying again C with R2 and Cd with
(
R2
)d , is given by

νZt (A) =
∫
R

∫
Rd
1A

(
1− e−itµ

2πiµ
x
)

ν(dx)dµ = f (λ 1⊗ν)(A), A ∈B
(
Cd
∗
)
,

where f : R×Rd → Cd , f (µ,x) := 1−e−itµ

2πiµ x and f (λ 1⊗ν) denotes the image measure of λ 1⊗ν by
f on (Cd ,B(Cd)).
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Now, for any δ ∈ [1,2), we observe

∫
{‖x‖≤1}

‖x‖δ
νZt (dx) =

∫{
(µ,y)∈R×Rd :

√
1−cos(tµ)
|µ| ‖y‖≤

√
2π

}( ‖y‖√
2π

)δ (1− cos(tµ))
δ

2

|µ|δ
(λ 1⊗ν)(d(µ,y))

=

(
1√
2π

)δ

·
∫
Rd\{0}

‖y‖δ

∫{
µ∈R:

√
1−cos(tµ)
|µ| ‖y‖≤

√
2π

} (1− cos(tµ))
δ

2

|µ|δ
dµ

ν(dy) (3.8)

due to Fubini’s Theorem. For δ = 1 the inner integral in (3.8) is infinite for all y ∈ Rd\{0} and we
deduce

∫
{‖x‖≤1} ‖x‖νZt (dx) = ∞. Thus (i) is shown.

Let now δ ∈ (1,α) and assume
∫
{‖x‖≤1} ‖x‖

δ
ν(dx)< ∞. Note that the inner integral in (3.8) can be

bounded by
∫
R

(1−cos(tµ))
δ
2

|µ|δ
dµ =: C(δ )< ∞ and thus (3.8) becomes

∫
{‖x‖≤1}

‖x‖δ
νZt (dx)≤C(δ ) ·

(
1√
2π

)δ

·
(∫
{‖y‖≤1}

‖y‖δ
ν(dy)+

∫
{‖y‖>1}

‖y‖δ
ν(dy)

)
.

The first integral on the right-hand side is finite by assumption and the second integral is finite as well
since 1 < δ < α and hence the underlying Lévy process has a finite δ -th moment (cf. [31, Corollary
25.8]). Hence, the integral

∫
{‖x‖≤1} ‖x‖

δ
νZt (dx) is finite.

If in addition E[‖L1‖α ] < ∞ holds, then it is obvious that finiteness of
∫
{‖x‖≤1} ‖x‖

α
ν(dx) still

implies that
∫
{‖x‖≤1} ‖x‖

α
νZt (dx) is also finite.

Conversely, let δ ∈ (1,2) and assume that
∫
{‖x‖≤1} ‖x‖

δ
νZt (dx)< ∞. Then (cf. (3.8))

∫
{‖x‖≤1}

‖x‖δ
νZt (dx) =

(
1√
2π

)δ ∫
R

(1− cos(tµ))
δ

2

|µ|δ
∫{

y∈Rd\{0}:
√

1−cos(tµ)
|µ| ‖y‖≤

√
2π

} ‖y‖δ
ν(dy)dµ

and due to
{

y ∈ Rd\{0} : ‖y‖ ≤ π · |µ|
}
⊆
{

y∈Rd\{0} :
√

1−cos(tµ)
|µ| ‖y‖ ≤

√
2π

}
for all µ 6= 0, we

deduce∫
{‖x‖≤1}

‖x‖δ
νZt (dx)≥

(
1√
2π

)δ

·
∫
{|µ|≥1}

(1− cos(tµ))
δ

2

|µ|δ

(∫
{‖y‖≤π|µ|}

‖y‖δ
ν(dy)

)
dµ

≥
(

1√
2π

)δ

·
∫
{|µ|≥1}

(1− cos(tµ))
δ

2

|µ|δ
dµ ·

∫
{‖y‖≤1}

‖y‖δ
ν(dy).

The first integral on the right-hand side is strictly positive and finite since δ > 1. Hence we obtain∫
{‖y‖≤1} ‖y‖

δ
ν(dy)< ∞ and (iv) is shown.

It is well-known that, for any δ ∈ (1,2), L has a.s. finite δ -variation if and only if Σ = 0 and∫
{‖x‖≤1} ‖x‖

δ
ν(dx)< ∞ (cf. [4, Theorem IIIb]). This yields the additional statement of (iii) and com-

pletes the proof of the proposition.

Remark 3.10. If L is assumed to be symmetric α-stable with α ∈ (1,2), then (Zt)t∈R+ becomes itself
a symmetric α-stable stochastic process. In this case one can again show that, for any δ ∈ (0,2) and
t ∈R+, the integral

∫
{‖x‖≤1} ‖x‖

δ
ν(dx) is finite if and only if the integral

∫
{‖x‖≤1} ‖x‖

δ
νZt (dx) is finite

which is in turn the case if and only if δ > α (cf. [31, Theorem 14.3]).
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We conclude this section by the following version of Proposition 3.9 for the case where the under-
lying Lévy process has finite second moments.

Proposition 3.11. Let L = (Lt)t∈R be a two-sided square-integrable Lévy process in Rd such that
E[L1] = 0 and let M be the corresponding random orthogonal measure of Theorem 3.4 (cf. Remark
3.8). Moreover, letting (γ,Σ,ν) the generating triplet of L, we assume that ν 6≡ 0. Then, for all t ∈R+,
we have the following results for Zt := M ([0, t)) =

∫
∞

−∞

1−e−itµ

2πiµ L(dµ):

(i)
∫
{‖x‖≤1} ‖x‖νZt (dx) = ∞ and thus νZt is in particular infinite.

(ii) For any δ ∈ (1,2), the Lévy process L has a.s. finite δ -variation if and only if Σ = 0 and∫
{‖x‖≤1} ‖x‖

δ
νZt (dx)< ∞.

(iii) For any β > 0, we have E[‖L1‖β ]< ∞ if and only if E[‖Zt‖β ]< ∞.

(iv) If E[exp{β ‖L1‖}]< ∞ for some β > 0, then E[exp{η(t)‖Zt‖}]< ∞ with

η(t) =
π√

2c(t)
β and c(t) = sup

µ∈R

√
1− cos(tµ)
|µ|

∈ (0,∞).

Proof. (i), (ii) and (iii) can be shown analogously to the proof of Proposition 3.9. As to (iv), we know
by virtue of [31, Corollary 25.8] that E[exp{η ‖Zt‖}] < ∞ if and only if

∫
{‖x‖>1} exp{η ‖x‖}νZt (dx)

is finite. As in (3.8), we have∫
{‖x‖>1}

exp{η ‖x‖}νZt (dx)

=
∫
Rd\{0}

∫{
µ∈R:

√
1−cos(tµ)
|µ| ‖y‖>

√
2π

} exp

{
η
‖y‖√

2π

√
1− cos(tµ)
|µ|

}
dµ ν(dy). (3.9)

Setting c(t) := supµ∈R

√
1−cos(tµ)
|µ| , observe first that c(t) ∈ (0,∞) for any t > 0. Thus we obtain for

any y ∈ Rd\{0} with ‖y‖ ≤
√

2π

c(t) that
√

1−cos(tµ)
|µ| ‖y‖ ≤

√
2π for all µ ∈ R. This gives that the inner

integral in (3.9) vanishes for all y ∈Rd\{0} with ‖y‖ ≤
√

2π

c(t) and hence, using in addition the relation{
µ ∈ R :

√
1−cos(µt)
|µ| ‖y‖>

√
2π

}
⊆
{

µ ∈ R : |µ|< ‖y‖
π

}
, (3.9) can be bounded by

∫
{‖x‖>1}

exp{η ‖x‖}νZt (dx)≤
∫{
‖y‖>

√
2π

c(t)

} ∫{
|µ|< ‖y‖

π

} exp

{
η
‖y‖√

2π

√
1− cos(tµ)
|µ|

}
dµ ν(dy)

≤ 2
π
·
∫{
‖y‖>

√
2π

c(t)

} ‖y‖ · exp
{

η
c(t) · ‖y‖√

2π

}
ν(dy). (3.10)

Since E
[
‖L1‖ · exp

{
β

2 ‖L1‖
}]
≤ E[‖L1‖2]

1
2 ·E [exp{β ‖L1‖}]

1
2 < ∞ by assumption, [31, Corollary

25.8] shows that the right-hand side of (3.10) is finite for η = η(t) := π√
2c(t)

β > 0.

So the random content inherits moments exactly and always has a Lévy measure around zero with
infinite activity and

∫
{‖x‖≤1} ‖x‖νZt (dx) = ∞. Moreover, if L has a moment generating function in a

neighborhood of zero then so does Zt .
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4. Moving Averages and Regularly Varying MCARMA Processes

Let us now turn to multivariate CARMA processes which are driven by regularly varying Lévy pro-
cesses. Before turning to their definition we establish one proposition and one lemma. The following
result gives further insight into the spectral representation of moving averages of regularly varying
Lévy processes.

Proposition 4.1. Let L = (Lt)t∈R be a Lévy process in Rd with generating triplet (γ,Σ,ν) where
ν ∈ RV (α, l,κν) with α ∈ (1,2] and suppose E[L1] = 0. Let M be the corresponding random content
of Theorem 3.4 and assume that h ∈ L1(Md(C))∩Lα(Md(C)) such that in addition h is bounded and
its Fourier transform ĥ is of bounded variation on compacts. Define

Gt := P− lim
λ→∞

∫
λ

−λ

eitµ ĥ(µ)
(

1− |µ|
λ

)
M(dµ), t ∈ R.

Then, for all t ∈ R,

Gt =
1√
2π

∫
∞

−∞

h(t−µ)L(dµ).

If in addition κν

(
h−1(s)(Cd\{0})∩Rd

)
= 0 does not hold for almost every s, then the process (Gt)t∈R

is also regularly varying of index α .

Proof. Since h ∈ L1(Md(C)), the Fourier transform ĥ is obviously continuous and thus the function

fλ ,t(µ) := eitµ ĥ(µ)
(

1− |µ|
λ

)
1[−λ ,λ ](µ), µ ∈ R,

is continuous with compact support on R and has bounded variation by assumption. Consequently, it
can be approximated in the L1(Md(C))-norm by a sequence of E (R)-simple functions fn satisfying in
addition f̂n→ f̂λ ,t in Lδ (Md(C)) as n→ ∞ for any δ ∈ (1,α) (this can be shown in the same way as
in Step 3 of the proof of Theorem 3.4, see also Remark 3.5). Thus fλ ,t is M-integrable for any λ > 0
and t ∈ R.

Then
Gt = P− lim

λ→∞

∫
∞

−∞

fλ ,t(µ)M(dµ)
(3.6)
= P− lim

λ→∞

1√
2π

∫
∞

−∞

f̂λ ,t(µ)L(dµ).

Setting Φλ (µ) :=
(
1− |µ|

λ

)
1[−λ ,λ ](µ) and ht(µ) := h(µ + t), we have

fλ ,t = Φλ eit · ĥ = Φλ ĥt
(A.1)
=

(A.2)
F̂λ ∗ht

and thus, due to the “inversion formula” (see [19, p. 158]) and Theorem A.1,

f̂λ ,t =
̂̂Fλ ∗ht = (Fλ ∗ht)(−· ) = Fλ ∗ (ht(−· ))

Lδ (Md(C))→ ht(−· ) as λ → ∞

for any 1≤ δ < α since ht ∈ L1(Md(C))∩Lα(Md(C)). Hence Theorem 3.2 yields

Gt = P− lim
λ→∞

1√
2π

∫
∞

−∞

Fλ ∗ (ht(−· ))dL =
1√
2π

∫
∞

−∞

ht(−· )dL

for all t ∈ R.
The additional statement follows from [25, Corollary 3.5].
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The next lemma verifies the assumptions of Proposition 4.1 for regularly varying MCARMA pro-
cesses.

Lemma 4.2. Let p, q ∈ N0 with p > q and A1, . . . , Ap, B0, B1, . . . , Bq ∈Md(C) with B0 6= 0. Define

P : C→Md(C), z 7→ zpId + zp−1A1 + . . .+Ap,

Q : C→Md(C), z 7→ zqB0 + zq−1B1 + . . .+Bq

and assume that N (P) := {z ∈ C : det(P(z)) = 0} ⊆ R\{0}+ iR. Then the function

g : R→Md(C), g(µ) := P(iµ)−1Q(iµ)

is continuous and of bounded variation on compacts. Moreover g = ĥ in L2(Md(C)) where, for all
µ 6= 0,

h(µ) :=
1√
2π

∫
R

eiµsP(is)−1Q(is)ds =
√

2π ∑
λ

m(λ )−1

∑
s=0

(
µ

seλ µ1{Re(λ )·µ<0}Cλ s

)
∈ Lδ (Md(C)) (4.1)

for any δ ≥ 1. Here ∑
λ

denotes the sum over all distinct zeros in N (P), the multiplicity of the zero λ

is written as m(λ ) and Cλ s are constant complex-valued d×d matrices.

Proof. We need the following consequence of the residue theorem from complex analysis (see for
instance [20, Section VI.2, Theorem 2.2] or [15, Section III.7, Theorem 7.11]): let p, q : C→ C be
polynomials where p is of higher degree than q. Assume that p has no zeros on the real line. Then

∫
∞

−∞

eiµt q(t)
p(t)

dt =


2πi · ∑

z∈C: Im(z)>0,
p(z)=0

Resz f , µ > 0

−2πi · ∑
z∈C: Im(z)<0,

p(z)=0

Resz f , µ < 0


with f : C→ C, z 7→ eiµz q(z)

p(z) and Resz f denoting the residual of f at point z.
Turning now to our function g, note first that it is well-defined by virtue of [24, Lemma 3.10]. It is

clearly continuous and we have from elementary matrix theory that

g(µ) = P(iµ)−1Q(iµ) =
S(iµ)

det(P(iµ))

where S : C→ Md(C) is some matrix-valued polynomial. Using [24, Lemma 3.11] it is easy to see
that the complex-valued polynomial det(P(iµ)) in µ is of higher degree than S(iµ). Since all zeros of
P are assumed to have non-vanishing real part, the zeros of P(i · ) have non-vanishing imaginary part.
On the one hand this implies that all components of the function g are continuously differentiable and
hence g is of bounded variation on compacts.

On the other hand this enables us to apply the above stated results from complex function theory
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component wise and we deduce for all j,k = 1, . . . ,d and µ ∈ R, µ 6= 0,(√
2πh(µ)

)
jk
=

(∫
∞

−∞

eiµtg(t)dt
)

jk

= 2πi
(
1{µ>0} · ∑

z∈C: Im(z)>0,
det(P(iz))=0

Resz f jk−1{µ<0} · ∑
z∈C: Im(z)<0,
det(P(iz))=0

Resz f jk

)

= 2πi
(
1{µ>0} · ∑

z∈C:Re(z)<0,
det(P(z))=0

Res−iz f jk−1{µ<0} · ∑
z∈C:Re(z)>0,
det(P(z))=0

Res−iz f jk

)
(4.2)

where f jk : C→ C, z 7→ eiµz S jk(iz)
det(P(iz)) .

Let λ denote the distinct zeros of det(P(z)) and m(λ ) the multiplicity of the zero λ . Since it is
well-known that the residual of any meromorphic function f : C→ C at a pole a of order n ∈ N is
given by

Resa f =
1

(n−1)!

[
dn−1

dzn−1 (z−a)n f (z)
]

z=a

(see [15, Section III.6, Remark 6.4.1]), the residual of f jk at the point −iλ , with λ being any zero of
det(P(z)), can be written as

Res−iλ f jk =
1

(m(λ )−1)!

[
dm(λ )−1

dzm(λ )−1 (z+ iλ )m(λ )eiµz S jk(iz)
det(P(iz))

]
z=−iλ

=−i ·
m(λ )−1

∑
s=0

c jk
λ sµ

seλ µ (4.3)

for appropriate complex constants c jk
λ s (where the sum reduces to −i ·S jk(λ )/

[ d
dz det(P(z))

]
z=λ

eλ µ if
m(λ ) = 1). Thus (4.2) becomes

h(µ) jk =
√

2π

(
1{µ>0} · ∑

λ :Re(λ )<0

m(λ )−1

∑
s=0

c jk
λ sµ

seλ µ −1{µ<0} · ∑
λ :Re(λ )>0

m(λ )−1

∑
s=0

c jk
λ sµ

seλ µ

)
=
√

2π ∑
λ

m(λ )−1

∑
s=0

(
c̃ jk

λ sµ
seλ µ1{Re(λ )·µ<0}

)
(4.4)

with c̃ jk
λ s := c jk

λ s if Re(λ )< 0 and c̃ jk
λ s :=−c jk

λ s if Re(λ )> 0.
Hence h is obviously in Lδ (Md(C)) for any δ ≥ 1 and by virtue of the “inversion formula” (cf. [19,

p. 177]) we obtain ĥ = g in L2(Md(C)).
Finally, defining the d× d matrices Cλ s := (c̃ jk

λ s) jk, we obtain the claimed representation of h in
(4.1).

Let us now give a spectral definition of regularly varying MCARMA processes with index α ∈
(1,2]. Note that the well-definedness is ensured by Proposition 4.1 and Lemma 4.2. Our definition is
the regularly varying analogon of [24, Definition 3.18], hence similar arguments to [24, Remark 3.6
and 3.19] show that a regularly varying MCARMA process Y can be interpreted as a solution to the
formal p-th-order d-dimensional differential equation

P(D)Yt = Q(D)DLt , t ∈ R,
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where D denotes the differentiation operator with respect to t and P and Q are the autoregressive and
moving average polynomial, respectively. This differential equation is obviously comparable to the
difference equation characterizing ARMA processes in discrete time.

Definition 4.3 (Regularly Varying MCARMA Process). Let L = (Lt)t∈R be a d-dimensional Lévy
process with generating triplet (γ,Σ,ν) where ν ∈ RV (α, l,κν) with index α ∈ (1,2] and suppose
E[L1] = 0. Let M be again the corresponding random content of Theorem 3.4. Then a d-dimensional
regularly varying Lévy-driven continuous time autoregressive moving average process (Yt)t∈R of order
(p,q) with p, q ∈ N0, p > q (regularly varying MCARMA(p,q) process) with index α is defined as
the regularly varying process

Yt : = P− lim
λ→∞

∫
λ

−λ

eitµP(iµ)−1Q(iµ)
(

1− |µ|
λ

)
M(dµ), t ∈ R, where

P(z) : = zpId + zp−1A1 + . . .+Ap and

Q(z) : = zqB0 + zq−1B1 + . . .+Bq

are the autoregressive and moving average polynomial, respectively.
Here Ai, B j ∈ Md(R) are real matrices satisfying B0 6= 0 and N (P) = {z ∈ C : det(P(z)) = 0} ⊆
R\{0}+ iR and κν is a Radon measure such that κν

(
h−1(s)(Cd\{0})∩Rd

)
= 0 does not hold for

almost every s, where h = ĝ(−· ) with g = P(i · )−1Q(i · ) (cf. (4.1)).

Note that in the causal case (i.e. N (P) ⊆ (−∞,0) + iR) with p = q+ 1 it is sufficient that B0 is
invertible in order to ensure that κν satisfies the preceding condition.

In addition to their spectral representation (in the summability sense), the following moving average
representation of regularly varying MCARMA processes is immediately obtained.

Corollary 4.4. Let Y = (Yt)t∈R be a regularly varying MCARMA(p,q) process of index α ∈ (1,2].
Then Y has the moving average representation

Yt =
1√
2π

∫
∞

−∞

h(t−µ)L(dµ)

for all t ∈ R, where the kernel function (cf. (4.1)) is given by h = 1√
2π

∫
∞

−∞
eis ·P(is)−1Q(is)ds.

Proof. Combine Proposition 4.1 and Lemma 4.2.

Using this kernel representation, strict stationarity of regularly varying MCARMA processes is
obtained by applying [1, Theorem 4.3.16].

Proposition 4.5. The regularly varying MCARMA process is strictly stationary.

Remark 4.6.

(i) One might think that regularly varying MCARMA processes also have a bona fide spectral
representation of the form

Yt =
∫

∞

−∞

eitµP(iµ)−1Q(iµ)M̃(dµ), t ∈ R,

for an appropriate extension M̃ of the regularly varying random content of Theorem 3.4 to
B0(R), the collection of all Borel sets with finite Lebesgue measure. In the case of driving Lévy
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processes that are symmetric α-stable (SαS for short) with index of stability α ∈ (1,2), the rela-
tionship between harmonizable SαS processes (i.e. Fourier transforms of possibly dependently
scattered SαS noises) and moving averages of stationarily and independently scattered SαS
noises has been studied for a long time. Finally, it has been shown in [23, Proposition 1.9] that
if the SαS MCARMA process with α ∈ (1,2) had such a bona fide spectral representation, it
would be equal to 0 for all t ∈ R. Thus such a representation cannot exist in general.

(ii) However, for α = 2 we can distinguish the following two cases: if E[‖L1‖2] < ∞, then we are
in the setting of [24] and one can derive a bona fide spectral representation for the driving Lévy
and the associated MCARMA process. If L1 has infinite variance, then the L2-theory is not ap-
plicable but we get a spectral representation (in the summability sense) for the driving Lévy and
the associated MCARMA process according to Theorem 3.4 and Definition 4.3, respectively.

5. Consistency to Previously Defined Causal MCARMA
Processes

The established spectral representation clearly extends the Lévy-case with finite second moments.
However, also in [24] an extension of MCARMA processes in the causal case, the so-called causal
MCARMA process, has been introduced. In this section we are going to prove that both definitions
coincide when they apply both.

Proposition 5.1. Let the polynomials P and Q be defined as in Lemma 4.2. Moreover we define the
matrices

A :=


0 Id 0 . . . 0

0 0 Id
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 Id
−Ap −Ap−1 . . . . . . −A1

 ∈Md p(C)

and β = (β ∗1 , . . . , β ∗p)
∗ ∈Md p×d(C) with

βp− j :=−
p− j−1

∑
i=1

Aiβp− j−i +Bq− j, j = 0,1, . . . , p−1, (5.1)

setting Bi = 0 for i < 0. Then, for any t ∈ R,(
Id ,0Md(C), . . . ,0Md(C)

)
etA

β =
1

2πi

∫
ρ

etzP(z)−1Q(z)dz (5.2)

where ρ is a simple closed curve in the complex plane that encircles all eigenvalues of the matrix A.

Proof. By virtue of [3, Proposition 11.2.1] we have etA = 1
2πi

∫
ρ

etz(zId p−A)−1 dz for any t ∈ R with
ρ being a simple closed curve in the complex plane enclosing the spectrum of A. Setting

hk,p(z) :=
p−k

∑
u=0

zuAp−k−u, k = 1, . . . , p, (5.3)
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with A0 := Id , and

rk(z) :=−
k

∑
u=0

zuAp−u, k = 0,1, . . . , p−2,

one verifies that, for all z outside of the spectrum of A, the d× d blocks ci j(z), i, j = 1, . . . , p, of the
matrix (zId p−A)−1 ∈Md p(C) are given by

ci j(z) = P(z)−1
{

zi−1h j,p(z), if i≤ j,
zi− j−1r j−1(z), if i > j.

Indeed, one can show by simple calculations that this matrix is a left inverse for zId p−A and thus, due
to [3, Corollary 2.6.4], it is the unique inverse of zId p−A. Hence

(
Id ,0Md(C), . . . ,0Md(C)

)
etA

β =
1

2πi

∫
ρ

etzP(z)−1 ·
( p

∑
j=1

h j,p(z)β j

)
dz.

Since Bi = 0 for all i < 0, we obtain

p

∑
j=1

h j,p(z)β j
(5.3)
=

p

∑
j=1

p− j

∑
u=0

zuAp− j−uβ j =
p−1

∑
u=0

zu
( p−u

∑
j=1

Ap− j−uβ j

)
=

p−1

∑
u=0

zu
( p−u−1

∑
j=1

A jβp− j−u +βp−u

)
(5.1)
=

p−1

∑
u=0

zuBq−u =
q

∑
u=0

zuBq−u = Q(z)

and thus (5.2) is shown.

Now observe that the causal MCARMA process can be represented as (cf. [24, Theorem 3.12])

Yt =
∫ t

−∞

(
Id ,0Md(C), . . . ,0Md(C)

)
e(t−s)A

β L(ds), t ∈ R.

Since N (P)⊆ (−∞,0)+ iR, we obtain for all s < t, due to Proposition 5.1 and the Residue Theorem,

(
Id ,0Md(C), . . . ,0Md(C)

)
e(t−s)A

β =
1

2πi

∫
ρ

e(t−s)zP(z)−1Q(z)︸ ︷︷ ︸
=: f (z)

dz = ∑
z∈C:Re(z)<0,
det(P(z))=0

(
Resz f jk

)
j,k=1,...,d

= i · ∑
z∈C:Re(z)<0,
det(P(z))=0

(
Res−iz f̃ jk

)
j,k=1,...,d

with f̃ (z) := ei(t−s)zP(iz)−1Q(iz), z ∈ C. Using then (4.3) and (4.4), we deduce

(
Id ,0Md(C), . . . ,0Md(C)

)
e(t−s)A

β ·1{s<t} =
1√
2π

h(t− s)

and the claimed consistency follows from Corollary 4.4.

Remark 5.2. Similar results in the univariate case can be found in [8, Lemma 2.3]. We have shown
that equation (2.10) in that lemma extends to its multivariate version (5.2).
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A. Fourier Transforms on the Real Line

In this appendix we summarize important results for Fourier transforms on the real line.
The theory for complex-valued functions in L1 and L2, resp., is rather standard. Also the extension

to complex-valued functions in Lp with p ∈ (1,2), for which the Fourier transforms can be defined
by continuity as functions in Lq with q = p/(p−1), is quite common. For good expositions we refer
the reader to [19] or [32]. In the following, let us state the multivariate versions of some well-known
univariate results.

For p ∈ [1,2] we set

Lp(Md(C)) :=
{

f : R→Md(C) measurable,
∫
R
‖ f (t)‖p dt < ∞

}
.

It is independent of the norm ‖ ·‖ on Md(C) (since Md(C) is a finite dimensional linear space) and it
is equal to the space of functions f = ( fi j) : R→Md(C) where all components fi j, i, j = 1, . . . ,d, are
in the usual space Lp(C). We equip Lp(Md(C)) with the norm ‖ f‖Lp := (

∫
R ‖ f (t)‖p dt)1/p.

The Fourier transform f̂ of f ∈ L1(Md(C)) is defined by

f̂ (ξ ) :=
1√
2π

∫
R

e−iξ x f (x)dx, ξ ∈ R.

Clearly, f̂ : R→ Md(C) and f̂ can be interpreted as the component wise Fourier transformation of
fi j, i, j = 1, . . . ,d, i.e. f̂ = ( f̂i j). This is why, as in the univariate case, the Fourier transform f̂ of
f ∈ Lp(Md(C)), 1 < p≤ 2, can be defined as the limit in Lq(Md(C)), q = p/(p−1), of the sequence

1√
2π

∫ n
−n e−ix · f (x)dx as n→ ∞. The mapping f 7→ f̂ is a linear continuous operator from Lp(Md(C))

into Lq(Md(C)).
Recall that for f ∈ L1(C) and g ∈ Lp(Md(C)), p ∈ [1,2], the convolution h(x) := ( f ∗ g)(x) :=∫

R f (x−y)g(y)dy is Lebesgue-a.e. well-defined, h ∈ Lp(Md(C)) and its Fourier transform is given by
ĥ =
√

2π f̂ · ĝ.
Moreover, we define Fλ (x) := λ ·F(λx), λ ∈ (0,∞), where

F(x) :=
1

2π

(
sinx/2

x/2

)2

=
1

2π

∫
R

eiξ x(1−|ξ |)1[−1,1](ξ )dξ .

The family (Fλ )λ∈(0,∞) is called Féjer kernel on the real line. It is easy to show that, for almost all
ξ ∈ R,

F̂λ (ξ ) =
1√
2π

(
1− |ξ |

λ

)
1[−λ ,λ ](ξ ) =: ∆λ (ξ ) (A.1)

and thus
F̂λ ∗g =

√
2πF̂λ · ĝ =

√
2π∆λ · ĝ (A.2)

for all g ∈ Lp(Md(C)), p ∈ [1,2]. Using these properties one can show the following central result in
classical Fourier theory (cf. [19, Chapter VI]):

Theorem A.1. Let f ∈ Lp(Md(C)) with p ∈ [1,2] and (Fλ )λ∈(0,∞) be the Féjer kernel on R. Then

lim
λ→∞

‖ f −Fλ ∗ f‖Lp = 0
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showing that Fλ is an approximate convolution identity.
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[5] BROCKWELL, P. J. Lévy-driven CARMA processes. Ann. Inst. Statist. Math. 53 (2001), 113–124.

[6] BROCKWELL, P. J. Representations of continuous-time ARMA processes. J. Appl. Probab. 41A (2004),
375–382.

[7] BROCKWELL, P. J., AND DAVIS, R. A. Time Series: Theory and Methods, 2nd ed. Springer-Verlag, New
York, 1991.

[8] BROCKWELL, P. J., AND LINDNER, A. Existence and uniqueness of stationary Lévy-driven CARMA
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